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Abstract—Today’s data plane network telemetry systems en-
able network operators to capture fine-grained data streams
of many different network traffic features (e.g., loss or flow
arrival rate) at line rate. This capability facilitates data-driven
approaches to network management and motivates leveraging
either statistical or machine learning models (e.g., for forecasting
network data streams) for automating various network manage-
ment tasks. However, current studies on network automation-
related problems are in general not concerned with issues that
arise when deploying these models in practice (e.g., (re)training
overhead).

In this paper, we examine various training-related aspects that
affect the accuracy and overhead (and thus feasibility) of both
LSTM and SARIMA, two popular types of models used for
forecasting real-world network data streams in telemetry systems.
In particular, we study the impact of the size, choice, and recency
of the training data on accuracy and overhead and explore
using separate models for different segments of a data stream
(e.g., per-hour models). Using two real-world data streams, we
show that (i) per-hour LSTM models exhibit high accuracy after
training with only 24 hours of data, (ii) the accuracy of LSTM
models does not depend on the recency of the training data (i.e.,
no frequent (re)training is required), (iii) SARIMA models can
have comparable or lower accuracy than LSTM models, and
(iv) certain segments of the data streams are inherently more
challenging to forecast than others. While the specific findings
reported in this paper depend on the considered data streams and
specified models, we argue that irrespective of the data streams at
hand, a similar examination of training-related aspects is needed
before deploying any statistical or machine learning model in
practice.

I. INTRODUCTION

Recent advances in the programmability of network data
plane (e.g., [1]) enable network operators to monitor their
desired traffic features at the line rate. For example, individual
switches across a campus or data center network can emit a
per-second data stream of loss rate [2], flow arrival rate [3]
or queue occupancy [4] to a central collector as input to a
telemetry task for detecting performance or security-related
events (see § II). The availability of network data streams
coupled with the increasing complexity of today’s networks
motivates a data-driven approach for network management
and security that can be usually cast as a prediction [5], [6],
[7] or a classification [8], [9], [10] problem. In particular,
forecasting techniques are used to predict the likely future
values of a network data stream based on its past values.
The impressive success of deep learning (e.g., recurrent neural
network or RNN) techniques in other fields combined with
their ability to learn short- and long-term dependencies in
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data streams make them a promising candidate for forecasting
network data streams. This, in turn, has motivated several
prior studies to rely on different neural networks (NNs) or
statistical models to forecast various data streams in wireless
or mobile networks, ranging from the throughput of individual
TCP connections [11] and intensity of (per user and aggregate)
traffic [12] to aggregate traffic [13] or traffic at a base
station [14]. These studies typically consider a significant
volume of past data for training which is time-consuming
and typically requires significant amounts of computational
resources. In addition, they evaluate the overall accuracy of a
forecasting model in an off-line manner. To the best of our
knowledge, prior studies on forecasting network data streams
have not addressed the following important issues regarding
the feasibility and deployability of the proposed models in
the context of a network telemetry system (e.g., for anomaly
detection) that operates in a streaming fashion: (i) How can
the volume or selection of training data be adjusted to reduce
training overhead without degrading forecasting accuracy? (ii)
How often does a model have to be retrained to maintain
a sufficient level of accuracy? (iii) Does the accuracy of
forecasting models change across different segments of a data
stream, and if so, in what manner? (iv) How do model selection
(i.e., statistical vs. NN) and model casting (i.e., generic vs. per
hour) affect the answers to the above questions?

In this paper, we tackle the above issues regarding the
feasibility and deployability of forecasting models. In par-
ticular, we adopt the following methodology to compare the
accuracy of a type of deep learning model (i.e., long short
term memory (LSTM) models) with the accuracy of a popular
statistical forecasting technique (i.e., seasonal autoregressive
integrated moving average (SARIMA) models). We consider
two network data streams, namely a per-second flow arrival
rate process for all incoming flows (RAF) and all incoming
web flows (RWF) to a campus network, respectively. These
data streams represent the type and resolution of data that
is commonly captured by modern telemetry systems [1],
[15]. We show in § IV that these data streams exhibit very
different characteristics and thus enable us to demonstrate the
effect of these characteristics on the forecasting accuracy. We
consider both generic and per-hour versions of both LSTM and
SARIMA models for six evenly spaced hours to assess how
different characteristics of data streams affect the accuracy of
forecasting the next five seconds of data streams. For per-hour
models, we explore how the volume, selection, and recency of
the training data can affect the accuracy of the resulting model.



