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Abstract—The popularity of the RIPE Atlas measurement
platform comes primarily from its openness and unprecedented
scale. The platform provides users with over ten thousand
vantage points, called probes, and is usually considered as giving
a reasonably faithful view of the Internet. A good use of Atlas,
however, requires a clear understanding of its limitations and
bias. In this work we highlight the influence of probe locations
on Atlas measurements and advocate the importance of selecting
a diverse set of probes for fair measurements. We propose Metis,
a data-driven probe selection method, that picks a diverse set of
probes based on topological properties (e.g., round-trip time or
AS-path length). Using real experiments we show that, compared
to Atlas’ default probe selection, Metis’ probe selections collect
more comprehensive measurement results in terms of geograph-
ical, topological, and RIR coverage. Metis triples the number
of probes from the underrepresented AFRINIC and LACNIC
regions, and improves geographical diversity by increasing the
number of unique countries included in the probe set by up to
59%. Finally, we extend Metis to identify locations on the Internet
where new probes would be the most beneficial for improving
Atlas’ footprint.

I. INTRODUCTION

Since the early days of the Internet, the research community
has developed tools to monitor the Internet, and the RIPE Atlas
measurement platform became a popular choice for Internet-
wide measurements. The scale of Atlas is one of its strengths,
with over ten thousand vantage points (VPs) it enables a
myriad of ways to study the Internet. These studies all start
by creating a new measurement, which mainly consists of
specifying the type of measurement (e.g., traceroute), a target
(e.g., hostname), and a set of VPs, called probes in the Atlas
terminology. A user can only assign up to one thousand probes
per measurement in order to prevent harmful use and to ensure
fair resource sharing. Depending on the goal of the study,
users may ask Atlas to randomly select probes. In particular,
broad probe sets can be selected with the “Worldwide” area
option. Random selection is handy and popular for Internet-
wide [1] and regional analysis [2], [3], but due to the Atlas
bias towards certain countries and autonomous systems (ASes)
[4]-[7] some studies need to normalize collected data [8] or
design their own VP selection procedure [9].

Figure 1a shows the ten countries hosting the largest number
of probes. Germany and the United States each represent over
13 % of all probes. The top six countries host 50 % of probes
and we found 26 countries with only one probe. This uneven
distribution of probes is certainly a concern when selecting
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probes for measurements. It also raises the question of the
utility of Atlas’ random probe selection, and consequently, the
need for a better selection mechanism for wide scale studies.
Simple mechanisms, like limiting the number of probes taken
from each country or AS, could provide better geographical
balance or AS diversity but are not directly addressing Atlas’
inherent topological imbalance. In order to make an informed
decision about probe similarities we need to inspect empirical
data that embeds the probes’ topological characteristics.

Goal In this paper we aim to assist researchers in selecting
a diverse set of probes for Internet-wide studies. We argue
that a random selection may lead to wrong inferences and
measurement budget waste. The problem is not caused by
random sampling techniques, as these are effective methods
to reduce a dataset while preserving its main characteristics
[10], [11]. The issue comes primarily from Atlas’ deployment
bias, which is still present in a random set of probes.

Overview In order to make the best use of Atlas we propose
Metis, a data-driven method to select a set of diverse probes.
Because the definition of probe diversity may vary from one
study to another, we propose a general approach designed
around a user-given distance metric. Using that metric Metis
computes a distance matrix for Atlas probes and iteratively
discards the probe closest to all others. This sifting process
retains a set of probes that are spread out in the given space
and the process can be stopped as soon as the desired number
of probes is met. Computing the probe distance matrix is eased
by the availability of Atlas’ built-in topology measurements,
which are an attempt to daily traceroute all globally routable
prefixes. We leverage this dataset to obtain distances between
probes at no additional measurement cost.

To evaluate the benefits of Metis we compare measurement
results obtained with Atlas’ default selection to results ob-
tained with various Metis selections. For this comparison we
experiment with three common distance metrics (round-trip
time, AS-path length, and IP hops) and show that they all
outperform Atlas’ default selection in terms of geographical,
topological, and regional Internet registry (RIR) coverage.
Although Metis does not take probe geolocation and RIR data
into account, it naturally picks probes in up to 59 % more
countries and triples the number of probes from regions that
are underrepresented in Atlas (i.e., AFRINIC and LACNIC).

