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Abstract—This paper investigates whether passive coarse-
grained Radio Access Network measurements can help inferring
end users’ experience. To this end, we combine network-side
logs with active end to end measurements from a number of
probes that act as end users. The combined measurements are
used to train a machine learning classifier that uses network side
logs to infer whether a particular hour is problematic. We find
that coarse-grained network telemetry can be a reliable indicator
of performance degradation. Our methodology allows for the
automatic detection of problems and root cause analysis through
examination of the dominant performance indicators.

I. INTRODUCTION

Mobile Broadband (MBB) networks are becoming the con-
nectivity mean of choice for a large number of users and
services. The fifth generation of mobile networks (5G), that is
currently being rolled out, promises transforming mobile net-
works from providing basic voice and data services to flexibly
catering to a wide array of industries. These in turn have a
diverse set of requirements (e.g. low latency, high reliability,
high throughput and low energy consumption) [1]. The high
reliance on MBB networks comes with high expectations on
the users’ side who need consistent, predictable and reliable
network performance as well as coverage almost everywhere.
These expectations mean that mobile operators need to build
robust approaches to Service Assurance (SA).

The SA process will vary depending on the underlying
service. For example, critical services with extreme require-
ments (e.g. ultra-reliable low latency services like smart grid
communications) may require a mixture of continuous mon-
itoring, preemptive resource allocation and swift response to
performance degradation. Coarser monitoring and relatively
longer response cycles can be adequate for other services like
fixed broadband access. While the details of SA architectures
are yet to be standardized, what is clear is that it will
involve a combination of high and low frequency telemetry.
Furthermore, it will likely build on telemetry available in
today’s networks. Motivated by this, we investigate whether
existing coarse-grained base-station telemetry can help illumi-
nate performance degradation impacting end users.

Base-stations keep track of a range of performance and
availability counters, referred to as cell Key Performance
Indicators (KPIs). Examples include traffic volumes and the
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number of dropped data sessions. These KPIs are coarse-
grained aggregates, often reported every hour and are typically
used to characterize a base-station’s performance over a long
timescale. For instance, a base-station with a sustained level
of dropped sessions can be flagged for reconfiguration. Such
decisions are made based on past experiences and expert
opinion and in absence of direct correlation with users’ Quality
of Experience (QoE). The way cell KPIs are leveraged today
relegates them to the province of long-term network planning.

This paper investigates whether cell KPIs can be leveraged
differently. We approach this by pairing hourly cell KPIs from
a commercial mobile operator with fine-grained End-to-End
(e2e) measurements from a set of dedicated probes that act as
end users. The e2e measurements capture users’ QoE and can
thus be used to identify periods with degraded performance.
This allows us to label the collected cell KPIs as anomalous or
not, which we use to train a Machine Learning (ML) classifier
to assess whether changes in KPIs values can reveal increases
in packet loss rate or jumps in latency for end users. Our goal
is not to provide an approach for detecting poor performance
in real-time (i.e. SA for critical services), since this will require
more frequent measurements. Instead, we provide a mean for
flagging poor performance for services with relatively looser
SA expectations like fixed and mobile broadband access.

We find that although coarse-granular, cell KPIs can indeed
illuminate performance degradation affecting end users. Our
classifier achieves accuracy close to 90% in flagging problem
hours, providing interpretable results that point to the root
causes of poor performance. It is timely and light imposing
minimal measurement overhead. We believe that our findings
can help mobile operators exploiting cell KPIs for more
than long-term network planning and sporadic troubleshooting.
Thus adding an important input to the process of building suit-
able SA architectures for current and future mobile networks.

In summary, this paper makes the following contributions:
1) We present a novel study that combines both e2e active
measurements and network-side cell KPIs in order to improve
the inference of end-user performance degradation.

2) We evaluate a range of Machine Learning algorithms and
approaches to thresholding for inferring end-user performance
degradation, based on course grained cell KPIs.

3) We evaluate the importance of specific KPIs for a range of
scenarios and find that a solution with low overhead and high
performance is possible.

4) We highlight the role of handovers and provide a method-
ology to allow identification of their root cause.
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Fig. 1: Architecture of LTE MBB and measurements setup
components.

II. BACKGROUND AND MEASUREMENT INFRASTRUCTURE

This section gives an overview of the architecture of MBB
networks and presents the infrastructure that was employed to
conduct the measurements used in this study.