This, in turn, reveals opportunities to reduce training overhead
with minimal or no effect on the forecasting accuracy.

As the main contribution, we report in this paper on a
number of empirical findings from our analyses that offer
valuable insights for deploying the considered models in prac-
tice. First, we observe that for per-hour models, increasing the
volume of training data beyond 24 hours of a recent window
or similar past instances (i.e., same hour, the same day of the
week) does not improve the accuracy of the model but linearly
increases the training overhead. Second, we find that per-hour
models that are trained with a 24-hour data stream exhibit a
comparable accuracy with a generic model that is trained with
30 days of training data. In practical terms, these findings
show that we can significantly decrease training overhead
without compromising the accuracy of LSTM models. Third,
observing that changing the recency of the training data by
a few weeks does not affect the accuracy of our per-hour
forecasting models suggests that LSTM models do not require
frequent (re)training. Fourth, we notice that for our RWF data
stream, the prediction accuracy of all per-hour models is lower
during the night hours and higher during day hours. This
observation shows that certain segments of the data stream
are inherently more difficult to forecast than others. Fifth, in
the case of our RAF data stream, its more bursty behavior
compared to the RWF data stream tends to result in higher
accuracy for LSTM models in forecasting RWF compared
to SARIMA models. Finally, all the models show wider
variations in forecasting accuracy across different samples of
our RAF data stream. It is important to note that while the
reported findings depend specifically on our considered data
streams, the described methodology is applicable to any data
stream and should be part of an in-depth assessment of the
practical issues that arise when deploying any statistical or
learning models.

The rest of this paper is organized as follows. In § II,
we present an example telemetry task to illustrate two re-
quirements for a forecasting model in such a setting. § III
provides some background on LSTM and SARIMA models.
Our empirical approach is described in § IV. We assess the
feasibility and accuracy of forecasting models in § V. § VI
describes the limitations of this study. § VII discusses some
of the closely related prior work. We summarize and outline
future work in § VIIL.

II. ILLUSTRATIVE EXAMPLE

We present an overview of the anomaly detection (teleme-
try) task that incorporates a forecasting model to illustrate
the implications of task requirements and the characteristics
of network data streams on training and configuring the
model. Consider a programmable switch (e.g., Tofino [16])
that monitors a collection of desired traffic features at the line
rate and emits a separate, fine-grained (e.g., per second) data
stream for each feature to a remote collector. The availability
of high resolution (per second or short timescale) data streams
from the data plane telemetry systems enables forecasting
models not only to capture finer variations in traffic but

also to facilitate faster detection of anomalies. A forecasting
model first requires using a history of these data streams for
initial training. Then, a trained model can be deployed at
the collector and uses the most recent n values of the data
stream to forecast the next h values. Then, if the gap between
the forecasted and actual A values is larger than the error
in the model, this could be viewed as an indication of an
anomaly. Subsequently, the telemetry task may trigger further
examination of other traffic features and invoke proper actions
on forwarding switch pipeline (e.g., dropping or re-routing the
relevant packets) to mitigate the problem. Furthermore, de-
pending on the characteristics of the captured data stream, the
model may require periodic retraining such that its forecasted
values remain sufficiently accurate.

This example illustrates two important requirements for
practical deployment of learning models into a telemetry
system:

o R1: Forecasting models are often trained using a large
volume of past data (a few days to weeks or months)
which typically takes a long time (hours to days). How-
ever, in telemetry systems, a long history of a data stream
may not be available and a significant training overhead
may not be feasible. To address this requirement, we
explore how the training overhead can be reduced by lim-
iting the volume (and selection) of training data without
affecting the accuracy of the resulting model.

o R2: Since network data streams may evolve (over time),
we need to periodically re-train a forecasting model to
maintain sufficiently high accuracy. The duration of a re-
training should be much shorter than the period for re-
freshing the model. We examine the effect of the recency
of training data on the accuracy of forecasting models to
shed light on the required frequency of retraining and its
relationship with (re)training overhead.