An intuitive extension of this work is the possibility to
identify locations for deploying new probes that would help
to diversify Atlas’ footprint. We also explore this idea and
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Figure 1. (a) Atlas probes are not evenly distributed, showing a clear concentration in Germany and the United States. (b) historical topology measurement
data does not suffice to reach full probe-AS coverage: the entire dataset contains traceroutes between only 83 % of probe ASes.

identify the regions and ASes that would be the most beneficial
for mitigating Atlas’ deployment bias.
Contributions In summary, our main contributions are:
o An updated report on RIPE Atlas deployment bias.
o Metis: a data-driven method for selecting diverse probes.
o An evaluation of Metis with real experiments and com-
parisons to Atlas’ default probe selection.
o A deterministic method to identify candidate locations for
new Atlas probe deployment.
o The release of probe selection and probe deployment
results [12].

II. METHODOLOGY
Metis consists of three steps:

1) Probes are mapped to a user-defined space which is
represented by a distance matrix (Section II-A).

2) The distance matrix is iteratively sifted to uncover a
diverse probe set (Section II-B).

3) The sifting process stops when there is suitable number
of remaining probes (Section II-C).

A. Probe Distance Matrix

A probe distance matrix represents the distance between
probes. To ease computation and data collection we group
probes at AS granularity. Thus, a row or column in the distance
matrix represents an AS hosting at least one probe. At the
time of writing, the Atlas probes cover 3607 ASes for IPv4
and 1657 ASes for IPv6. Building a complete distance matrix
for all these ASes requires over 13 million pairwise measure-
ments. We avoid this burden by recycling data collected by
Atlas’ built-in topology measurements [13].

1) Topology Measurements: The goal of the topology mea-
surements is to reveal a large fraction of Internet paths by
running traceroutes from all probes to all globally reachable
IP prefixes. To assign targets, Atlas uses a specific hostname
that resolves to a different IP address for each DNS query,
which is the .1 address from a randomly selected IP prefix in
a global routing table. Every probe resolves this hostname and
performs a traceroute every 15 minutes, resulting in over 2.2
(1) million results for IPv4 (IPv6) per day. From this dataset
we extract all traceroutes between probe ASes.

2) Distance Metric: To illustrate the flexibility of Metis
and explore different notions of probe diversity, we retrieve
three distances from the above traceroute data: round-trip time
(RTT), number of IP hops, and AS-path length.

Extracting RTT values and the number of IP hops from
traceroute is trivial. However, converting traceroutes to AS
paths requires a more thorough process. We use a combination
of Route Views [14] and PeeringDB [15] data to map IPs to
ASes, as done in previous work [16]-[18]. If an IP address
can not be mapped, the hop is ignored, which is a known
shortcoming of using traceroute to infer AS paths [19]-[21],
but has limited impact on our metric. In our dataset, the IP-to-
AS mapping fails for about 4 % of hops. Since traceroute sends
more than one packet per hop, it is possible to receive replies
from different IP addresses. If these IP addresses map to
different ASes, they are included as an AS set. After mapping
all hops we remove duplicate ASes, keeping only the first
occurrence of each AS in the path. Finally, we only include
traceroutes that reached the AS of the intended target. We do
not require the traceroute to reach the intended target IP, since
there is no guarantee that the addresses used by the topology
measurements are indeed responsive.

3) Time Window: Next we have to determine the time
window required for extracting relevant topology measurement
traceroutes. Since the topology measurements target the entire
reachable IP space at random, only a small fraction of the
traceroutes ends up in target probe ASes. It is therefore
necessary to choose a suitable time window that includes
traceroutes between as many probe-AS pairs as possible while
minimizing the risk of including topological changes that
might skew computed distances.

