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Abstract—Since the early 2000’s, the research community has
explored many approaches to discover and study the Internet
topology, designing both data collection mechanisms and models.

In this paper, we introduce SAGE (Subnet AGgrEgation), a new
topology discovery tool that infers the hop-level graph of a target
network from a single vantage point. SAGE relies on subnet-level
data to build a directed acyclic graph of a network modeling how
its (meshes of) routers, a.k.a. neighborhoods, are linked together.
Using two groundtruth networks and measurements in the wild,
we show SAGE accurately discovers links and is consistent with
itself upon a change of vantage point.

By mapping subnets to the discovered links, the directed
acyclic graphs discovered by SAGE can be re-interpreted as
bipartite graphs. Using data collected in the wild from both the
PlanetLab testbed and the EdgeNet cluster, we demonstrate that
such a model is a credible tool for studying computer networks.

I. INTRODUCTION

For the past twenty years, multiple approaches to study the
Internet topology have been investigated [1], [2]. Besides tra-
ditional active probing techniques revealing IP interfaces [3],
[4], [5], [6] and routers [7], [8], [9], [10], several intermediate
levels have been explored over time, such as Internet eXchange
Points (IXPs) [11], [12], Points-of-Presence (PoPs) [13], [14],
and subnets (short for subnetworks) [15], [16].

Among these intermediate levels, the subnet-level showed
potential for broader topology mapping. In particular,
TreeNET [17] collects routes towards subnets first discovered
via ExploreNET [16] in order to build a tree-like map of
the target network, an approach which can notably be used
as a space search reduction scheme for alias resolution [10].
However, both ExploreNET and TreeNET rely on assump-
tions that can be easily violated by load balancing architec-
tures [18]: asymmetrical paths typically induce ExploreNET
into chunking subnets, while symmetrical paths are difficult to
model in the tree-like maps built by TreeNET.
WISE [19] handles the subnet inference challenges induced

by load balancers by carefully reviewing the interfaces it
discovers in a target domain prior to aggregating them in sub-
nets. Additional researches with WISE thoroughly assessed the
potential of neighborhoods, i.e., network locations bordered
by subnets located at most one hop away from each other, for
topology discovery [20]. An individual neighborhood corre-
sponds, in practice, to a single (mesh of) router(s) behaving as
a single hop in traceroute measurements. Though WISE
only discovers individual neighborhoods, it is possible to use
them as the building blocks of a hop-level graph.

In this paper, we introduce SAGE (Subnet AGgrEgation), a
new topology discovery tool that systematically builds the hop-
level graph of a target domain as a neighborhood-based DAG
(Directed Acyclic Graph), using a single vantage point. In such
a graph, vertices model neighborhoods while edges account for
the links that connect them together. SAGE infers the DAG
of a network by building neighborhoods with subnet-level
data first collected with WISE, by finding their adjacencies
with backward traceroute probing, and by using alias
resolution to detect convergence points of load balanced paths.
It also identifies, when possible, the subnets acting as the
links between adjacent neighborhoods. We designed SAGE to
capture exhaustive maps of intra-domain topologies and study
their hop- and subnet- levels.

This paper provides two key contributions. First, we de-
scribe SAGE and the challenges it addresses and demonstrate
it can capture consistent pictures of intra-domain topologies,
regardless of the vantage point. Second, we propose to turn
neighborhood-based DAGs into bipartite graphs. In a bipartite
graph, vertices are divided into two disjointed sets (or parties),
> and ⊥, so that every edge connects a vertex in > to one in
⊥. Bipartite graphs have been widely studied by the scientific
community [21], [22], [23], and in particular, a Layer-2 (data
link) device – router bipartite model for the Internet has been
previously explored [24]. With SAGE data, networks can be
studied as neighborhood – subnet bipartite graphs, and we
argue that the properties of such graphs are consistent with
previous research and the types of the measured networks.
The source code of SAGE, our tools for bipartite analysis, and
our dataset are all publicly available on GitHub. 1

The rest of this paper is organized as follows. First, Sec. II
presents SAGE in details: its core concepts, the challenges it
addresses, and its workflow. Second, Sec. III validates SAGE
on two groundtruth networks and shows it can discover similar
graphs for a given network when the vantage point changes.
Third, Sec. IV discusses the potential of the neighborhood –
subnet bipartite model using data collected with SAGE in the
wild. Finally, Sec. V concludes this paper by summarizing its
main contributions.