III. BACKGROUND

This section provides a brief background on the forecasting
models that we consider in this study.
LSTM. Long short-term memory (LSTM) is a recurrent neural
network (RNN) architecture [17] that has been widely used
for forecasting in various domains, including networking [18],
[19], [20], [21]. The key feature of the LSTM model is its
ability to capture potential long-range dependencies in the data
stream. The LSTM model has several parameters related to
its architecture, optimizer, and training approach that should
be properly configured such as the number of stacked layers,
number of hidden nodes, activation function, dropout, and the
number of passes over the data during training (i.e., epochs).
To train an LSTM model, the data stream X is divided into
two separate sets: M consecutive values of (X (tg — M) to
X(tg — 1)) for the training set, and the immediate next N
values (X (tg) to X (to + NN)) for the testing set. We consider
non-overlapping training and testing sets, and further split each
set into samples using a rolling window that has been shown
to be an effective strategy [22], [23], [24], [25], [26]. Each
window (of length (A+B) consecutive values) is considered as



a sample. In each sample, the first A values are used as history
to forecast the next B values. The LSTM output size (.5),
is one of the LSTM’s parameters. If the forecasting horizon
H (i.e., the number of data points we expect to forecast) is
larger than .S, then we have to forecast by rolling the window
% times and using either the forecasted or actual values of
the data stream as history for the next S values. All samples
are divided into random and mutually exclusive batches of a
certain size where each batch is used for a separate round of
training until all samples are utilized. This training process can
be repeated multiple times (epochs) to improve the accuracy
of the model.

This description reveals several training parameters for an
LSTM model: the relative size and selection of training and
testing sets, window size, prediction size (LSTM output),
window overlap, batch size, and the number of epochs. We
found optimal values for each during our tuning process.

(S)ARIMA. Auto-Regressive Integrated Moving Average (or
ARIMA) is a popular statistical technique for forecasting
stationary data streams [27], [28], [29], [30]. ARIMA has
several configurable/tunable components: the auto-regressive
component (p) that specifies the number of lags (past values)
in the model, the integrated component (d) that represents the
degree of differencing, a moving average component (q) that
represents the error of the model as a combination of previous
error terms. Subsequently, several variants of ARIMA were
also proposed. For example, to model time series with periodic
characteristics, Seasonal ARIMA (or SARIMA) model [31]
was proposed. SARIMA incorporates seasonal auto-regressive
(P), differencing (D), and moving average ((J) components
as well as a seasonal frequency (s). Given the inherently
periodic (daily, weekly) characteristics of most networking
data streams, we primarily focus on the SARIMA model in
this study.

The process of training a SARIMA model is as follows:
SARIMA models assume that the input data is stationary. The
stationarity of the time series can be achieved via transforma-
tion (e.g., logarithms) to stabilize the time series variance and
differencing to eliminate the trend. Besides, the decomposition
can help to de-seasonalize the time series if necessary [32].
We use Augmented Dickey-Fuller (ADF) test [33] as a unit
root test to check for deterministic trend stationarity as well
as Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [34] to
complement the unit root test. On our data stream, the ADF
test confirms the stationary nature of data with 99% confidence
while KPSS test indicates that the timeseries are not stationary.
In such cases, it is suggested to apply differencing. The KPSS
test passes when applied on differenced data.

To identify the best combination of model parameters,
we consider the range of values for p, d, and ¢ obtained
from the auto-correlation function (ACF) and the partial auto-
correlation function (PACF) plots (not shown due to space
constraints). Then, we train separate SARIMA models for a
different combination of parameters in parallel and select the
best model based on their performance on the validation set.

IV. METHODOLOGY

In this section, we discuss our methodology for exploring
our motivating questions on incorporating forecasting models
into anomaly detection systems. We start by presenting the
network data streams and the selection of forecasting models
that we consider in this study as well as our training and testing
strategies for these models.

A. Network Data Streams

We focus on flow arrival rate per second (i.e., number of
unique incoming network flows that are observed in each
second) as our target data streams since it is used as the input
of telemetry tasks (e.g., [15] [35] [36]). To this end, we use
un-sampled NETFLOW data for all the connections between
the University of Oregon campus and the Internet to extract the
rate of (incoming) web flows (RWF) and rate of (incoming)
all flows (RAF) per second. Our NETFLOW dataset covers
a 10 month period from 1/5/2018 till 28/2/2019 where each
daily segment of our dataset represents on average 8.8 TB of
incoming traffic, associated with 200 million flows, from 3.6
million unique source IPs with 39k unique sources [37].

Fig. 1a and 1b present the variations of our two data streams
in a typical day (2018-09-26) and illustrate that these two data
streams exhibit very different characteristics as follows. First,
RWF shows significantly smaller variations that are dominated
by a pronounced diurnal pattern compared to RAF. Therefore,
forecasting these data streams is likely to present different
challenges. Second, the RWF data stream exhibits a high, low,
and moderate degree of variations during the night (0-8), day
(8-16) and evening (16-24) hours, respectively. However, the
degree of variations in the RAF data stream is very similar
across all hours. This observation motivates us to consider
training a separate forecasting model for different hours of
the day could lead to a higher accuracy.