To deal with this trade-off we inspect the probe-AS pair
coverage achieved with different time windows. An AS pair
(A, B) is covered if there exists a traceroute from AS A
to AS B. Figure 1b shows the evolution of coverage for
different window sizes. All windows start at 2021-01-01 and
the window size increases in monthly increments all the
way back to the beginning of the topology measurements
in 2016. We assume that traceroutes results between two
ASes are symmetric, i.e., a result in one direction suffices to
satisfy coverage for both directions. However, even with this
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Figure 2. Comparing the value distributions of different time window sizes reveals that there is no conceivable difference for (a) AS-path length, and only

minor differences for (b) IP hops and (c) RTT.

assumption only a maximum of 83 % of probe-AS pairs can
be covered. This is because of both, the high number of ASes
that contain only one probe, and the prevalence of ASes with
a small number of prefixes. Indeed the randomized address
mechanism make it unlikely that these ASes will target, or
will be targeted by, all other probe ASes.

A four-week window results in 25 % coverage. Doubling
this coverage requires a five times larger window (20 weeks),
which increases the risk of including topological changes
and stale data. However, we find that our metrics do not
significantly benefit from a larger window and we can sacrifice
coverage to minimize the impact of topological changes.

To highlight this, we use 24 weeks (= 6 months) of
traceroute data from August to December 2021 and window
sizes ranging from 4 to 24 weeks in four-week increments.
In addition, we verify the consistency of data over time by
computing distance values for each time window shifted in
one-week increments over the entire dataset. This process
results in 21 shifts for the four-week window and no shifts
for the 24-week window, since it already covers the entire
timespan. Each shift covers a different part of the data and
each window size covers a different amount (e.g., 16.7 % for
the four-week window). With this comparison, we found that
the start and size of the window have little influence on the
resulting value distribution. A longer window provides more
coverage, up to 50.72% in case of the 24-week window,
whereas the shorter four-week windows cover 25.35% of
probe-AS pairs on average. However, looking at the value
distributions of the distances for all window sizes in Figure 2
reveals that there is no significant difference. Each plot in
Figure 2 contains one CDF per shift (i.e., 21 CDFs for the
four-week window), with different colors to separate window
sizes. There is no conceivable change in terms of AS-path
lengths (Figure 2a) and only a slight, but negligible, difference
in case of IP hops (Figure 2b) and RTT (Figure 2c).

We therefore employ a four-week window for our experi-
ments as it minimizes the risk of including topological changes
while still resulting in a decent coverage and representative
distance distributions.

4) Building the Matrix: We can now compute distance
matrices from selected traceroutes. A distance matrix M is a

m Xm matrix, where m is the number of probe ASes. An entry
M, , represents the distance from AS x to AS y, where x and
y are indices, not AS numbers. The matrix is initially filled
with placeholders, indicating the absence of values. We then
iterate over the data window and fill the matrix by extracting
distances from traceroute results. To increase the amount of
filled entries in the matrix for AS-path length and IP hops,
sub-paths of each traceroute are also included. For example,
a traceroute A — B — C not only results in distances for
A — Band A — C, but also B — C. For RTT, this is not
possible as traceroute’s RTT values are always bound to the
source probe AS. If we obtain multiple distance values for the
same probe-AS pair, we include only the lowest one in the
distance matrix. Therefore, the distance matrices represent the
shortest distance observed between probe ASes.

Once the entire data window has been processed, we sym-
metrize the matrix by mirroring the contents of cells M, ,
and M, .. If both cells already contain values, the smaller
value is selected. Although traceroute results are generally not
symmetric at the IP level, coarser metrics, like the AS-path
length, are less impacted by this simplification.

In a final step, we remove rows and columns that have no
value. This can happen if there is no valid traceroute for a
probe AS within the data window.

Using a four-week window this process starts with 3607
(1657) probe ASes for IPv4 (IPv6) and finishes with 3550
(1609) ASes, resulting in a coverage of 25.62 % (20.54 %).