II. SAGE

A. Ideas and Previous Work

Initially, the subnet-level was considered by the research
community as a complementary view to the more traditional

1https://github.com/JefGrailet/SAGE978-3-903176-40-9 © 2021 IFIP



Fig. 1. The concepts of neighbrohood and peer.

router-level view of the Internet [15], [16]. However, recent
researches showed that subnet-level data can hint at the
underlying topology of a target network, i.e., its hop-level
adjacencies [17], [10], [20]. A common observation is that the
traceroute records collected for separate subnets, usually
by probing one or a few interfaces of each, can be very
similar. More precisely, the last hop(s) of said routes (i.e.,
before reaching the subnet interfaces) tend to be identical,
therefore implying that the corresponding subnets are reached
through the same path(s) and at the very least through the
same last hop (mesh of) router(s). This common last hop is
conceptualized as a neighborhood, and is formally defined as a
network location bordered by subnets located at most one hop
away from each other. In practice, a neighborhood might be
either a single router or a mesh of routers, potentially involving
Layer-2 (data link) equipment, and is typically identified by
the router interface that appeared as the last hop towards its
surrounding subnets (i.e., before the subnet interfaces).

Neighborhoods were first explored with TreeNET [17],
which uses the complete Paris traceroute [3] records
towards each subnet it previously inferred to build a tree-
like map of a target domain where leaves correspond to
subnets while internal nodes model neighborhoods. However,
a collection of traceroute paths is usually closer to a
directed acyclic graph rather than a tree [25]. To overcome
the limitations of the tree model, the notion of neighborhood
can be complemented with the concept of neighborhood peer
(which will be subsequently simply denoted as peer): given
two neighborhoods Na and Nb identified by the last hops
towards their subnets ta and tb (respectively), Na is a peer of
Nb if and only if the hop prior to tb in the routes to subnets of
Nb is ta. Fig. 1 illustrates this definition, as well as the concept
of neighborhood, i.e., a single hop delimited by subnets located
at most one hop away from each others.

The definition of peer naturally allows a single neighbor-
hood to have multiple predecessors, while an implication of
the tree-like model of TreeNET is that a neighborhood can
only have one predecessor in the tree. When a neighborhood
has no peer at a distance of one hop prior to the router interface
identifying it, a best effort approach consists in looking for one
or several remote peers, i.e., the closest route hops which the
associated IP interfaces identify other neighborhoods.

Both the concepts of neighborhood and peer have been
thoroughly evaluated with WISE, a subnet inference tool
initially designed to take account of various effects of traffic

Fig. 2. Toy network viewed as a neighborhood-based DAG. Edges are mapped
to subnets, with S3, a small LAN, being mapped twice.

engineering to accurately discover subnets in linear time [19],
[20]. WISE was implemented to conduct Paris traceroute
measurements towards subnet interfaces (up to five in each
subnet) to subsequently infer neighborhoods and their peers,
both algorithmical steps being run after the end of subnet
inference. Not only WISE allowed to thoroughly assess the
consistency of the concept of neighborhood on groundtruth
networks, but it also led to one major result: using data
collected in the wild from the PlanetLab testbed with WISE,
it was showed that neighborhoods have high odds of having
peers located at most one hop away, implying the correspond-
ing (meshes of) routers are separated by a single network link.
In particular, for a subnet picked at random, the odds of the
bordered neighborhood having a peer at most one hop away
ranged from 80% to more than 90% depending of the target
network. A considerable number of neighborhoods having
several peers was also observed.

The study of neighborhoods and their peers with WISE [20]
showed that both concepts are consistent enough to consider
building a neighborhood-based DAG. In such a graph, vertices
model neighborhoods while the edges model how they are
located in respect of each other. I.e., given two neighborhoods
u and v, if u is a peer of v, then the DAG including u and v
will include the edge u → v as well. Ideally, as subnets can
correspond to links or LANs in the Internet, it is even possible
to enrich this neighborhood-based view by associating a subnet
with each edge, resulting in a neighborhood – subnet topology
that can be used to study the internal routing of a network.
Fig. 2 shows a toy network viewed as a neighborhood-based
DAG, where subnets S1, S2, and S3 are mapped to edges. The
side frame shows an example of what a single neighborhood
(vertex) can be made of.

