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Abstract—As more and more users rely on their mobile devices
for the majority of their computing needs, browser vendors are
competing for the user’s attention on the mobile platform. As
a result, mobile Web page performance has improved over the
years. However, it is not clear if these improvements are a result
of better browsers, optimized Web pages, new platforms, or im-
proved network conditions. In this work, we conduct a historical
study over 4 years with 8 popular mobile browsers, loading
over 250K Web pages, to isolate the effect of different factors
on page load improvements. Using a combination of record-
and-replay proxies, historical data from the Internet archive,
and specifications about current and past network speeds, we
quantify the performance of mobile browsers over the years (i.e.
measuring how a user with a 2015 smartphone and a 2015 mobile
browser experienced the 2015 web, compared to today). Our key
findings are that: (a) browsers have become more bloated, and
older browsers perform better on newer devices, compared to
newer browsers on the same new devices, (b) Web pages have
become more complex, and (c) improvement in network speeds
have a diminishing returns in terms of page performance. Taken
together, the improvements we see in mobile page performance
over the 4 years is largely due to improved platform in new
mobile devices, and not a result of browser, network, or Web
page improvements.

I. INTRODUCTION

Mobile browsers are an important part of the Web ecosys-
tem, with over 50% of the Web traffic being transferred to
and from mobile devices [11]. Unsurprisingly, users want
faster Web access from their mobile devices and there has
been considerable work in improving the performance of
mobile browsers. There are over 120 mobile browsers in the
Android Marketplace alone [24] and each browser has multiple
new versions released on a yearly basis, each touting better
performance than its previous versions and the competition.
For example, Chrome alone has had over 50 [3] versions
released in the last 5 years.

The results of these advances are generally promising and
anecdotally, page load performance has improved over the
years. Our experiments with eight of the most popular mo-
bile browsers on the Android Marketplace show a promising
performance trend. Figure 2 shows that if a user loads a page
on phone released in 2018 versus an older phone, they will
see an improvement across different page-performance metrics
including Page Load Time (PLT) [9], SpeedIndex [25], and
Time-To-Interactive (TTI) [15].

The problem, however, is that it is not clear which fac-
tors contribute to this improvement in performance. Mobile
browsers are complex, and several factors affect page perfor-
mance. These factors include browser improvements, network
conditions, the device capacity, and the page itself. It is critical
to identify the factors that lead to the most improvement in
page performance, so that researchers and practitioners can
determine not only where to focus their attention, but whether
these performance benefits are available to all users who load
pages on devices and networks with diverse capacities.

To this end, we present a historical study of mobile browser
performance over a four-year period, across network condi-
tions, browser versions, devices, and Web pages. To isolate
the effect of each of the four factors, we vary one factor while
holding the other factors constant. Overall, we collected and
analyzed more than 250, 000 measurements, by loading 150
websites over varying conditions. Our analysis is built over
an automated and scalable mobile experimentation platform 1

that allows large-scale experimentation across browsers and
Web pages, while abstracting away the specifics of individual
mobile browsers [24].

In order to measure the page load performance experienced
by users over the years, we use Internet’s Archive Wayback
machine to access old page contents, and load them on
devices and network conditions prevalent in 2015, 2016, 2017,
and 2018. As expected, there is a large difference in page
performance in these four years, with a median PLT reducing
from 23.4 seconds in 2015, to 6.4 seconds in 2018. Two other
popular page-load metrics, Time To Interactive (TTI) [15] and
Speed Index [25] also see an improvement of 45% and 47%
respectively over the four years.

On further investigation, we make three key findings. First,
we find that newer browser actually perform poorly compared
to older browsers. A browser released in 2018 loads a page
slower compared to the same browser released in earlier years,
across all browsers we tested. Over the years, browsers have
added new security and other features but the performance
of the browsers have deteriorated.Although newer browsers
have more features than older ones, our study shows that
older browsers are perfectly capable of rendering current web
pages faster than the more recent versions. All of the evalu-

1By mobile, we are referring to devices with compute constraints. However,
our goal is not to study browser performance under mobility.978-3-903176-27-0©2020 IFIP



ated versions support important security mechanisms (such as
TLS) hence, the observed slowdown can not be explained by
increased security alone.

If the users upgrade their phone and OS to the most recent
version, the relatively poorer performance of the browser
is masked. However, constant platform upgrade cannot be
expected across the world. In developing regions, lower-
end phones with lower memory and compute capacity are
popular [21], and these users will disproportionally be affected
by bloated browsers.