B. Sifting

The next step is to select probe ASes that are spread out
according to the distance matrix. We perform this filtering
process by iteratively removing the probe AS closest to all
others. The iteration stops once a user-defined number of ASes
is left. Closeness is defined by aggregating all distance values
of an AS into a single value. However, since the computed
matrices are sparse, the number of distance values may vary
drastically for each AS. In preliminary experiments we found
that traditional aggregators like average and median are not
suitable, mainly because they may be skewed by outliers
or produce incomparable aggregates for ASes with a very
different number of distances.
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Figure 3. The median and MAD evolution of all 21 data window shifts for increasing set sizes. The distance between probes decreases for all metrics with
a larger set size. The MAD range of the (c) RTT for the different window shifts stabilizes for sets with more than 500 probes.

We design our own aggregation function aiming to (1)
emphasize ASes that are very close to each other but not
favor ASes that are far from only a few ASes, (2) normalize
distance vectors, and (3) produce single comparable values.
For (1), we employ inverse distance values, thus highlighting
small distances and reducing variance for large ones. Then
for (2), we normalize distance vectors based on their value
distribution. Finally (3), we sum up the normalized inverse
distances to obtain an overall closeness score per probe AS.

Formally, let D be a vector of discrete distances from/to
a probe AS (RTT values are rounded to milliseconds) and
D,, the set of unique distance values. For each unique value
d € D,, we compute sg4, the inverse distance weighted by d’s
relative frequency in D:

1 ¢4

gﬁ )

Sq =

where cg is the number of times d occurs in D.
The final closeness score S for an AS is the sum of the
weighted inverse distances:

S:ZSd

deD,

2

A small score implies that the AS is far away to most ASes.
An AS with many small distances results in a high score.

C. Choosing a Suitable Set Size

The final step is to determine a suitable stopping criterion
for the above sifting procedure. We face another trade-off
where a large probe set may inherit the characteristics of the
total set, including its bias towards specific regions. A small set
may result in probes that are spread out, but might completely
miss desirable regions. To better understand the impact of
the size of the probe set, we compare the distributions of
the distance matrices obtained with different probe set sizes.
We use two metrics to characterize the distributions: the
median and the median absolute deviation (MAD). The median
indicates the center of a distribution, and the MAD quantifies
its dispersion. We compare distributions from all 21 shifted
four-week data windows computed in Section II-A3 and plot
the median and MAD values for different set sizes in Figure 3.
The evolution of the median for all three distances confirms

the effectiveness of our sifting procedure — a larger set includes
more ASes that are closer together, therefore the median
distance decreases. Due to the discrete nature of the AS-path
length (Figure 3a) and IP hops (Figure 3b), the MAD for these
metrics is rather flat and becomes unstable below 250 probes.
We therefore focus on the RTT distributions (Figure 3c) to
decide on a value, for which we also show the range of MAD
values for the different shifts on a secondary y-axis. The MAD
of the RTT stabilizes at a set size of about 500 probes and
above. Therefore, for our experiments we should employ a
probe set size greater than 500 and we decide to use a set size
equal to the limit given by Atlas, one thousand probes, which
is also a practical value for Atlas users.

III. EVALUATION

We evaluate the benefits of Metis by comparing it to Atlas’
“Worldwide” area selection (WW). We selected 1000 probes
with each selection method (WW and Metis with the three
different distance metrics) and ran traceroute measurements
towards 25 targets distributed all over the world. In order to
reduce dependency on the RIPE ecosystem, we choose M-
Lab [22] servers as measurement targets. We pick five targets
within five different regions (Africa, Asia/Oceania, Europe,
North America, South America). The decision maximizes
geographical distance, i.e., we use the locations of all servers
within a region and select the set of five locations that offers
the largest sum of pairwise distances between each other.
Since multiple servers can be present at a single geographical
location, we use the AS number as a tie breaker. This process
results in 25 servers from 23 distinct ASes — both the North
and the South American regions contain two servers from the
same AS — for IPv4. There are only two geographically distinct
locations available in Africa for IPv6, resulting in 22 servers
from 19 ASes — three servers in North America are in the
same AS and one AS is present in both Europe and South
America. Due to Atlas’ daily credit limit, the measurements
are spread out over four days, one day per selection method.