B. SAGE Challenges

We designed SAGE (Subnet AGgrEgation) to concretize
the systematic construction of neighborhood-based DAGs by
reusing the concepts previously explored with the help of
WISE [20]. SAGE is named after the way it first creates the
neighborhoods, i.e., by aggregating subnets on the basis of the
last hop(s) observed prior to their interfaces.

Naturally, such an objective brings several challenges. The
first challenge arises from the inference of neighborhoods
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Fig. 3. Discovering a convergence point with SAGE.

themselves: in some cases, the end of the route towards
interfaces of a given subnet can consist, for instance, of one or
several anonymous hops or of cycling interfaces. It is therefore
impossible to aggregate the corresponding subnet with other
subnets on the basis of a single router interface belonging
to the last hop (mesh of) router(s). For such subnets, SAGE
relies on a best effort approach: it aggregates subnets on
the basis of the part of the routes towards their interfaces
containing the last non-anonymous and non-cycling hop. For
example, if several such routes consist of A,B,X,X where X
is an anonymous interface, a neighborhood can be built with
subnets whose the routes end with B,X,X . We denote such
neighborhoods as best effort neighborhoods in opposition to
regular neighborhoods that are identified by the last router
interfaces observed before reaching their surrounding subnets
(such as ta and tb in Fig. 1). Due to not being denoted only
by router interfaces, best effort neighborhoods cannot be peers
by design and can only act as endpoints of the final graph.

The second issue SAGE needs to address comes from
load balancing architectures. When a neighborhood features
several peers, there is indeed no guarantee that the interfaces
associated to them are strictly from distinct devices. For
instance, a neighborhood can first appear as several neighbor-
hoods because the probes reached the respective associated
interfaces from distinct paths instead of always reaching the
same interface. In other words, a neighborhood can include a
convergence point, i.e., a device where distinct paths converge
that is best identified by an alias list. To address this chal-
lenge, SAGE identifies router interfaces that might belong to
convergence points and conduct alias resolution on them. After
listing the peers of all neighborhoods, SAGE gathers the lists
with multiple peers and merges them when they share common
interfaces, relying on the property of alias transitivity. This
property works as follows: if we have three interfaces A, B,
and C, if A and B are aliases and if B and C are aliases
too, then A and C are aliases as well. This trick allows SAGE
to resolve the largest hypothetical alias lists to avoid testing
the same alias multiple times. The alias resolution itself is
performed with a fingerprint-based framework [10]. When a
convergence point is discovered, SAGE proceeds to merge
together the associated neighborhoods.

Fig. 3 shows a toy topology where SAGE is able to discover
a convergence point by applying subsequently alias transitivity
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Fig. 4. Mapping links and subnets in a neighborhood-based DAG.

and alias resolution. In this toy example, the two neighbor-
hoods Nb and Nc initially have respectively the lists of peers
tα, tβ , and tβ , tγ (Fig. 3a). By aggregating those peers to create
the largest hypothetical alias {tα, tβ , tγ}, SAGE can recover
the (initially split) neighborhood Na depicted in Fig. 3b as
long as tα, tβ , and tγ are aliased together.

The final issue, which is more an opportunity than a
challenge, lies in mapping subnets to the edges of the final
graph. Indeed, in the real world, subnets can notably act as
point-to-point links between two devices (typically, with a /30
or /31 subnet). For each edge it infers, SAGE tries to find the
subnet that could correspond to the practical network link. By
doing so, SAGE not only outputs a true picture of the hop-level
adjacencies, but also complements it with subnet-level data by
design, resulting in a neighborhood – subnet perspective of
the network. This task simply consists of looking at the router
interface(s) denoting a neighborhood and finding the subnet
whose the prefix encompasses (one of) said interface(s). Fig. 4
shows a simple example: given two juxtaposed neighborhoods
Na and Nb, respectively identified by router interfaces ta and
tb, Na being closer to the vantage point, a subnet Sa bordering
Na encompasses tb. As a consequence, Sa can be considered
as the subnet connecting Na and Nb together. In practice,
the subnet that connects two neighborhoods does not always
appear around the neighborhood closest to the vantage point,
and can also border a third neighborhood, depending on the
subnet size (a large subnet can be mapped to several edges)
and/or the internal routing of the target network.