Our second finding is that the improvement in page perfor-
mance offered by network upgrades is saturating. The network
bandwidth and round trip times have been progressively im-
proving since 2015. The download speed for mobile devices
has increased from 2 Mbps in 2015 to 11 Mbps in 2018 [6],
and the round trip time has reduced from 300ms to 50ms
during the same period. The page performance improved
92% between 2015 and 2016 due to improvement in network
speeds, but since then the improvement has diminished. For
example, Chrome’s page load time has improved 30% from
2016 to 2017 while it had only 3% change from 2017 to 2018.

Our third finding is that the Web pages are becoming more
complex resulting in increasing page load times. The size of
JavaScript code has increased by 50% in 2018 compared to
2010, and by 10% compared to 2015. If a user loads a 2010
version of a page, the page load is 15 seconds faster in the
median case compared to a 2015 version of the same page,
under the same environment conditions. However, the differ-
ence in performance due to page complexity is masked by the
improvements in the device. There is little difference between
loading a 2010 or a 2018 Web page today, even though the
newer Web pages are, by all metrics, more complex.

Overall, we find that the improvement in page load perfor-
mance from 2015 to 2018 is largely because of improvement
in the device and operating system. The newer browsers do
not result is improved performance, the network improvements
are saturated, and newer pages are more complex. However,
pages still load faster today compared to 4 years ago because
the device and OS has improved considerably. Since browser
developers and web developers rely on the presence of high-
end mobile devices to mask their decreased performance,
we argue that users who do not wish (or cannot afford) to
constantly upgrade their devices are experiencing a slower web
as their browsers update and the web evolves. We share the
code at https://www.github.com/jnejati/tma2020.

II. PLATFORM

The main design goal of our platform is to provide a
web performance measurement testbed that can automatically
collect performance metrics across different mobile devices,
browsers, networks, and Web pages. This framework must be
able to conduct these tests without manual intervention so that
it can scale to a large number of browsers and devices, without
needing constant human supervision. Figure 1 illustrates the
architecture of our testbed.

1) A General Framework.: Most browsers provide a man-
agement interface so that an automation script can program-
matically control the browser’s behavior. This method works
well when dealing with a single type of browser, such as,
Google Chrome, where existing automation tools (e.g. Sele-
nium [1]) can be used to navigate the browser to different
webpages and collect performance data. Unfortunately, popu-
lar automation tools only support the most popular browsers
on any given platform and as such cannot be used to evaluate
the multitude of browsers that are available on mobile devices.

In order to build a testbed that works for different kinds
of browsers, we require a more general approach that is not
dependent on a single browser’s features. Our idea is to use a
browser-agnostic testing framework to install different mobile
browsers, under different Android versions, automatically visit
URLs, and collect metrics about the page load. We use a
security tool called HindSight [24] that identifies the closest
browser instance for a given device and operating system. We
then build a browser-agnostic record-and replay proxy to run
the Web page and collect metrics. We describe our framework
next.

2) A Controlled Environment.: We employ Google’s Web
Page Replay tool [16] and Linux’s tc (Traffic Control) tool
to control content and network variations respectively. Since
Wi-Fi links can incur a variable delay based on the number
of connected users and frequency interferences, we opted to
using a USB cable configured in reverse tethering mode, to
act as an Ethernet link.

Replaying recorded pages is not a straightforward task
particularly when dealing with HTTPS Web sites. To convince
the evaluated browsers to accept the self-signed certificates
presented by the proxy, we had to add a new root Certificate
Authority (CA) to each browser’s trusted CA store. Chrome
and Chrome-based browsers respect a system-wide installed
root certificate but other browsers, such as Firefox, manage
their own certificate stores and require customized processes
for adding a new root CA. Note that this process must be
repeated for every tested mobile device and, for the browsers
with custom CA stores, for every version of each evaluated
mobile browser.

For our study were we load pages from Wayback machine,
we load all pages across all browser over HTTP/1.1.

Android Debug Bridge (ADB)

Record/Replay 
(WprGo)

Script Injector

Video Recorder

Video Storage

AJAX Data

App Launcher

Install/Splash 
bypass

Traffic Control

Web Server

Control Data/AnalysisRunner

Hindsight

Analysis

Iptables

Fig. 1: Testbed architecture: A controlled environment is built using
WprGo and tc managed by Hindsight. Performance metrics are
collected using ADB and Boomerang and then sent to the Web server.