To examine the (dis)similarity of both data streams across
different days, we consider 13 scale-invariant attributes of each
daily segment for both data streams (proposed by Kang et al.
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Fig. 1: Sample daily variations of our two target flows arrival
rates (per second).



[38])!, apply principal component analysis (PCA) to identify
the top two principal components for each data stream. The
blue dots and orange crosses in Figure 2 present the values
of the top two principal components for RWF and RAF data
streams in separate days, respectively. From this figure we
make two key observations. First, while both data streams
capture flow arrival rates, RAF data stream exhibits wide
variations across different days while the characteristics of
RWF data stream across different days are more consistent.
Therefore these two data streams represent very different input
network timeseries for our forecasting models. Second, the
two pronounced clusters of blue dots in Figure 2 are related
to weekdays (solid black line) and weekends (dotted red
line). This evidence indicates that the RWF data streams have
distinctly different characteristics on weekdays compared to
weekends.
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Fig. 2: Comparison of per-second data streams using principal
components.

B. Forecasting Models

To examine how the type (i.e., SARIMA vs. LSTM), vol-
ume, and selection of training data and other inputs of a model
affect its forecasting accuracy, we consider the following four
models. Using a short forecasting horizon improves model
accuracy but limits the time to react to a detected anomaly and
vice versa. To strike a balance between these two opposing
requirements, we have examined 5, 10 and 20 seconds (5,
10, 20 values) forecasting horizons and selected 5-second
forecasting horizon in all of our models.

LGW(w): This LSTM (L), generic (G) model forecasts any 5-
second segment of a data stream by using the recent (w) hours
window (W) of a data stream for training. A common practice
in training an LSTM model is to use a large volume of a data
stream for training and explore whether adding other features
improve the accuracy of the models. LGW models represent
this common approach for using LSTM models. We use a 30-
day recent window of each data stream to train LGW models
(.e., w=30%24) 2.

LHW(z, w): This per-hour (H) LSTM (L) models forecast any
5-second segment of a data stream in a specific target hour

IThese attributes include trend, spike, linearity, curvature, entropy, skew-
ness, and ACF lags, compared to scale variant attributes such as mean, median,
minimum, and maximum

2We considered other additional input features such as day-of-week and
time-of-day. However, they did not improve the accuracy of LGW models.

x using the past w hours of the data stream for training. We
train a separate model for six evenly spaced target hours (i.e.,
x is set to 3, 7, 11, 15, 19, 23) to explore the accuracy of
our model for forecasting different parts of the data streams.
By setting w to 1, 10, 24, and 48 hours, we also examine
how the volume of training data affects the accuracy of these
per-hour models. We also consider older windows of training
data (from prior weeks) to explore the effect of data recency
on the model accuracy.

LHI(z,7): This LSTM (L) model forecasts any S5-second
segment in a specific target hour (H) z using the past ¢
instances (I) of the target hour z in the data stream for
training. An instance of a specific target hour = is defined
by its hour-of-day and its day-of-week. For example, to train
a model for 7am hour on a Monday, we use the 7-8am
segment of the data stream from ¢ prior Mondays for training.
This training strategy is intuitively motivated by the repeating
weekly pattern of some network data stream, such as RWF,
which suggests that the most relevant training data is the past
instances of the same hour.

SHW(x, w): This SARIMA (S) model forecasts any 5-second
segment in a specific target hour (H) x using the past w hours
of the data stream for training (similar to LHW(x,w)). By
changing w, these models represent a statistical forecasting
technique with a different volume of training data. Note that
SARIMA model can only use the most recent window of data
for training while LSTM can rely on any past window of data
for training.

This collection of models enables us to compare generic
and per hour models while exploring the effect of the volume,
recency, and selection of training data on the overall accuracy
of forecasting models.