C. SAGE Workflow

In order to build a neighborhood-based DAG, SAGE requires
subnet-level data to begin with. It is therefore built on top
of WISE [19], [20] so that the former can reuse the subnet
inference methodology of the latter. A key advantage of such
a methodology, in addition to handling various effects of traffic
engineering, is its ability to scale linearly with the number of
target IP addresses. As a result, it can easily discover subnets
on a target network using a single vantage point. Previous
work is either not as fast [19] or involves multiple vantage
points, such as Cheleby [26]. Having efficient subnet inference
makes it possible to run SAGE from a single vantage point as
well, as it only requires some lightweight additional probing
to eventually build a graph.
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Having discovered subnets with the WISE methodology,
SAGE first collects additional traceroute data before it
starts building the DAG. It therefore first processes the subnet-
level data to make a census of all router interfaces that
could act as identifiers for (regular) neighborhoods, i.e., all
final hops before subnet interfaces that are neither anonymous
nor cycling hops, also called peer addresses. It subsequently
schedules partial backward (Paris) traceroute measure-
ments towards a subset of interfaces from each subnet 2 in
order to collect paths that will help it discover peers. I.e.,
for each subnet interface, SAGE sends a first probe with a
TTL value corresponding to one hop prior to the last non-
anonymous and non-cycling hop towards the target. If a reply
arrives, SAGE checks if it comes from a peer address. If so,
it already has the data it needs to discover a peer and can
stop probing, meaning the measurement is partial. Otherwise,
it keeps probing by decreasing the TTL value until it reaches
0 or until a remote peer can be found. By doing so, SAGE
reduces the traffic it sends towards the target network, and
rarely collects full paths. For efficiency’s sake, this preliminary
traceroute probing is also performed with multithreading.

Once the traceroute data is available, SAGE builds
the graph step by step. It first aggregates subnets based on
their last hops into neighborhoods and uses the additional
traceroute data to discover their respective peers. If some
neighborhoods feature multiple peers, SAGE applies the alias
resolution scheme described in Sec. II-B to identify conver-
gence points. Once peers and convergence points are clearly
identified, SAGE builds the final vertices of the neighborhood-
based DAG and uses the peer data to create the edges. Special
remote edges are inserted to account for remote peers, these
edges storing the intermediate hops in an effort to provide
exhaustive data. For non-remote peers, SAGE identifies the
subnet which could correspond to each edge (as mentioned
in Sec. II-B). Fig. 5 illustrates the workflow of SAGE, with
a focus on the sub-steps involved in the construction of
a neighborhood-based DAG. It is worth noting that, after
building the DAG, SAGE also performs alias resolution on
the interfaces identified for each final neighborhood (re-using
a fingerprint-based scheme [10]) to find out whether it consists
of one or several routers (also shown in Fig. 5). The processing
of this additional router-level data is left for future work.

2Up to 5 interfaces per subnet; this can be tuned in SAGE.

Metrics Academic ISP

Subnets
Covered prefixes 95.93% 88.95%
Exact inferred prefixes 57.55% 46.98%
Differing by a most one bit 79.94% 74.09%

Graph
Neighborhoods 51 121
Discovered links 34 113
Accurate discovered links 34 (100.0%) 108 (95.58%)

Subnets as links
Matched the groundtruth 34 108
Matched the exact prefix 33 (97.06%) 93 (82.3%)
Mean prefix difference 1 1.2

TABLE I
SAGE VALIDATION (ACADEMIC NETWORK AND ISP BACKBONE).

III. EVALUATION

A. Validation

In order to validate SAGE, we measured two groundtruth
networks: an academic network roughly the size of a /16
prefix and the backbone of a national ISP whose prefixes cover
hundreds of thousands of attributable IP addresses. As SAGE
re-uses previous work to discover subnets, neighborhoods, and
peers that has been already assessed [19], [20], we are only
interested here in verifying whether the graphs discovered by
SAGE are true to the measured networks.