A. MBB Network Architecture

In this paper, we use measurements from a mobile operator
providing 2G, 3G, Long Term Evolution (LTE) and soon 5G
services to users nationwide, totaling almost three million
subscriptions in 2019. Fig. 1 shows the main components of a
typical LTE MBB network divided into the Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) and Evolved
Packet Core (EPC). The E-UTRAN consists of User Equip-
ment (UE) and evolved Node B (eNB) base-stations, while
the EPC consists of several gateways and supporting systems.
Out of the main components, the Mobility Management Entity
(MME) handles all control plane functions for subscriber and
session management, whereas Serving Gateway (SGW) and
Packet Delivery Network Gateway (PGW) are the packet data
service termination points towards E-UTRAN and packet data
network, respectively. For the remainder of the paper we refer
to E-UTRAN and EPC as simply the Radio Access Network
(RAN) and Core Network (CN).

B. Measurement setup

We leverage the NorNet edge infrastructure [2], which is
a testbed dedicated to measurements and experimentation on
operational mobile networks. It consists of several hundreds of
stationary and mobile, geographically distributed measurement
nodes and a well-provisioned server-side infrastructure for the
collection of measurements.

A single measurement node is a single-board computer
running a standard Linux distribution. Each node is connected
to one or more MBB network. 3G/LTE Commercial Off-The-
Shelf (COTS) UE is used to connect to the MBB networks.
Modems are configured to prefer LTE Radio Access Tech-
nology (RAT) when available and fall back to 3G and 2G
otherwise. The nodes are capable of running different experi-
ments, which are performed against measurement servers that
are part of the measurement setup back-end (Fig. 1). Software
running on the nodes also collects various metadata attributes
(RAT, signal strength, etc.) from the modems and periodically
sends them to the back-end.

For the purposes of this study, the focus is placed on
stationary nodes with constant LTE connectivity. The nodes
connect to a number of LTE base-stations concentrated in the
metropolitan area of Oslo as well as its outskirts and three
cities in the south, west and north of Oslo, at distances up to
340 kilometers as the crow flies. The server-side infrastructure
is located in Oslo, providing a mix of short and long range
links to the measurement nodes through the MBB back-haul
and the Internet.

III. EXPERIMENTAL METHODOLOGY

Next, we describe the measurements we use in this paper.

A. Active Measurements

Each measurement node sends a 20-byte UDP packet every
second to an Echo Server (ES) using all available MBB
connections. The ES is a part of the testbed back-end. Each
UDP packet sent by a node is recorded into a database along
with a timestamp when the packet was sent and an incremental
sequence number that is part of the packet’s payload. If a reply
from the ES arrives within 60 seconds, the Round-Trip Time
(RTT) is recorded. Otherwise, the packet is considered lost. To
measure the overall loss rate, we aggregate the measurements
into 5-minute bins. Each bin contains the number of sent
and received packets. In addition, we collect node status
measurements. These include the current serving cell, radio
access technology and signal quality, collected every minute.

B. Passive Measurements

One of the fundamental tools for mobile operators to track
the quality provided by their cells are the cell KPIs. In order to
have a standard reference and metrics, the ETSI together with
the 3GPP released the specification documents [3], [4], where
the concepts and requirements of the KPIs for E-UTRAN are
presented. Based on the ETSI and 3GPP work, those KPIs
can be classified in five different testing groups. Accessibility
KPIs evaluate the potential difficulties that a user has in order
to get the service. These measurements assist the network
operator with information about the accessibility provided to
their customers. Retainability KPIs can be used to estimate the
ability of the network to retain an established service for a user.
They can indicate whether the end user has been interrupted
during the use of a service or not. Availability is a simple
and illustrative set of KPIs that measures the percentage of
time that the cell is considered available to end users. For the
analysis performed throughout this paper, we have combined
the accessibility, retainability and availability KPIs under the
umbrella of stability. Mobility KPIs measure how the system
behaves during handover procedures. Finally, Integrity KPIs
are in charge of showing how the E-UTRAN impacts the
service quality provided to an end-user. A sample of basic
metrics from each group is given in table I. Our dataset comes
with 270 unique KPIs, which are themselves only a subset of
what is provided by the eNB vendors.