C. Tuning Models

We take the following steps to properly tune each one of
the selected models.
LSTM Models. We tune individual LSTM models by exam-
ining the accuracy of the model across thousands of different
configurations and training parameters using random search
on the validation data that is separate from the training and
testing set. We then select the model that exhibits the highest
validation accuracy. We leverage the sliding window approach
to break both training and testing datasets into samples using
the following parameters: window size=150°, window over-
lap=135 and forecasting horizons=5 values. These parameters
result in 233 samples in each hour of our data streams. The
number of epochs is 300 for all models and batch size is 300
for LGW and 150 for other LSTM models. We use checkpoints
to identify the model with the lowest validation loss. We utilize
a Keras implementation of LSTM with Tensorflow backend.
Table I summarizes the main hyperparameters including learn-
ing rate (LR), activation function (AF), drop rate (DR), number
of hidden layers (LY), number of hidden nodes (NHN), and
optimizer (OPT) for our tuned LSTM models.

3Given the selected window size (150) for our samples, having more than
300 samples/hour results in increasing overlap between samples.



TABLE I: Hyperparameters of our LSTM models.

LR AF DR | LY NHN OPT

RWF LHW/T | 0.005 tanh 0.1 5 64-32(x4) | Adam
LGW 0.003 tanh 0.2 3 256 Adam

RAF LHW/T | 0.005 | ReLU | 0.2 4 32-16(x3) | Adam
LGW 0.005 | ReLU | 0.2 4 64 Adam

We use mean square error (MSE = 23" (y; — 9;)?) as

the loss function in our training process where n, y; and ¥;
denote the forecasting horizon size, the actual and predicted
values, respectively.
SARIMA Models. We train a model for 2,500 different
combinations of parameters (5p*5q*5 P*x5Q+2d*2D = 2,500)
and perform grid search to identify the parameters of the
best model. To make sure that models capture the patterns in
the input data stream, we confirmed that the residuals follow
the normal distribution and have no auto-correlation (using
Ljung-Boz test [39]). Table II presents the final configuration
for the SHW models of different hours along with their
associated training time.

D. Testing Models

For testing each model, we consider 300 randomly selected
points in each test hour and use the model to forecast the next
immediate 5 seconds (i.e., our forecasting horizon) of the data
stream. We use Root Mean Square Percentage Error (RMSPE)
for evaluating the accuracy of our forecasting models across

2
all samples as follows: RMSPE = \/%Z?Zl(yiy;yi)

[

where n, y; and ¢; denote the forecasting horizon, the actual
and predicted values, respectively. The normalized nature of
RMSPE makes it scale-invariant and interpretable which is
more appropriate for our purpose [40]. The overall accuracy of
each model is presented with the summary distribution (box-
and-whiskers plots where the box shows the quartiles while
whiskers show 5" and 95" percentiles) of RMSPE across
300 random samples in each target hour. The variations of
error for each model across different hours reveals the effect of
temporal characteristics of data streams on the model accuracy.

For each hourly LSTM model LH*(x, w), we train seven
separate models for each target hour in seven consecutive days
(11/12/18 to 11/18/18)*, test them on 300 samples in the target
hour, and present the summary distribution of RMSPE for all
(7*300) samples for each target hour. For LGW model, we
train a single model but similarly test it on each target hour
across 7 days to present the summary distribution of error
for that hour. Therefore, our results are not biased towards a
specific day of the week.

V. ASSESSING THE PRACTICALITY OF
FORECASTING MODELS

In this section, we assess the practicality of forecasting
models in light of the two requirements described in § II.

4This is a regular week that school was in session.

A. Impacts of Volume and Selection of Training Data

We evaluate the effect of variations of the data stream as

well as the volume, recency, and selection of training data on
the accuracy of forecasting models. The goal is to shed light
on requirement R1 mentioned in § II.
Volume of Training Data. First, we explore the question
of whether the volume of the training dataset affects the
accuracy of a per-hour model? Figure 3a and 3b present
the summary distribution of forecasting error for RWF and
RAF data streams across different hours using LHW models.
For each hour, we show the error for four models that are
trained with 1, 10, 24, and 48-hours of most recent data
stream. These two figures show the following points: First,
for both data streams, increasing the amount of training data
initially improves the accuracy of forecasting for up to 24
hours. However, increasing the training data beyond 24 hours
has a diminishing return in the accuracy of the model for most
hours (except 11 and 15 hours for RWF). Second, the accuracy
of the best-trained model for RWF varies across different hours
(Figure 3a). In particular, the forecasting error during the night
hours is the highest and during the day hours is the lowest.
In contrast, the accuracy of models for RAF is very similar
across all hours.
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Fig. 3: Effect of the volume of training data on the accuracy
of LHW(z, w) model.
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To explain the difference in the accuracy of models across
different hours, we examine the variations of both data streams
during different hours of the day. To this end, we measure
the normalized directed difference (NDD) among (150) values
in each test sample that is defined as follows NDD =
%&i)”(x) x sign(argmazx(X) — argmin(X)) where
X is a test sample, and argmin(argmaz) denotes the index
of the min and max values, indicating the order in which
min and max values are observed (i.e., the positive/negative
direction of major change between these values). The box plots
in Figure 4 present the summary distribution of NDD values
across all samples in each of 6 target hours over 7 days. To
further focus on larger NDD values, we also show the fraction
of samples with positive (negative) NDD values for each hour
that are larger than 0.35 with a blue (orange) bar using the
right y-axis. The plots in Figure 4 illustrate that the normalized
changes across values of individual samples are larger in all
hours of RWF data streams compared to RAF data stream. In