One way to assess the soundness of SAGE consists of check-
ing whether the edges found in its graphs match real life links.
To do so, we first measured each groundtruth network in late
September 2020. Then, for each network, we generated a series
of line commands our groundtruth partners had to run on given
routers. The routers they had to log onto were those bearing the
interfaces that SAGE used to identify neighborhoods while the
commands were show ip ro IP_next where IP_next
identifies the next neighborhood from the perspective of SAGE.
For instance, if the graph contained the edge N32 -> N33
via x.y.z.0/30 where N32 is identified by a.b.c.1
and N33 by x.y.z.2, then our contact had to log onto the
router bearing a.b.c.1 and run the command show ip
ro x.y.z.2. If the output of the command returned that
the interface was directly connected, this proved the edge
discovered by SAGE matched a groundtruth link. We also
parsed the output of each command to check whether the
connecting subnet matched the one discovered by SAGE.

The results of our validation, provided in Table I, demon-
strate almost all links discovered by SAGE were true to
the topology for both networks, with 100% of the links
discovered on the academic groundtruth being correct and
95% of the links found on the national ISP backbone being
true as well. The subnets mapped to links were accurate too:
only one subnet had a prefix greater by one bit as for the
academic network, while a dozen of subnets mapped to links
featured prefixes longer by one bit as for the national ISP
backbone (only three prefixes were longer by two bits). A
careful analysis of our results for the national ISP backbone
revealed that the five incorrect links corresponded to subnets
that were mislocated by traceroute probes due to a BGP
configuration error. Interestingly, the subnets themselves still
matched the subnet-level groundtruth data (though not counted
in our metrics). It should be noted the graphs provided slightly
more neighborhoods than edges: this is due to having a few
neighborhoods without peers (often because they were the



(a) AS6453 (TATA Communications Inc.) (b) AS3257 (GTT Communications Inc.) (c) AS224 (UNINETT)

Fig. 6. Comparison of snapshots collected by SAGE between December 29, 2019 and January 15, 2020 from the PlanetLab testbed (BE = Best Effort).

closest to the vantage point), but also due to having several
connected components in the case of the academic network.

It is worth noting that, by design, SAGE will not necessarily
discover all links within a network. Discovering all links
would notably require probing the same network from different
vantage points and combining the resulting graphs. However,
we can have an idea of whether a graph is representative of
a network by checking whether the subnet-level data covers
exhaustively the groundtruth data. This is why Table I also
provides subnet metrics to show the subnet data exploited
by SAGE is representative, with the ratio of inferred prefixes
differing by at most one bit being close to the ratio of covered
prefixes. Such a ratio accounts for subnets which the (lack of)
live interfaces prevents finding the exact prefix. 3

Finally, it should also be noted that SAGE correctly detected
convergence points within the national ISP backbone (not
shown in Table I). Interestingly, SAGE missed one such
device within the academic network because the corresponding
interfaces never appeared in the same list of peers for any
neighborhood. However, the two neighborhoods that should
have been merged into the missed convergence point had a
few links mapped with a subnet from the other half (and
vice versa). This suggests both neighborhoods were related
and could have been merged by post-processing the graph.

B. Graph Isomorphism

While our validation show promising results, both
groundtruth networks mostly consist of end systems and
implement little traffic engineering, despite discovering mul-
tiple convergence points within the national ISP backbone.
Moreover, in the wild, not all subnets and routers of a specific
Autonomous System (AS) will be visible to probes, meaning
the graphs built by SAGE will not always be as complete as
with our two groundtruth networks.

To assess SAGE in the wild, the graphs obtained for the
same target network but on different days and from distinct
vantage points can be compared. First, let us define a snapshot
as the whole data captured by SAGE for a given target network,
usually an entire AS, on a given date from a given (and single)
vantage point. If two snapshots of the same AS captured from

3Thorough validation of WISE is provided in previous work [19], [20].

distinct vantage points on separate dates provide comparable
vertices and edges, then the graphs are isomorphic to some
extent, showing the graph inference of SAGE is consistent.
Of course, two snapshots will likely never provide identical
graphs, but a large amount of similarities will imply that
the same architecture was captured each time with a few
differences due to the change of vantage point.