In the following sections we first inspect the selected probe
sets and their characteristics, both in terms of geographical
and topological diversity. Then we analyze the differences in
traceroute results, highlighting the topological coverage and
increased variety of the observed paths.
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A. Probe Selection

We first take a look at the geographical distribution of the
selected probes. Figure 4a shows the cumulative percentage
of probes per country where the maximum values stand for
the total number of countries represented by each probe
set. The plot is essentially a CDF with an absolute y-axis,
where the y-value indicates the number of countries and the
corresponding x-value shows the percentage of probes located
in each country. We plot markers for x-values larger than
2% to highlight the points in the tails. For reference we also
show Ref, the distribution of all 11655 active IPv4 probes.
All probes combined cover 168 countries, with Germany and
the United States containing 13.5% and 13.2% of probes
respectively. WW covers only 93 countries, the United States
account for 15.3% of selected probes and the top three
countries (United States, Germany, France) sum up to 36.6 %.
In contrast, all Metis selections provide better geographical
coverage, even though probe locations are not taken into
account by Metis. The best-performing metric in terms of
country distribution is RT7, which is expected since RTT
can be an indicator for physical distance. The RTT selection
improves the country coverage by 57.4% to a total of 148
countries. The outlier of the RTT selection is Russia with
11.5% of probes. The other two distance metrics improve
probe distribution across countries but at the expense of a
lower number of total countries. For example, using the AS-
path length selection Russia accounts for 7.8 % of probes, but
only 135 countries are covered in total.

A different way of comparing probe sets is by looking at
their distribution across the RIRs. Figure 4b shows the number
of probes per RIR for each selection. Ref* refers to the overall
Atlas distribution, proportionally scaled down to a set of 1000
probes. Since WW is a random sample from all Atlas probes,
the WW and Ref* distributions are almost identical. Both
show a strong focus on the RIPE and ARIN regions, whereas
the number of probes for AFRINIC and LACNIC are very
low. In fact, AFRINIC is only represented by 16 probes and
LACNIC by 19 probes in WW. Using the RTT selection, RIPE
and ARIN probes are substituted by probes in other regions,
effectively tripling the number of probes in these regions, and
also increasing the representation of APNIC by 38 %. Despite

these improvements, RIPE is still prevalent in all selections.
This can be attributed to the large number of Atlas probes in
the RIPE region. But a uniform distribution of probes over the
different RIRs is also not expected. As 39 % of active ASes
are indeed assigned in the RIPE region [23] we still expect
probe sets representing a global view of the Internet to have
a large proportion of RIPE probes.

To further investigate how the RIR distribution evolves for
smaller set sizes, Figure 4c illustrates the RIR distribution of
the RTT selection for different set sizes. The dashed lines
show the proportionally scaled Atlas distribution for each RIR,
and the solid lines show the distributions provided by the
RTT selection. Even for smaller set sizes, the RIPE region is
prevalent. While the Atlas distribution strongly favors ARIN,
and almost ignores AFRINIC and LACNIC (two dashed lines
close to the x-axis), the RTT selection keeps the representation
of AFRINIC, APNIC, and LACNIC close together up until
a set size of 500, before AFRINIC reaches a plateau and
the share of ARIN probes increases. This supports the fact
that Metis better balances between regions as it favors probe
diversity as opposed to Atlas’ inherent probe distribution.

In addition to the geographical distribution we also inspect
the topological distribution of the probes by looking at the
number of probe ASes contained in each set of selected probes.
Metis chooses one probe per AS by design, so we focus on the
WW selection. The Atlas selection contains probes from 569
unique ASes out of which 20.6 % have more than one probe.
The top ten ASes have ten or even more probes. While it may
be reasonable to select multiple probes in some large ASes,
this is a another challenge that raises new questions, such as,
how many and which probes to select from which AS.

B. Measurement Results

We now compare the traceroute results collected using the
four different probe selections. First, we look at the topology
covered by the paths found in traceroutes. Then, based on a
few representative results, we discuss changes in the observed
AS-path lengths, IP hops, and RTT.