particular, hour 3 and 7 of RWF exhibit the largest normalized
variations. While it is not trivial to determine which specific



TABLE II: Configuration and training time of SARIMA (SHW(zx, 24)) models for both data streams.

T;?:ﬁit Data stream (p,d,q)x(P,D,Q,s) ’I‘(I::;:lut;‘el)le Data stream (p,d,q)x(P,D,Q,s) T(r;lil:l:::)le
03 RWF (1, 0, 3)x(3, 1, 3, 15) 62.2 RAF 3,1, Hx(1, 1, 1, 6) 60.42
07 RWF 3,0, 2)x(2, 1, 3, 15) 129.52 RAF @3, 1, Dx(1, 1, 2, 6) 48.33
11 RWF 3,1, 2)x(2, 1, 3, 15) 124.69 RAF 0, 1, 3)x(2, 0, 3, 6) 16.79
15 RWF (1, 1, 3)x(2, 1, 3, 15) 156.89 RAF 0, 1, 3)x(2, 1, 3, 6) 107.24
19 RWF 3,0, 3)x(3, 0, 3, 15) 63.81 RAF (1, 0, 3)x(0, 1, 3, 6) 82.59
23 RWF (3, 1, Dx(2, 0, 3, 15) 18.27 RAF 0, 1, 3)x(2, 1, 3, 6) 122.37

aspects of a data stream affects the accuracy of a forecasting
model, we believe that the larger variations in specific hours
offer a plausible explanation for lower accuracy of our models
for those hours.
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Fig. 4: Distribution of normalized directed difference (NDD)
of test samples.

For the rest of the analysis, we consider the LHW models
that are trained with the recent 24-hour window of the data
stream for these six target hours.

Selection of Training Data. Another important question is
whether the selection of training data affects the accuracy of
a model? We use LHI (z,7) models for each target hour that
is trained with 1, 10, and 24 segments of data from prior
instances of the same target hour. For example, an LHI (7,10)
for a Monday uses the 7-8am segment of the data stream from
10 prior Mondays for training. Figures 5a and 5b present the
accuracy of the LHI models for forecasting both data streams
across all six target hours that are trained with 1, 10, 24 past
instances of the target hour. These results show that increasing
the number of past instances of training segments from 1 to

60

Head-to-Head Comparison of Different Models. We now
compare the accuracy of all four models—LGW(30%24),
LHW(x,24), LHI(x,24) and SHW(x,24)— for forecasting a 5-
second horizon of different target hours of RWF and RAF data
streams in Figures 6a and 6b, respectively. This figure illus-
trates a few important points: First, LHI (x,24), LHW (x,24),
and LGW (24*30) exhibit a comparable accuracy across all
hours of RWF data streams despite a significantly smaller
amount of training data for LHI and LHW models. Note that
the LGW model is simply a special case of the LHW model
that uses 30 times more training data. Second, the accuracy
of SHW models is lower particularly for hours that are
difficult to forecast (i.e., 3, 7, and 23). Third, the relative
pattern of changes in accuracy across different hours is very
similar for RWF models — lowest accuracy in night hours,
highest accuracy for day hours, and moderate accuracy in the
evening. Fourth, on RAF data stream, SHW has only a slightly
higher error compared to different LSTM models. All LSTM
models have a very similar accuracy on RAF data stream but
LGW exhibits much lower variations in error across different
samples. Note that a commonly reported measure of accuracy
(mean or median error) does not reveal this difference in the
variations of accuracy.