KPIs group | Metric

Call, Radio Resource Control (RRC) and

Radio Access Bearer (E-RAB) establishment success rate
RRC re-establishment failures, E-RAB abnormal

release rate, UE context release success rate

Stability

Intra and inter-frequency handover success rate,

Mobility S1 handover success rate

Up-link peak user throughput,
downlink peak user throughput,
downlink latency and transport block error rate

Integrity

TABLE I: Sample of measurements collected by base-stations.

IV. DATA PRE-PROCESSING

The measurements and logging described in Sec. III, pro-
vide us with three datasets that need to be pre-processed and
fused. These are: 1) Node status, i.e. timestamp, serving cell,
2) Node performance, i.e. timestamp, packet loss, RTT and
3) Cell KPIs. In this section, we go through the basic pre-
processing that is necessary before we can dive into analysis.

A. Filtering

The first two datasets include logs and active measurements
for 26 nodes. For this work, we have selected a subset of
10 stationary nodes that for the duration of the measurement
period were connected exclusively through LTE.

The third dataset provided by the operator includes KPIs
from 53 cells, 23 of which served the selected nodes. This
dataset comes with a number of artifacts due to the fact that
the full suite of defined KPIs is not punctually collected by
all cells. It is common that a cell has not activated logging of
certain KPIs or they are not applicable to its state. In order to
unify the dataset, we filter KPIs with sparse, absent or incorrect
values which leaves us with 88. We then manually examine
them and remove ones that do not apply to our use-case (e.g.
LTE to 3G handovers) to arrive at 76 KPIs that can be split
according to the categorization introduced in Sec. III-B to 41
characterizing availability, 28 traffic and 7 mobility.

B. Aggregating and Fusing the Datasets

Due to the different aggregation granularity utilized by the
testbed and the operator, the timestamps need to be set on
a time-step equal to the lowest common denominator. In our
datasets, this is the 1-hour time-step, dictated by the cell KPIs.

First, the node status (metadata) which is given every
minute, needs to be matched and fused with node performance
which is available as an average over S5-minute bins. Due
to infrequent events of loss of mobile connectivity, there are
cases where the node status is not available for a portion of
the 5-minute bin. Such bins amount to 0.3% of our dataset
and are discarded to avoid inconsistencies and possible loss
of handover events. Following this, the new 5-minute bins
of node status and performance, are matched and fused with
the cell KPIs. The final fused dataset contains 2314 hours of
observations.

Threshold

Packet loss rate
Round-Trip Time
Violation frequency

Value

0.003 / 0.006 / 0.01

75th percentile / 85th percentile
2 bins / 5 bins

TABLE II: Range of evaluated thresholds (all combinations).

C. Setting Thresholds and Labeling

As a starting point, we need a definition for performance
degradation. To this end, we use the active measurements
(i.e. packet loss and RTT) that are carried by the nodes as
a performance yardstick.

We define thresholds for packet loss based on the perfor-
mance of all nodes combined, as a universal value of close
to zero packet loss is desired for any node under nominal
operation. The packet loss thresholds are applied to each 5-
minute bin and expressed as a percentage of seconds with lost
packets. On the other hand, thresholds for RTT are individually
calculated for each of the nodes, to account for persistent
characteristics (e.g. location, cell equipment) that alter the
expected baseline of performance. The RTT thresholds are
applied to each 5-minute bin and expressed as a percentile
of observed RTT for each node.

To produce the final label of an observation, we introduce
a threshold on the frequency of violations per hour. The
frequency threshold is calculated for the number of 5-minute
bins that violate the thresholds for packet loss or RTT (e.g. an
hour that includes 1 bin that exceeds its packet loss threshold,
1 that exceeds its RTT threshold and 1 that exceeds both,
produces frequency = 4). The complete dataset obtains a
number of labels according to a wide range of thresholds that
we define based on the methodology described here and listed
in table II.

Fig. 2 presents an example of 1 day of measurements. The
top panel shows two KPIs that capture the change in the
number of users being served by the eNB that is serving the
measurement node, while the bottom panel shows the packet
loss and RTT measured by the node. The RTT increases as the
number of users connected to the eNB increases, while packet
loss does not seem to correlate with the number of connected
users. This simple example illustrates that cell KPIs may be
useful in inferring performance depredations. However, there
is a need for methods that scale beyond basic visual inspection
and pairwise correlations.