We quantify similarities between neighborhood-based
DAGs as follows. We first select a set of snapshots of a
given AS so that each snapshot was captured on a different
date and from a different vantage point. We then select the
first snapshot as a reference for comparing with subsequent
snapshots. Second, for each pair, we quantify how many
neighborhoods appear in both snapshots by comparing the
interface(s) used to identify each, and divide the total by
the number of neighborhoods found in the reference to get
a redundant vertex ratio (RVR). We focus on regular neigh-
borhoods in particular, clearly associated to one or several
router interfaces, as best effort neighborhoods (cf. Sec. II-B)
are less likely to appear identically in two distinct snapshots. A
redundant vertex ratio close to 1 means both snapshots provide
(mostly) the same hop-level nodes. To complete this metric,
the number of regular neighborhoods found in all snapshots
can be divided by the number of regular neighborhoods of the
reference snapshot to obtain an intersection ratio (IR).

We proceed by quantifying how many edges can exist in
both snapshots of a pair, i.e., for any edge u → v found
in the reference snapshot, neighborhoods u and v exist in
both snapshots. We then check if u → v exists in the second
snapshot as well, and divide the number of such redundant
edges by the total number of edges that can appear in both
snapshots to obtain a redundant edge ratio (RER). When close
to 1, this ratio implies both snapshots provide the same links
between the neighborhoods they have in common. If both the
redundant vertex ratio and the redundant edge ratio are close to
1, this means both snapshots provide comparable topologies.

Fig. 6 shows our quantification of graph isomorphism for
three distinct ASes, using 12 snapshots collected for each
from PlanetLab between December 29th, 2019 and January
15, 2020th. Each snapshot was collected from a different
vantage point on each date. We selected AS6453 (TATA
Communications Inc.) and AS3257 (GTT Communications
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Inc.) because both are Tier-1 ASes from the top 10 of CAIDA’s
AS ranking [27] that we could measure on a daily basis.
For comparison’s sake, we provide a third figure for AS224
(UNINETT), a Norwegian Stub AS. Additional figures for
other ASes can be browsed at our public GitHub repository. 4

All figures show that more than 70% of the regular neigh-
borhoods appeared in both snapshots of each pair, while the
redundant edge ratios were close to 1, especially with AS6453
(Fig. 6a) and AS224 (Fig. 6c). When best effort neighborhoods
were included, the redundant vertex ratios remained above 0.5,
while the intersection of regular neighborhoods (i.e., excluding
best effort) found in all snapshots was around 0.5 for both
AS6453 and AS3257 (both Tier-1 ASes) and even above 0.7
for AS224. These results clearly suggest SAGE captured a
similar hop-level architecture in each snapshot, though the
case of AS3257 (Fig. 6b) seemed more difficult due to this
network being a major Tier-1 AS: its redundant edge ratios
were noticeably lower than in other cases. However, since
they remained around 0.8, it could be possible to combine
the links of both snapshots of a pair since they still shared
many common neighborhoods. Future work with SAGE could
consist of merging snapshots of the same network captured
from different vantage points to build more exhaustive graphs.

IV. BIPARTITE MODELING

A. Interpreting SAGE DAGs as Bipartite Graphs

We introduce a novel bipartite model where one party con-
sists of neighborhoods (>) while the second party accounts for
subnets (⊥). Indeed, because they model either a single router
or a full mesh, neighborhoods are by definition connected
together via network links that can be mapped to subnets (as
explained in Sec. II-A). Not only this model is intuitive, but
it also constitutes a tool to study the hop-level adjacencies of
a network as well as the role played by subnets. In particular,
the subnet mappings in a DAG can reveal new hop-level
adjacencies when a same subnet is mapped to multiple edges.
Fig. 7 shows our initial toy network from Fig. 2 re-interpreted
as a bipartite graph: because S3 was mapped to two edges in
the initial neighborhood-based DAG, it can be considered as
being a hub between N2, N3, and N4, which means N3 and
N4 are also adjacent to each other.