Fifth, comparing all models across both data streams show
that LSTM models have a similar accuracy on both data
streams during night (and early morning) hours (3, 7) but
higher accuracy on forecasting RWF data stream in all other
hours. Interestingly, while LSTM models show a similar
accuracy for RWF data stream at night hours and RAF data
stream at all hours, SHW models have much lower accuracy
on RWF data stream at night hours than RAF data stream.
This suggests that the LSTM models are more capable to
forecast RWF data stream during the night hours (3 and 7)
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Fig. 5: Effect of the selection of training data on the accuracy

of LHI(z, ¢) model.
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despite its larger variations (as we reported in Figure 4). Later
in this section, our examination of the short term pattern of
error offers more insight about this problem with the SARIMA
models.

B. Impacts of Recency of Training Data and Training Over-
head

We next seek to evaluate the recency of training data
and training overheads and how they affect the accuracy of
forecasting models to shed light on R2 mentioned in § II.

Recency of Training Data. We now explore the question
of whether the recency/freshness of training data affects the
accuracy of the forecasting? More specifically, does it make
any difference if we train a LHW model with different 24-
hour segments of the data stream? Figures 7a and 7b depict
the accuracy of LHW (x,24) models for forecasting the six
target hours of both data streams using three different training
datasets for each model: (i) the most recent 24 hours of the
data stream (labeled recent data), (ii) the same 24 hours of
the data stream from 4 weeks ago, and (ii) the same 24 hours
of the data stream from 7 weeks ago. Surprisingly, we observe
that the recency of a (sufficiently long) training dataset has a
rather minor (or no) effect on the accuracy of the model for
both data streams. This finding suggests that a LHW model
that is trained with 24 hours of the data stream has observed
a sufficiently rich set of variations and does not need to be
retrained frequently in the absence of any major data drift.
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Fig. 7: Effect of the recency of training data on the accuracy
of LHW model for RAF data stream.

Training Overheads. Table III presents the total training time
(with 300 epochs) for LGW and LHW/LHI (with different vol-
ume of training data) forecasting models of both data streams
on both CPU (using two Intel Xeon Gold 5218) and GPU
(using GeForce RTX 2080 Ti with 11GB GDDR6 memory).
Table III shows that (i) training time linearly increases with
the volume of training data and it is 7-26x faster on a GPU
than a CPU, (ii) training a model for RWF takes 2-3x longer
than RAF data stream, and (iii) it is feasible to retrain a new
LHW/LHI model on a daily basis using GPU or CPU whereas
LGW model can be retrained only on a daily (weekly) basis
using GPU (CPU). The training times for hourly SARIMA
models (i.e., SHW(x, 24)) on CPU are reported in Table II.
We observe that the training time for both data stream varies
between 16-160min across different hours. This indicates that
these model can be (re)trained on a daily basis.

TABLE III: Total training time of LSTM models.

RWEF training | RAF training

Model Volume of Training | time (minute) | time (minute)
Data (hour) GPU | CPU | GPU | CPU

LHW/T 1 0.4 10 0.25 6.5
LHW/I 10 5 50 1.2 20
LHW/I 24 10 105 5 40
LHW/I 48 20 200 11 76

| LGW | 30%24 [ 667 [ 8550 [ 190 [ 3.850 ]

Longer Forecasting Horizon. The results presented so far are
based on the forecasting horizon of 5-second horizons of the
corresponding data stream by each model. If a telemetry task
requires a longer forecasting horizon, we have two options:
(i) “re-anchoring” the model every 5 seconds by using the
past 150-second values of the data stream, or (ii) “rolling
over” the model to forecast multiple 5-second intervals by
feeding the forecasted values back to the model Figure 8a
presents the accuracy of the latter option, namely rolling the
model over, for forecasting longer horizons of RWF stream
using the LHW model for different target hours. Note that
the range of the Y-axis for this figure is much larger than
our prior plots. Figure 8a shows that the typical accuracy of
this roll-over strategy in all hours is clearly degraded as we
increase the forecasting horizon. To complement this result,
Figure 8b shows the effect of forecasting horizon on inference
latency (prediction time). We can observe that the prediction
time linearly grows with the forecasting horizon but remains
generally low, e.g., roughly 1.1 seconds to predict the next 80
seconds of the data stream.
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Fig. 8: Effect of longer forecasting horizon (with roll over
strategy) on model accuracy for RWF data stream

Short Term Pattern of Error. Our analyses have primarily
considered the overall notion of error based on the RMSPE
measure. In this subsection, we explore the temporal pattern
of the forecasting error by SHW and LHW models to examine
how closely it tracks sudden changes in the original data
stream. Figure 9 depicts a 120-second segment of data stream
along with the forecasted values by both LHW and SHW
models (with 5-second forecasting horizon) using re-anchoring
and roll-over strategies. This figure clearly demonstrates that
the LHW model generally tracks the variations in the data
stream, especially by the re-anchoring strategy. In particular,
forecasting longer horizons (beyond 20 seconds in this exam-
ple) even with the LSTM model can lead to a large error when
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the rolling strategy is used to extend the forecasting horizon.
The forecasted values by the SARIMA model simply represent
average values of the data stream and do not seem to track
its variations. In summary, the LSTM models coupled with re-
anchoring strategy offers the most accurate forecasting results
for our data streams.