V. CLASSIFICATION METHODS AND SENSITIVITY
ANALYSIS

The problem of inferring whether a particular hour is prob-
lematic (i.e. according to the thresholds in Sec. IV-C) or not
is essentially a classification problem. Furthermore, the sheer
number of cell KPIs means that simple pairwise correlations
between end to end measurements and cell KPIs may prove
intractable and not easy to map to a final label. Instead, we
explore whether a ML-based classifier can overcome these
limitations.

In the following, we discuss various choices that we make
to prepare our data before applying ML. We also compare
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Fig. 2: A day’s sample of KPIs & performance measurements.

the performance of various ML classifiers and evaluate their
sensitivity to our performance identification thresholds.

A. Handovers

In cases where one or more handovers are performed over
the course of an hour, a node will be connected to multiple
cells. Therefore KPIs from all the cells that a node has been
connected to over the hour are collected. Out of the 2314
hours that our final dataset contains, 677 involve one or more
handover events.

Handovers, by nature, introduce additional delay and an
elevated risk of packet loss [5]. Therefore, we examine the
performance of time-bins where the node has been connected
to a single cell throughout the hour separately from time-
bins that include handovers. Splitting the dataset provides
two benefits. First, the dataset containing the hours of single-
cell operation remains unaffected by handovers, which are
already a well established cause of performance degradation.
Second, the dataset containing only the hours of handovers
will establish a new baseline for user performance and the
correlated KPIs. This allows the classifier to be trained in
detecting causes of performance degradation other than the
known handover.

B. Class Imbalance

The datasets are labeled according to the thresholds set on
the active measurements (see Sec. IV-C), to separate normal
hours from those with degraded performance. As should be
expected, the normal hours outnumber those with anomalies
making our data-set imbalanced. Table III lists the initial
datasets for selected threshold levels (see Sec. V-D for details).

Before attempting to classify, the dataset needs to be bal-
anced. Imbalanced datasets can affect accuracy by tricking
the classification algorithms into placing more emphasis on
the dominant class. In this way, while usual metrics may
indicate good classification performance, the algorithm has in-
fact learned to ignore the under-represented class. There are

Dataset Threshold level N A | Ratio
No-handovers | Low 1147 | 490 2.3:1
No-handovers | High 1367 | 270 | 5.1:1
Handovers Low 519 158 3.3:1
Handovers High 606 71 8.5:1

TABLE III: Ratio of normal (N) and anomalous (A) hours.

two approaches to balance classes. The first is under-sampling,
where the observations belonging to the majority class are
reduced to match the number of observations in the minority
class. This can be achieved by simply selecting a subset of
the observations or using more sophisticated techniques such
as creating new synthetic observations that summarize the
original. Under-sampling comes at the expense of loss of in-
formation, that can be significant for small or severely skewed
datasets. The second is oversampling, where the minority class
is augmented with synthetic samples to match the number of
observations in the majority class. However, over-sampling
introduces the risk of over-fitting. Fortunately, a number of
over-sampling techniques that attempt to mitigate this exist as
well as suitable evaluations that can be performed to ensure our
solutions are not affected (see Sec.V-C). The results presented
henceforth are thus based on oversampling with ADASYN [6].

C. Classification Techniques

With the thresholds defined, the features cleaned up and
the dataset labeled and balanced, we turn to methods that can
automatically classify our observations.

There is a range of well-known classification methods
for binary classification. We evaluate four commonly used
algorithms and their variations, namely Logistic Regression,
Random Forest (RF), State Vector Machines (SVM) and the
Naive Bayes classifier. [7]

Here we summarize the performance of the algorithms
using the metrics of Accuracy (ACC), Positive Predictive
Value (PPV) commonly known as precision and True Positive
Rate (TPR) commonly known as recall. These metrics stem
from the ratios of True Positive (TP), True Negative (TN),
False Positive (FP), False Negative (FN) that are produced by
the classifiers. Accuracy is the overall percentage of correct
identifications relative to the size of the complete dataset.
Precision describes how many of the observations that the
algorithm selected are actual anomalies while recall describes
how many of the total anomalies were pointed out. Random
search of of a wide range of hyper-parameters and k-fold cross
validation is used throughout all our evaluations to ensure
performance and generalization.