TABLE I: Browser versions and device specifications used in our platform representing the device and Android version popular in 2015,
2016, 2017, and 2018. The corresponding browser versions were released in the beginning of each year.

Year OS Device CPU RAM Firefox Chrome Baidu Ksmobile Opera Yandex UCBrowser Explore

2015 Android4 Nexus 4 Quad-core
1.5 GHz Krait 8GB 34 37 5.2 5.0 22 14.8 10.7 2.5.2

2016 Android5 Nexus 5 Quad-core
2.3 GHz Krait 400 16GB 40 46 6.2 5.1.98 32 15.12 10.9.5 2.5.9

2017 Android6 Nexus 6P 4x1.55 GHz Cortex-A53 &
4x2.0 GHz Cortex-A57 32GB 52 53 6.3 5.21 34 17.3 12 2.6

2018 Android7 Nexus 6P 4x1.55 GHz Cortex-A53 &
4x2.0 GHz Cortex-A57 32GB 61 64 6.4 5.22 37 17.4 12.11 3.16

3) A Metric Collector: In order to collect browser perfor-
mance data, we need a general technique that is supported
by most browsers and works with current as well as past
versions of these browsers. We use Akamai Boomerang [2], a
JavaScript library that can be injected by our proxy during the
replay phase. Boomerang is a JavaScript library that measures
the performance characteristics of real-world page loads and
interactions. It supports various type of metrics like overall
page load times, DNS, TCP, request and response timings.

To make sure that all Web pages are loaded correctly, we
check that the OnLoad event is fired. We also perform random
checks on the video recordings of Web pages, to verify that
the last frame of the video shows the entire page load.

An unexpected complication of incorporating a new
JavaScript library in the replay of existing sites is the interac-
tion of that library with a website’s Content Security Policy
(CSP). CSP is an opt-in security mechanism that websites
can use to instruct browsers to declare the allowed origins
of remote content so that browsers can refuse to load content
that does not come from these origins. To maintain the fidelity
of our replay, instead of disabling CSP, we chose to on-the-
fly modify outgoing CSP policies and whitelist our endpoint
which serves Boomerang library and receives the collected
performance metrics from each page load.

To account for any remaining variance (e.g. different
scheduling of the browser processes on the mobile devices),
we load each evaluated page 5 times and use the median value
for each metric. It is important for our tests that browsers do
not load any cached contents during the page loads (i.e. we
require “cold start” conditions). Since the cache management
techniques differ from one browser to another, for each run
of the experiment, we install a fresh copy of the browser and
use a splash screen bypass technique to automatically skip
welcome messages and configuration pages.
In summary, a typical scenario to run experiments on our
platform follows these steps: After setting up the desired
network profiles, necessary port forwarding, and USB con-
nections, we record the desired set of pages using Web Page
Replay in record mode. After that, we start the Web Page
Replay in replay mode which in turn reads the recorded archive
file and act as a Web proxy to serve all incoming HTTP
requests from mobile devices. For each page, the Boomerang
script is injected into that Web page in order to collect
performance metrics and transmit them to our Web server

via Ajax call. This transmission happens after OnLoad event
is fired on the page. These metric data are received on our
Web server by a PHP program and stored locally as JSON
files. In meantime, Hindsight is continuously managing the
experiments by installing new instances of mobile browsers
on devices, bypassing splash screens and loading pages by
launching the relevant activities through ADB. In parallel, a
video of each page load is also recorded using ADB and then
pulled onto local storage for further analysis.

We quantify page load performance using three most pop-
ular metrics: Page Load Time (PLT) [9], SpeedIndex [25],
and Time To Interactive (TTI) [15]. PLT is the time between
when the page is requested and when the Load event is
fired by the browser. PLT is the most common metric used
to measure page load performance. Recently, SpeedIndex and
TTI have been introduced to better quantify page performance
from the user’s point of view. SpeedIndex is a visual metric
that measures the average time for visible content to appear on
the browsers viewport. SpeedIndex is measured over a video
of the page load process. TTI measures how long it takes
for a page to become interactive [15]. Example interactions
include clicking on a link or using the auto-complete feature
of a search bar.