VI. LIMITATION OF THIS STUDY

The main limitation of our study is its focus on two specific
network data streams from a particular campus network.
While our methodology is certainly applicable to forecasting
any data stream from any network, our trained models and
findings cannot be generalized. More importantly, we argue
that such a generalization of ML models—as it is done in other
domains (e.g., image classification)—may not necessarily be
feasible in networking. This observation is motivated by the
fact that network data streams are likely to exhibit diverse
(short term) characteristics across different networks. This,
in turn, suggests that the training and deployment of ML
models should be customized for a specific data stream from
a particular network to ensure high accuracy. In short, any
modeling study in networking is likely to be specific to its
target setting.

VII. RELATED WORK

In this section, we primarily focus on prior studies that apply
forecasting techniques to networking data streams/time series.
Several prior studies have relied on different neural networks
(NNs) or statistical models to forecast various data streams
in wireless or mobile networks, ranging from throughput of
individual TCP connections [11] and intensity of (per user
and aggregate) traffic [12] to aggregate traffic [13] or traffic at
a base station [14]. These studies have focused on inherently
different data streams with a coarser time scale (e.g., per few
minutes or per hour) compared to our work.

There are a few other studies that use statistical and NN
models to forecast backbone traffic (e.g., [41], [18], [42], [6]),
using the available data stream of aggregate traffic often at a
resolution of 5-15 minutes. Ramakrishnan et al. [43] presents
the closest prior study to ours by comparing the accuracy of
Recurrent NN (RNN) architectures to predict traffic volumes,
packet distributions and protocols at per-second granularity,
and show that RNN-based solutions outperform the statistical

models in all three tasks. They present a very limited evalu-
ation using MSE which makes the reported error specific to
their non-representative per-second dataset.

These previous studies have primarily focused on the “off-
line” evaluation of forecasting method on network data streams
with per-minute (or coarser) resolution due to the limited avail-
ability of representative streams with per-second granularity.
Therefore, the characteristics of their data streams were very
different. More importantly, to our knowledge, none of the
prior studies have explored the effect of the following practical
issues on incorporating forecasting model into telemetry sys-
tems using network data streams with different characteristics,
(1) the variations in characteristics of different segments of the
data stream that is often observed in network data streams, and
(ii) the effect of volume, selection, and recency of training data
on different models.

VIII. CONCLUSION & FUTURE WORK

The sheer volume of network data stream coupled with
the increasing complexity of today’s network and innovation
in switch data planes motivate forecasting techniques as the
key ingredient to automate network management and security
tasks. While great progress has been made by prior efforts
in applying AI/ML to network automation, the practicality of
deploying ML models such as training strategies (e.g., the
volume, selection and recency of training data; and having
separate models for different hours of a data stream) have
not received enough attention. To shed light on this issue,
this paper explores the forecasting per-second flow arrival rate
for all incoming flows and incoming web flows using LSTM.
Our results provide valuable insights into the ability of the
forecasting models for short-term forecasting of the two data
streams and elucidate the effects of training strategies, input
features, among others, on the accuracy of models.

We plan to extend this study along the following directions.
For one, the speed-accuracy trade-offs associated with auto-
mated inference determine how well a given telemetry task as
a whole can be performed with no human operator in the loop.
While the idea of exploiting the diversity in available compute
and communication resources and programmability capabili-
ties among the different hardware components to achieve the
“best case” scenario is already being explored [1], how to
get the network to recognize such “best case” scenarios and
then operate at such “sweet spots” remains an open problem.
Moreover, other open problems include creating theoretical
bounds on the time required and accuracy desired to perform
a certain network telemetry task, and architectural designs
that are needed to enable such “sweet spot-seeking” network
telemetry at scale; that is, executing hundreds or thousands
of highly diverse network telemetry tasks concurrently and
as fast and accurately as possible despite the uncertainties
in the environment (e.g., traffic load, application mix, failure
scenarios).
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