In Fig. 3 we examine the evaluation metrics for each of the
classifiers over the range of thresholds defined in Sec. IV-C and
for both the datasets of no-handovers and handovers. While
all classifiers provide promising results and other interesting
alternatives exist including k-Nearest Neighbors and Neural
Networks, by this summary it is evident that considering our
dataset, the RF outperforms the other methods in both overall
performance and consistency. The use of bootstrap aggregating
and random splitting of features allows RF to achieve high
accuracy and low over-fitting that consistently outperforms
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Fig. 3: Evaluation of classifier performance.

alternatives [8] without sacrificing interpretability. Given the
results of our exploratory analysis, the relatively small size of
the dataset and the simplicity of tuning RF, we defer evaluation
of advanced techniques to future work. The results presented
henceforth are thus based on RF utilizing 1000 decision trees.

D. Evaluation and Final Selection of Thresholds

Having selected an algorithm, we now move to evaluating
the effect of the thresholds defined in Sec. IV-C on the
performance of our method. We examine the same set of
performance metrics that were presented in Sec. V-C.

In detail, Fig. 4a presents the results for packet loss rate.
Looking back to table II, we fix the threshold for packet loss
to 0.003, 0.006 (omitted for clarity) and 0.01 accordingly and
perform multiple classification rounds with all other combina-
tions of the defined datasets (i.e. no-handover, handover) and
remaining thresholds (i.e. RTT, frequency). The resulting box
plot isolates the effect that the packet loss threshold has on
the performance of the classification algorithm. Likewise RTT
is shown in Fig. 4b and frequency in Fig. 4c. On average, all
combinations achieve high accuracy, above 0.85. Precision is
trailing behind, denoting an increased number of FP. However,
what is most valuable is that recall, on average, achieves very
high values of ~ 0.9 meaning that ~ 90% of anomalies can be
consistently identified with most thresholds. It is also apparent
that higher thresholds tend to produce improved performance.
This can be attributed to their nature of capturing severe
degradation that is more likely to be imprinted in the coarse
KPIs. It is worth mentioning here that the lowest threshold, by
design, captures all packet loss instances, no matter how small.
The highest threshold is meant to capture, on average, half of
the packet loss focusing on only the more severe instances.

Based on the results of threshold evaluation and adopting
the perspective of an operator, we finally define two levels
of thresholds to use henceforth, listed in table IV. The first
(low) level is meant to flag benign performance degradation,
that is indicative of a node or cell approaching the limits
of its performance. These are cases that do not necessarily
warrant immediate attention but may be interesting to examine
or keep a closer watch on. These could also be considered
an urgent issue in cases of a sudden surge of low threshold
violations on multiple nodes in a cell. The second (high)
level is reserved for severe performance degradation that

" ?
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. PPV
0.7 s TPR
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0.5
0.003 0.01
(a) Packet Loss Rate
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(b) Round-Trip Time (ms)
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(c) Threshold violation frequency
Fig. 4: Evaluation of thresholds.
Threshold Ivl | Packet loss | RTT Frequency
Low 0.003 75th percentile | 2 occurrences
High 0.01 85th percentile | 5 occurrences

TABLE IV: Final threshold levels selected.

warrants immediate attention. Three parameters define a level
of thresholds: sensitivity to packet loss, sensitivity to RTT and
sensitivity to frequency of violations.

VI. NETWORK SIDE DETECTION OF PERFORMANCE
DEGRADATION

In this section we dive into the effectiveness of cell KPIs in
inferring performance degradation experienced by end users.
To this end, we use the insights gained in Sec. V, to train our
classifier. Given the complete dataset, we feed the KPIs to the
RF as features and training is performed based on the labels
produced by the selected thresholds.

As explained in V-A, we have split our dataset to hours
where a node was connected to a single cell and to hours
with one or more handovers, meaning that the node has been
connected to multiple cells. We examine each case below.

A. Hours with no Handovers

To compare the performance of the classifier for each of the
thresholds, we examine the corresponding Receiver Operating
Characteristic (ROC) curves and the F-score [9]. A ROC curve
is commonly used to visualize the performance of binary
classifiers over varying thresholds or configurations while the
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KPIs Imp. Cat.
HueR_Connected_Users_Max 0.090 traffic
HueR_Connected_Users_Average 0.082 traffic
HueR_Paging_Success_Rate_UU 0.057 stability
HueR_RRC_ReEstalishment_Setup_Attempt_All 0.048 traffic
HueR_RRC_Setup_Request_Signalling 0.046 traffic

TABLE V: Most important KPIs. No-handovers.