III. METHODOLOGY

Our methodology is as follows: Experiment with 8
mobile browsers: There are a large number of mobile
browsers on the Android Play Store. We experiment with
eight popular browsers that have over 10,000,000 installations
each: Chrome, Firefox, Baidu, Ksmobile, Opera, Yandex,
UCBrowser, and Explore. We choose browsers that are popular
in different parts of the world. For example, UC Browser is
more popular than Google Chrome in countries like India and
Indonesia [31] and Yandex and Opera are the second most
popular browsers in Russia and Africa respectively [10]. We
focus on mobile browsers in the Android ecosystem because
Android has over 85% of the marketshare worldwide [13],
and it is open source that allows a large number of mobile
browsers implementations.
Web pages: We choose 150 Web sites out of 2K pages
from Alexa’s top 1M sites from 2017 to cover different page
sizes. We randomly choose 50 pages each of heavy (> 3MB),
medium (1-3 MB), and light (<1MB) pages. We record mobile
version of the pages in the cases where a mobile version exists.
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Fig. 2: Mobile Web is improving. Web performance metrics for the same set of Web pages when loading pages using todays network speeds,
for Android versions and devices popular in 2015, 2016, 2017, and 2018 (represented as Android 4 to Android 7 in the figure). The figure
show that in the median case, performance is improving.

Device and mobile OS: Our testbed employs four Google
Nexus mobile devices that were popular in 2015, 2016, 2017,
and 2018, each running the most popular Android version in
that year ranging from Android 4 to Android 7. This spread
allows us to do historical studies. Table I shows a summary
of all devices and browsers that we evaluate in this paper.
We chose the most popular version of Android OS for each
year [12] and the browser version that was released at the
beginning of each year. To ensure that one browser version per
year is sufficient to capture overall performance trends, we run
the Kraken JavaScript benchmark to compare the performance
of neighboring versions of each browser. We used t-tests and
verified that the neighboring versions performed similarly to
the chosen version.

Except for Firefox, all other browsers use Chromium’s
open source blink rendering engine. FireFox uses its Quantum
engine. Even though the browsers (except Firefox) use the
same engine, they differ in terms of features. For instance,
Yandex runs antivirus software, [17], and KSmobile has a built
in Browser Intrusion Prevention System. Baidu, first released
in 2011 includes an integrated video and audio downloading
tool and a built-in torrent client. UCbrowser, specifically
targeting asian markets, delivers local news and video services
to its users. Opera browser, which was pioneer in introducing
many features adopted by other web browsers, has moved from
its own Presto engine to a Chromium Blink engine in 2013.
In our experiments, we use the original Opera, not the Opera
mini version. Opera mini is a cloud-based browser which
receives a pre-rendered page from its cloud endpoint [22]
while the original Opera acts like other browsers used in our
experiments.

For experiments that recreate the environment of each year
(§V), we load pages with the version of the Web page and
network conditions representative of each year, from 2015 to
2018. We use the Internet archive’s wayback machine to load
pages from their respective years. In all we conducted over
250,000 Web page loads as part of this study.

IV. CURRENT STATE OF THE WEB

We first capture the mobile browsers experience of the
current web. We used the four different devices and 8 different
browsers listed in Section III to visit the selected Alexa
websites served by our record-and-replay proxy, while setting
the upload data rate to 4 Mbps, download rate to 3Mbps
and delay to 20ms. This upload rate emulates a regular 4G
connection in 2019 [4]. Since current pages are loaded in these
experiments, we load the page according to the protocol that
the page supports, which is either HTTP/1.1 or HTTPS. In
total, 23 are used HTTP and 127 use HTTPS as their protocol.
None of the pages loaded using HTTP/2. We note there that
for the analysis of historical performance (below), all pages
were loaded using HTTP.

Figure 2 shows the distribution of our three performance
metrics (Page Load Time, Time to Interactive, and Speed
Index) across all browsers and devices. The combination
of newer devices and newer browsers results in a faster
performance for all three metrics, even though the Speed Index
improvement is less marked than that of the PLT and TTI.

Even though these results indicate that mobile Web perfor-
mance has improved over the past 4 years (as captured through
the use of different mobile devices), it still leaves a number
of questions unanswered. Is this performance increase due to
better platforms or due to more streamlined browsers? In the
next section, we answer these questions by evaluating browser
performance in the context of an ever-changing web.

V. ANALYSIS OF HISTORICAL PERFORMANCE

In our previous experiment, the page contents and network
speed had been configured to be identical for all platforms.
Even though that configuration allowed us to quantify how
users owning old vs. new devices experience the web today,
it does not express how users experience the web over time.