This bipartite formalism is therefore well suited for studying
the subnet degree, i.e., how many devices a subnet connects
together (e.g., S3 in Fig. 7 has a degree of 3), along with its

4https://github.com/JefGrailet/SAGE/tree/master/Python/Isomorphism

effects on the neighborhood degree, i.e., how many adjacent
(one hop away) neighborhoods a given neighborhood features.
This is made possible with bipartite projection: given a
bipartite graph, a graph with either > or ⊥ vertices can be
built by creating an edge between a pair of vertices of one
party each time they share a common neighbor vertex from
the other party. Therefore, projecting a neighborhood – subnet
bipartite graph on > vertices (also known as >-projection)
produces a hop-level graph.

Interpreting a neighborhood-based DAG as built by SAGE as
a bipartite graph is almost immediate, although a few special
cases must be addressed. An edge between two adjacent
neighborhoods which could not be mapped with a subnet is
notably accounted for by an hypothetical subnet vertex to
model the idea that, in theory, a link must exist between
both neighborhoods. Likewise, remote edges are replaced by
special subnet vertices to show they model more than one hop.
Doing so avoids us from adding too many hypothetical vertices
(neighborhoods or subnets) to model multiple hops adjacen-
cies, which could needlessly complexify the final graph.

B. Bipartite Graphs in the Wild

In 2020, we deployed SAGE from both the PlanetLab
testbed and the EdgeNet cluster [28] to capture snapshots
(as defined in Sec. III-B) of various intra-domain topologies,
which we subsequently converted into bipartite graphs to study
the topological features of our target networks.

We first take a look at the distributions of both the neighbor-
hood degree and the subnet degree. Fig. 8 shows cumulative
density functions (CDFs) of the degree of both neighborhoods
(>) and subnets (⊥) found in snapshots collected on AS6453
(TATA Communications Inc.), AS6939 (Hurricane Electric
LLC), and AS1241 (Forthnet) which are respectively Tier-1,
Transit, and Stub ASes. These snapshots are representative,
i.e., they are not outliers among snapshots of the selected
ASes in the sense that all snapshots provided us with compa-
rable topological features. Among these figures, the CDFs of
AS1241 (Fig. 8c) stand out: the ⊥ CDF shows a bit more than
15% of the discovered subnets (3,052 in this snapshot) had a
degree of two or more, with a maximum of 14 (corresponding
to an inferred /20 subnet), while the > CDF shows there were
a few very high degree neighborhoods, most neighborhoods
(i.e., above 90%) having a degree smaller than 10 (included).

The CDFs for AS6453 (Fig. 8a) and AS6939 (Fig. 8b) rather
show their neighborhoods had higher degrees overall, but
smaller maxima. Likewise, their subnets had smaller maxima
too, and the shares of subnets having a degree of two or
more were noticeably smaller, though they hid dozens of such
subnets due to the large number of discovered subnets (8,188
for AS6453 and 10,645 for AS6939). These differences in the
distributions hint at different types of topologies: AS1241 ap-
peared to be very centralized, while both other ASes seemed to
be much more distributed. Such observations can be explained
by the roles played by these ASes in the Internet: AS1241 is
indeed operated by a Greek ISP, while AS6453 and AS6939
are respectively Tier-1 and Transit ASes found in the top 10 of
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(b) AS6939 (09/20/2020)
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(c) AS1241 (09/12/2020)

Fig. 8. CDFs of the degrees of neighborhoods (>) and subnets (⊥) using three snapshots collected from the EdgeNet cluster.
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Fig. 9. CDF of the length of cycles in bipartite graphs (all 2020 snapshots).

CAIDA’s AS ranking [27]. Interestingly, AS6453 featured the
smallest maxima in Fig. 8, suggesting its observed topology
was the most distributed among all three snapshots. Overall,
these distributions suggest that the properties of our bipartite
graphs are consistent with the role assumed by each target
network in the Internet. Additional figures for various ASes
can be browsed at our public GitHub repository. 5

Another interesting application of our bipartite formalism
lies in the study of topological cycles, i.e., cycles observed
within the (inferred) graph of a network. Such cycles do not
appear at probing time due to the nature of forwarding: at best,
SAGE can discover diamonds, i.e., subgraphs delimited by a
divergence point (e.g., where load balanced paths start) fol-
lowed by a convergence point [18]. As such, topological cycles
are not strictly equivalent to routing loops experienced with
traceroute, notably because the latter can be explained by
various network mechanisms such as MPLS tunnels [29].