F-score considers the precision and recall of the classifier in a
unified metric. As shown in Fig. 5 the TP rate is plotted against
the FP rate meaning that an ideal classifier that identifies all
anomalies correctly and does not produce any FP either, would
produce an Area Under the Curve (AUC) = 1.

Both levels of thresholds perform well, achieving an AUC
equal to 0.94 and F-score of 0.9 for the low level and AUC
0.99 and F-score of 0.94 for the high level. Translating this to
exact numbers of correct and incorrect predictions, looking at
the worst case of the low level thresholds: out of 274 normal
hours in our testing dataset 39 (14%) were incorrectly thought
to be anomalous (FP) while out of 321 anomalous hours 29
(9%) were not identified (FN). Both rates are relatively low.
While we can not explain each of these misclassifications, we
note that a FP may correspond to an actual problem that only
impacts a fraction of connected users which may not involve
the measurement node. Further, a FN may be caused by a
performance issue that does not lie in the RAN (e.g. packet
loss in the CN).

Having confirmed that we can successfully identify user-end
performance degradation with high confidence using only the
RAN KPIs we turn to feature selection. In studying the utility
that each of the KPIs provides, we gain insights and provide
a path to lowering the overhead of collection and analysis,
by using a subset of appropriate KPIs to achieve comparable
performance of identification. Table V lists the five top features
in order of importance.

It is evident that during periods of stable connectivity, the
performance is directly related to the overall load of the
cell, with the top two KPIs characterizing the number of
users connected to the cell. To understand how each feature
provides the information needed for classification, we use the
Kernel Density Estimation (KDE) shown in Fig. 6. Both KPIs
exhibit a higher mean and more variability (i.e. longer tail)
during anomalous hours. The patterns observed in the KPIs,
with the distinct peaks and valleys, are the key pieces that
a classification algorithm exploits to infer the existence of
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Fig. 6: KDE of most important KPIs. No-handovers.

anomalies. Here it is easy to observe that anomalies tend to
happen in periods of elevated user activity.

It is also interesting to consider the categories of KPIs laid
out in Sec.III-B as a whole and the contribution each of them
made. On average, for both thresholds, traffic KPIs impact was
by far the largest, contributing 58%. This is despite the fact
that traffic makes up just 37% of the complete set of KPIs
used. Stability KPIs contributed 30% while making up 54%
of the complete set, making them the least significant group
compared to its size. Mobility KPIs contributed 12% while
making up 9% of the complete set.

B. Hours with Handovers

To examine the dataset containing hours with handovers
some additional consideration is required. In each hour, a node
will be connected to multiple cells, meaning that multiple sets
of features will be relevant. A methodology is needed to select
the set of features that will be associated with the observed
end-user performance. This is simple enough during periods of
normal end-user performance where every set of features, i.e.
every cell that the user was connected to, can be considered
as normal. However, when examining an anomalous period,
which cell should be blamed is not clear. Once we take into
account that we are only dealing with stationary nodes, i.e. the
handovers examined are not initiated by physical movement
out of a cell’s coverage area, we can make some assumptions
about the reasons that led to them.

The 3GPP standards dictate that a decision of handover
depends mainly on the signal strength provided to the UE
[10]. Once the signal strength by the serving cell is lower than
a predetermined threshold and a better alternative is available,
the handover is initiated. Such conditions are frequently met
when a mobile UE is moving out of the coverage area of a
cell. However, a stationary UE will tend to connect to a single
cell that consistently provides the best performance due to e.g.
physical proximity. Indeed, examining our nodes we notice
that their majority favors a single "dominant” cell. A handover
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Fig. 7: ROC of handover dataset. All cells blamed.

KPIs Imp. Cat.
HueR_Intra_Freq_HO_Out_Attempt 0.073 mobility
HueR_eRAB_Setup_Attempt_Inc_HO 0.063 mobility
HueR_Inc_HO_Attempt 0.050 mobility
HueR_Paging_Attempt_UU 0.038 traffic
HueR_eRAB_Setup_Attempt_All 0.036 traffic

TABLE VI: Important KPIs. Handovers. All cells.

away from the dominant cell can then be an indication of
performance degradation or complete cell unavailability.