To quantify this user experience in a historical fashion,
we obtained the versions of the same Web sites from 2015
to 2018 from Internet archive’s [7] Wayback machine. Simi-
larly, we emulate the appropriate network speeds from 2015
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in that year. Page performance continues to improve every year. The graphs shows the performance of all browsers together.
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Fig. 4: Page Load Times when loading contemporary pages over the network, device, and OS popular in each year from 2015 to 2018 for
each browser. PLT improves over the years, but the performance across browsers are largely the same.The similarity is confirmed by t-test.

to 2018, as the users would have experienced it at those
times.These network speeds represent the average speed across
the world [6]. The experiment therefore emulates the perfor-
mance experienced by an average user in the world. Table II
lists the different browsing environments we have used for
these historical experiments. For example, ‘2015Env’ indicates
an environment in which the network is the average network
available in year 2015, browser versions are those released in
2015 (described earlier in Section III) running on top of an
Android device that was widely used in 2015 and Web pages
are from mid-2015 (as captured by the Internet archive).

Figure 3 shows the general trends when contemporary
profiles are applied while Figure 4 focuses on the PLT metric
and presents a breakdown by specific browser. Overall, we
observe the same improvements over time like we did in our
earlier experiments, even though the performance increases are
more dramatic due to the poorer network conditions associated

Environment (Download, Upload, RTT) Year of Pages Device Android version

2018Env (11.1Mbps, 5Mbps, 50ms) 2018 Nexus 6P 7

2017Env (8.7Mbps, 4Mbps, 100ms) 2017 Nexus 6P 6

2016Env (6.8Mbps, 3Mbps, 150ms) 2016 Nexus 5 5

2015Env (2Mbps, 800Kbps, 300ms) 2015 Nexus 4 4

TABLE II: Contemporary environments used for historical analysis
spanning over 4 years.

with older environments.
Over the years, Chrome has the highest improvement in

PLT, improving 446% 2015 to 2018, followed by Explore
that improved PLT by 347% and Yandex by 344%. In 2015,
Yandex is 33% slower than other browsers but stays on
par with other browsers from 2016 to 2018. In 2015, on
average, there is a 5.39% variance from the median PLT for all
browsers. In 2016, we observe a 10% variance, in 2017, there
is a 11.7% variance and finally in 2018, on average, there
is a 16.4% difference from the median of PLTs among all
browsers. As the network and devices improve over the years,
PLT decreases making the changes between the browsers more
pronounced. So even though many of these browsers use the
same rendering engine, their performance is slightly varying
because of additional features they provide.

Further in Figure 4 we observe that there is little differ-
ence in median Web page load performance across browsers
(barring a few outliers in the 2015 environment). However,
we plotted the difference in median PLT between the best
performing and worst performing browsers for each website.
Figure 5 shows that, even though for 13% of the webpages,
all browsers have similar median performance, for 87% of
the webpages, the difference in browser performance ranges
from 2 seconds to 12.9 seconds. This observation is aligned
with Rajiullah et al. [33] findings. However, we could not
find any correlation between the performance difference across
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Fig. 5: Difference between the median best performing and worse performing browsers for each page for 2018 environment. Although for
13% of the cases, the difference is almost zero, for the remaining cases, we observe differences ranging from 2 to 12.9 seconds.

browsers and Webpage features.
But irrespective of the browser, the results demonstrate that

users are clearly experiencing a more performant mobile web
as time passes. We conduct further experiments over these
contemporary profiles to determine which of the factors—
device, browser, network, or page content—provide the most
benefit in terms of performance. To this end, we load Web
pages by keeping one or more of the factors a constant and
varying others. Our findings are described below.

A. Performance consequences of feature creep

Every update of a mobile browser presumably aims at
improving support for new mechanisms and protocols, as well
as increased usability, security, and performance.To understand
how new versions of browsers contribute to the trend of
better web performance (as shown in Section 3) we conducted
the following experiment. We chose the two “edges” of our
dataset (2015/2018 mobile devices) and swapped the versions
of browsers, while keeping all other factors constant. We
evaluated the performance of a 2015 device running 2018
browsers and a 2018 device running a 2015 browsers.

Figure 6 shows that for virtually all metrics, the 2015
browser outperformed the 2018 browser, when running on
the 2018 mobile device. Similarly, the 2018 browser was
slower than the 2015 browser, when both were running on
top of a 2015 mobile device. We combine the browsers other
than Chrome and Firefox as Others rather than show each
individual browser performance because they all use the same
underlying engine and perform similarly.