Fig. 9 shows a cumulative density function of the length
of topological cycles found in bipartite graphs built from all
snapshots collected during 2020, from both the PlanetLab
testbed and the EdgeNet cluster. This figure only takes account
of base cycles, i.e., cycles that cannot be decomposed in
smaller ones, and omits cycles that encompassed special
vertices modeling remote edges (cf. Sec. IV-A). It also omits
cycles encompassing subnets whose the prefixes were too
small for their degree (e.g., a /29 subnet cannot have a degree

5https://github.com/JefGrailet/SAGE/tree/master/Python/INSIGHT/Results

of 10), as such a high degree may be the result of undetected
convergence points (as defined in Sec. II-B), though the
subnet may also be undergrown. Despite these precautions, the
figure still accounts for 25,095 cycles found within 345 SAGE
snapshots after bipartite conversion. In particular, a majority
of the cycles were two hops long and may account for back-up
links, since they involved two distinct subnets connecting the
same neighborhoods. Fig. 9 also highlights that a large share of
the cycles ranged from three to a dozen of hops, which may
correspond to structures such as load balancers. We leave a
detailed characterization of these cycles for future work.

C. Projections in the Wild
Finally, let us take a look at the neighborhood degree after

projecting bipartite graphs on neighborhoods (>). Though
neighborhood-based DAGs built by SAGE already reveal ad-
jacencies, the mappings between subnets and edges can reveal
new adjacencies, and as a result, the >-projections of our
bipartite graphs can better account for the hop-level.

Fig. 10 shows the distribution of the neighborhood degree
both in bipartite graphs (dashed line) and in their >-projections
(plain line) as a complementary cumulative density function
(CCDF), using again the bipartite graphs built from all 2020
snapshots (i.e., the same data as for Fig. 9). This figure shows
the neighborhood degree distribution is shaped like a power
law for 99.9% of the neighborhoods in bipartite graphs and
for 99% of neighborhoods in the >-projections. The research
community has debated many times on whether the router
degree in the Internet, i.e., the number of adjacent routers of a
given router, was distributed in this manner, among others by
discussing the impact of Layer-2 equipment [30]. Hopefully,
our observations corroborate these claims rather than they
invalidate them: indeed, a neighborhood can consist of either a
single router or a full mesh, possibly involving Layer-2 equip-
ment (cf. Sec. II-A). Future work includes discovering routers
within neighborhoods with alias resolution and inferring the
presence of Layer-2 equipement.

Interestingly, the neighborhood degree in bipartite graphs
covers a larger range of values. This should not be too surpris-
ing, as we expect many subnets to consist of end systems or to
act as links towards unprobed parts of the Internet. It should be



Fig. 10. CCDF of the degree of neighborhoods (all 2020 snapshots).

noted, however, that the extrema shown for bipartite graphs are
measurement artefacts. In particular, degree-1 neighborhoods
(in bipartite graphs) were typically bordered by a single subnet
and could not be directly peered to any other neighborhood by
SAGE. The highest degree neighborhoods also resulted from
measurement issues such as unusually undergrown subnets.

V. CONCLUSION

In this paper, we introduced SAGE, a new topology dis-
covery tool able to infer the hop-level adjacencies of a target
network from a single vantage point thanks to subnet-level
data. SAGE builds a directed acyclic graph where vertices
model single hops while edges model the links, which are
also mapped to the discovered subnets. Using two groundtruth
networks and data collected in the wild, we showed that SAGE
can discover intra-domain topologies that are both true to the
targets and consistent upon changing the vantage point.

We also introduced a new bipartite formalism to study
network topologies. Using data collected from both the Plan-
etLab testbed and the EdgeNet cluster, we discussed various
applications of our bipartite formalism and showed that the
topological properties they highlight are consistent with the
measured networks or previous studies. In particular, we
demonstrated that the degree of vertices in hop-level graphs,
obtained by projecting our bipartite graphs on the hop-level,
follows a power law shape, therefore corroborating previous
work on router- and hop-level. We also showed that our
bipartite graphs can be a tool for discovering back-up links
and other network structures by analyzing their cycles.
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