Considering the above, we examine two approaches to
labeling the cells. First, we naively blame all cells which a
node was connected to during an anomalous hour. Second, we
blame the previously identified dominant cell for each node.
Next, we compare the performance of identification for each
of the thresholds.

When both cells are blamed, while the high level of
thresholds performs almost identically to the no-handover
dataset, performance using the low level of thresholds has
significantly deteriorated (Fig. 7). The low level threshold
achieves an AUC of 0.81 and F-score of 0.74 while the high
level achieves AUC of 0.98 and F-score of 0.93. We observe
a drop in TP and increase in FP that can be attributed to
the nature of this dataset which is made up of hours that are
expected to, on average, experience worse performance due to
the presence of handovers thus masking mild degradation.

Next we examine the most important KPIs for this approach.
The top five results of feature selection are shown in table VI.
It is immediately evident that a higher than normal incidence
of handover related events, is a clear marker for performance
degradation experienced by the users of the cells. The three
most important features this time belong to the category of
mobility KPIs.

On average for both levels of thresholds, the traffic KPIs
impact was again the largest, contributing 54%. The stability
KPIs contributed 28%. The mobility KPIs contributed 18%
which makes them by far the largest contributor compared to
the size of the set.

When the dominant cell is blamed both thresholds achieve
very high levels of performance (Fig. 8). The low level
threshold achieves an AUC of 0.98 and F-score of 0.92 while
the high level achieves AUC of 0.99 and F-score of 0.97.

We once again examine the most important KPIs, shown in
table VII. When focusing on the dominant cell only, which is
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Fig. 8: ROC of handover dataset. Dominant cell blamed.

KPIs Imp. Cat.
HueR_Cell_Availability_Rate 0.100 stability
HueR_RRC_Setup_Request_Signalling 0.076 traffic
HueR_Connected_Users_Max 0.066 traffic
HueR_Used_UL_PRBs_Average 0.059 traffic
HueR_Connected_DRBs_All 0.052 traffic

TABLE VII: Important KPIs. Handovers. Dominant cell.

expected to be the initiator (i.e. in terms of being causative) of
the handovers, the underlying problem is uncovered. Handover
incidence is no longer important (as this is similar for other
cells in the area experiencing the issue) but traffic and stability
become the top KPIs. This shows that handovers are initiated
due to the serving cell becoming unavailable or overwhelming
traffic and the combination of this underlying problem and its
solution (i.e. handover), strongly affects user-end performance.

On average for both levels of thresholds, the traffic KPIs
impact was the largest, contributing 61%. The stability KPIs
contributed 30%. The mobility KPIs contributed 9%. The dis-
tribution resembles the case of no handovers, where mobility
plays a minor role and traffic comes first, both in absolute
contribution and relative to the size of the set.

C. Classification Performance with a Reduced Set of KPIs

Here, we briefly examine whether feature selection can be
effectively used to minimize the overhead of KPIs collection
and processing while maintaining comparable success of iden-
tifying performance degradation. As seen in Fig. 9, the results
are very promising. For the dataset of no handovers, using
just 10 features we can achieve performance closely matching
the one produced by the full set of 76. The same success is
observed for the handover dataset (figures omitted for brevity).

VII. DISCUSSION

Our results are both unexpected and interesting. In a sense,
they breathe new life into the utility of coarse-grained cell
KPIs, indicating that network operators can exploit them to
infer users’ QoE. Next we briefly discuss the interpretation,
implications and limitations of our findings.

Interpretation. We find that almost all episodes of degraded
performance correlate with changes in cell KPIs. This agrees
with the common-wisdom that most mobile network problems
are RAN-related. Further, most degraded performance happens
at times when eNBs experience an increase in connected users
and traffic. We also find that stationary users handover root



causes lie with the original cell and related to cell availability
and traffic volumes.