Since all other factors were kept constant, this demonstrates
that newer versions of browsers are slower than their older
counterparts. We verified that the trend continues when we
swap 2018 browsers for 2016 and 2017 browsers as well;
i.e., running an older browser on a newer device improves
performance. Many browser vendors push their new releases
as faster and more performant browsers. However, our results
suggest that, if users do not upgrade their phones, they will
see poorer performance with newer browsers.

Given our experimental controls, the reason for this slow-
down can only be the feature creep that happens to software
over time where more and more features are slowly added

and increase the footprint of the running application. Figure 7
shows how the size of browser APKs has increased over
the years. We argue that the size of an APK is a proxy
of the size of its code and therefore the complexity of the
running applications. Ksmobile, Explore, and Baidu exhibit
a significantly smaller footprint compared to the rest of the
browsers. This is because these browsers are using the existing
WebView packages already present on the phone, and do not
need to “ship” with their own rendering engines.

To further validate our observations, we use Kraken [8],
a JavaScript-based performance benchmark from Mozilla, to
measure the performance of our “swapped” browsing environ-
ments. Kraken focuses on realistic workloads and includes 14
benchmarks in 5 different categories: Search, Audio, Imaging,
JSON, and Encryption. Fig 8 shows that the combination of
device’s CPU and OS is the main factor for its performance
while the browser version has a small effect which usually is
in favor of the older browser versions.

B. Saturation of network impact

Next, we study the effect of improved network on the page
load performance. To this end, we vary the network conditions
by applying four different network conditions prevalent in the
years 2015 to 2018. We keep all other factors a constant and
load Web pages from 2018 on 2018 devices and browser
versions. Figure 9 shows the median PLT. The performance
jump between the 2015 and 2016 network is the highest, where
the median PLT reduces by nearly 10 seconds. With further
improvement in network conditions from 2016 to 2018, there
is only a modest improvement in PLT. The impact of network
saturates when the downlink bandwidth is about 6.8Mbps and
delay is less than 150ms.

Our findings are aligned with previous studies [27] which
discovered that when network is very slow, it is the dominant
bottleneck. But beyond a certain network speed, computation
becomes the bottleneck for mobile browsers. As a result,
improving the network further only has a relatively smaller
impact on Web performance. We see similar trends for the
TTI and SpeedIndex metrics (not shown here for brevity).

This result is especially significant given that network
speeds are improving in many parts of the developing world.
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Chrome FireFox Other
0

5000

10000

15000

20000

25000

30000

35000

40000

Ti
m

e 
(m

s)

Page load Time
2018 network on 2018 device
2017 network on 2018 device
2016 network on 2018 device
2015 network on 2018 device

Fig. 9: Page load times when
loading Web pages using the
prevalent network conditions in
2015, 2016, 2017, and 2018 [6]
(see Table II). The Web page, de-
vice, and browser was held con-
stant. The largest improvement
in performance is between 2015
and 2016, after which PLT im-
provement is modest in response
to network improvements.

Opera FireFox Chrome
0

5

10

15

20

25

30

M
ea

n
E

ne
rg

y
(J

ou
le

s)

Android 4

Android 5

Android 6

Android 7

Fig. 10: Mean energy
consumption when loading
https://www.npr.org for different
browsers across different devices.
Energy usage has increased over
years as new devices ship
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For example, in India, average network bitrate has increased
from 1.7Mbps in 2013 [14] to 4.6Mbps for mobile in 2018
and is projected to reach 16.3 Mbps in 2023 [5]. However,
hardware is still a bottleneck, a large number of phones are
still low-end devices. [21].

C. Pages are complex

Next we isolate the effect of the Web page. Figure 11a
shows the PLT trend when loading versions of the same Web
page from 2010, 2015, and 2018.The points in these trend
lines are representing the median value for each distribution.
We load the Web page in the 2015 to 2018 environment
(Table II). Even though the performance for all sets of pages is
becoming better as the underlying environment improves, we
can clearly see the difference between the 2010 set of pages
and the 2015/2018, particularly in older browser environments.
For example, a 2010 page loads in 10 seconds but a 2015/2018
page takes 25 seconds to load, in the 2015 environment. This
is primarily because the 2015 version of the same Web page
is more complex compared to the 2010 version. Figure 11c
shows steady increase in the size of JavaScript code and
images with only a slight decrease of HTML code and CSS
size in Web pages. This makes intuitive sense since websites
rely more and more on JavaScript and dynamically populate
pages with content that is fetched asynchronously via AJAX
requests.

Finally, Figure 11b shows the computation time for the
same experiment for different pages across different devices.
Computation time is total time of compute activities on the
critical path. Critical path is the longest path on the page de-
pendency graph composed of compute and network activities.
We employ WProfX [29] to calculate the computation time.
We use the term “contemporary” to refer to using the version
of pages that correspond to the underlying environment, i.e.,
2016 pages were “contemporary” to the 2016 browsing en-
vironment. There, we again observe that the mobile devices
spends less and less time on computation, even though pages
are becoming increasingly complex.

D. Improved Web performance is largely because of improved
mobile platforms

Overall, our study finds that Web pages are becoming more
complex, the network impact has saturated, and browsers are
becoming more bloated and less performant. Yet, the perfor-
mance of the Web is improving over the years. Combining
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our observations over real Web-page loads and JavaScript
benchmarks, we conclude that the increased performance that
users experience is due to the more powerful underlying
hardware and operating system which masks the slowdown
of newer browser versions and complex Web pages.

This observation is important because not every user is capa-
ble of constantly upgrading their mobile device. A software-
development approach that necessitates ever more powerful
hardware is an approach that excludes cost-sensitive users and
entire geographical regions that cannot afford the price of
high-end devices. This not only furthers the existing digital
divide between developed and developing countries but can
also lead users to avoid updating their browsers, out of fear of
decreased performance. Moreover, the improvement in device
computation power often comes at a cost. Figure 10 shows
that newer devices are becoming more power hungry for
the same page workload. In an experiment , we loaded the
same https://www.npr.org Web site 30 times and calculated
the mean energy consumption for that duration. We observe
that as mobile platforms are getting more powerful, energy
consumption increases as well. This would introduce a a trade-
off between performance and duration of usage.

VI. RELATED WORK

Mobile Web performance is a well-studied research topic.
Rajiullah et al. [33] run experiments over two million Web-
pages using 11 different network operators in Europe. They
find page complexity has a big impact on the browsing
performance, but their study is restricted to two browsers in the
current environment. Butkiewicz et al. [19] finds the number
of objects requested have the most impact on page load time
in 2012 on desktop browser.

Several tools have analyzed the performance of Web page
loads by studying dependencies. WebProphet [23] imple-
mented a tool to extract dependencies in order to predict
performance for Web services. WProf [34] extended the idea
by instrumenting Chromium to capture low-level browser
information to build the dependency graph. WProf’s depen-
dency relations have been used to evaluate effect of different
performance optimizations such as caching and HTTP/2 [35].
Polaris [30] builds on top of WProf to get more dependency

relations beyond the lexical dependencies. However, these
tools are specific to Chrome versions and cannot be easily
extended to other browsers for historical studies.

There has also been work on studying the bottlenecks
in Web performance. Nejati et al. [28] finds that the main
bottleneck in mobile Web performance is the computation
part of the page load process. In another study, Dasari et
al. [21], [20] studied the impact of device performance on
mobile Web QoE. Their study shows that Web browsing is
more impacted by device’s CPU when compared to video
applications. Narayanan et al. [26] observe that Web page
load time does not incur a notable difference when network
is upgraded from 4G LTE to 5G. Our work corroborates the
findings of these studies across different browsers and years.

In the context of security, unnecessary complexities in
Web applications have been found to add vulnerabilities to
the Web sites. [32], [18]. We show that the same argument
applies to the bloated Web browsers. While new features and
enhancements add more complexities to the code base, they
do not necessarily increase the performance.

VII. CONCLUSION

In this paper, we investigated the evolution of mobile web
performance over a period of four years. By using multiple
devices, browsers, Web site versions, and network conditions,
we sought to quantify the improvement of page-load perfor-
mance and identify the factors behind it. We discovered that
even though the web is becoming faster across all browsers, the
underlying hardware of newer mobile devices is the key driver
of these improvements. Specifically, we showed that older
browsers run faster than their newer counterparts on the same
hardware and that network improvements provide diminishing
returns in terms of page performance. Our findings highlight
the fact that web developers and browser vendors rely on ever-
more performant hardware to mask their overheads which can
harm both the user experience and potentially the security of
users who cannot afford to constantly upgrade their mobile
devices.
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