Implications. Inferring whether every hour is problematic
or not can help operators reconfigure their networks in a
timescale of an hour or two to alleviate problems before receiv-
ing users’ complaints. Characterizing problematic hours can
also help operators tune their configurations to react to future
changes in demand in order to minimize such occurrences.
As we mentioned before, this level of SA will suit services
with best effort expectations (e.g. mobile broadband) and not
critical services. We also note that the volume of involved
measurements is fairly low (i.e. 10 values from each cell when
using feature selection). Hence, the entire inference engine will
impose minimal overhead on network resources and can be
executed either in a centralized or distributed manner. Infer-
ence from different cells can be fed into another classifier to
detect correlated outages and common hot spots. This promise,
comes with the caveat that e2e measurements are necessary to
train the classifier. While difficult today, operators are rolling
out offerings that will result in massive stationary deployments
e.g. fixed wireless access and stationary [oT sensors that could
be leveraged for collecting e2e measurements.

Limitations. The used measurement nodes are fairly sparse
(i.e. one node per cell). This may have resulted in the recorded
14% FP. Although this could be a weakness, we argue that
the observed effect is limited. Our findings indicate that most
problems (about 90%) are RAN-related, which is surprising
since we may except a slightly higher percentage of CN related
problems. Investigating this further, we search for hours in
our active measurements where several nodes report degraded
performance as a proxy for problems beyond the RAN. We
found three such hours and all of them were successfully
flagged by our classifier. This hints that problems beyond the
RAN may also manifest themselves in some cell KPIs like
drop in paging and session establishment success rate. While
the monitored operator may have had a limited number of
CN-related problems, others may not. Hence, in addition to
using cell KPIs operators may want to deploy other approaches
for detecting correlated performance issues that do not impact
the RAN (e.g. [11]). Another performance metric that directly
affects the end-users’ QoE is the available bandwidth of their
connection. While the testbed measures the bandwidth of
each connection, at present this is only done sparsely out
of consideration for the shared nature of the testbed and the
increased utilization that such measurements entail. Future
work will seek to obtain frequent measurements of bandwidth
for further study.

VIII. RELATED WORK

There is a plethora of work on monitoring and anomaly
detection using cell KPIs in mobile networks. One direction
foregoes user-side performance characterization, focusing on
diagnosing large scale anomalies. [12] discusses autonomous
alarm based detection, focusing on self-healing. [13] explores
auto-diagnosing faults in 3G cells with the help of expert
opinions and automatic thresholds. [14] evaluates supervised
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Fig. 9: ROC of no-handover dataset with feature selection.

and unsupervised techniques on real-time collected KPIs for
the prediction and root-cause analysis of faults, demonstrating
high accuracy for both approaches. [15] proposes a (mostly)
unsupervised technique for automatic diagnosis of faults in
LTE networks. Using cell KPIs, unsupervised clustering of
cell states is performed and complemented by expert opin-
ions for the final root cause analysis. While [16] introduces
the aspect of user-end performance it does so post-mortem,
through stored customer service calls and periodical crash
logs. Another direction targets higher granularity aggregation
of KPIs, with [17] predicting call drops by learning based on
per-user datasets that present real-time data access and volume
challenges. [18] proposes models to automate diagnosis of
RAN problems, based on bearer-level aggregation of cell KPIs
and bearer records, again facing challenging data volumes.

Our work begins with a strong foundation on a dataset
uniquely combining active measurements using geographically
distributed COTS UE connected to a national network, with
passive measurements from the RAN provided by the operator.
We present a methodology with a low barrier of entry and low
overhead that can readily be implemented in any deployed
network. Threshold-based labeling combines the alarm based
systems commonly used by operators with a ML approach.
Sourcing the thresholds from user-side KPIs, provides results
proven to reflect conditions that directly affect the user QoE.
The supervised method lends its high accuracy while forgoing
the need for expert input in creating the labels. Finally, feature
selection takes a step towards root cause analysis.

IX. CONCLUSIONS

This paper investigates whether coarse-grained RAN KPIs
can be used to infer episodes of degraded performance im-
pacting end users. To this end, we pair active measurements
from a set of probes that act as end users, with operator
side measurements, providing a complete view of e2e per-
formance and network telemetry, on a commercial network.
We identify periods of end-user performance degradation and
train a classifier to detect them based on aggregated network
KPIs. The results are extremely promising with over 90%
accuracy in inferring problematic hours. Going further, we
identify primary and auxiliary causes to the performance loss
through KPIs selection. Our findings pave the way to easily
accessible, low overhead Service Assurance.
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