We quantify the topological coverage of collected tracer-
outes by counting the unique number of ASes and IPs in the
traceroute results. For fairness and given the lower number
of unique probe ASes for WW, this analysis excludes the



1.0
0.8 5“J
w 0.6
=Y R
5 e
0.4
02 .....
0.0 2 4 6 8 10 005 10 15 20 25 30 0.0 100 200 300 400 500
AS-path length IP hops RTT (ms)
(a) AS-path length (b) IP hops (c) RTT

Figure 5. IPv4 measurement results for North America show that distance selections can (a) reduce the topological clustering between probes and targets

and increase distance in terms of (b) IP hops and (c) RTT.

N Ref* EEEN AS

—— Ref —— AS —— IP —— RTT
F us

800

600

#Countries
#Probes

B

o

o

200

0 5 10 15
Percentage of probes per country 0

AFRINIC

(a) Percentage of IPv6 probes per country

20 %
APNIC

(b) Number of IPv6 probes per RIR

BN P EER RTT EZZ WW B AS N 1P B RTT @23 Ww

0

A b /
ARIN LACNIC RIPE NCC IPv4 IPv6

(c) Average number of unique path ASes

Figure 6. All distance selections (a) increase the number of countries represented by IPv6 probes and (b) better balance RIR distribution compared to the
default Atlas selection. Metis’ selections increase the topology covered by the traceroutes as indicated by (c) the number of unique ASes visible on the paths.

probe ASes and only focuses on other ASes on the path.
Figure 6¢c shows the average number of unique ASes per
selection over all regions for IPv4 on the left. As expected,
using the AS-path length as distance metric maximizes the
number of visible ASes, hence producing an average increase
of 3.84 x compared to WW. The highest increase is in the
African region by 4.03 x, or 542 ASes more than WW, for a
total of 729 (up from 187) unique ASes visible on the paths.
Interestingly, the IP-hops and RTT selections also provide a
substantial increase of 3.1 x and 2.8 X over WW.

The improved topological coverage is also apparent in
the number of unique IPs seen on the paths. Although the
differences are less pronounced compared to the number of
ASes, using the IP-hops selection produces an average increase
of 23.22% over WW. The maximum increase is seen in
Europe with 24.97%, or 1319 IPs more than WW, for a
total of 6586 (up from 5269) unique IPs visible. Again, the
other distance metrics are also providing substantial coverage
improvements, namely, 18.37 % and 14.66 % for the AS-path
length and RTT selections respectively.

Next, we analyze the distributions of AS-path length, IP
hops, and RTT of traceroutes towards the M-Lab servers. Due
to page limitation we present only results for servers in the
North American region (Figure 5) but the same conclusions
are drawn for other regions. Figure 5a depicts the AS-path
length distribution for all traceroutes towards the five targets
in North America. Most notably, all Metis selections increase
the overall AS-path lengths. The high probe concentration of

WW in the North American region results in very short paths.
We observe only 2 ASes for 34 % of paths (i.e., the probe and
target AS) and 75 % have length 3 or less. All Metis selections
manage to reduce the fraction of very short paths. The AS-
path length selection results in only 5 % of AS-path with length
equal to 2. In addition, the AS-path length selection increases
the average path length to 4.5, which is almost equal to the
global average of 4.4 as observed in BGP data [23]. In contrast,
the WW selection provides an average AS-path length of 3.5,
falling one hop short. For all regions, the observed average
AS-path length of the Metis selections is consistently closer
to the global average than the WW selection, which is an
evidence that paths collected with Metis better resemble the
global Internet.

For the RTT distribution (Figure 5c¢), comparing the median
values, WW is the lowest with 133 ms, the RTT selection is
the highest with 159 ms, closely followed by IP hops and the
AS-path length selections 152ms and 151 ms. Overall, the
Metis selections produce up to 10 % less low RTTs (< 100 ms)
which is expected given that RTT is tightly related to ge-
ographical distances, that inter-continental RTTs are usually
over 100ms [6], [24], and that these experiments focus on
worldwide views. The IP-hops selection slightly increases the
number of observed IP hops (Figure 5b), as expected, although
there is no significant change for this metric. In summary,
using specific distance metrics enables a better coverage of the
topology, as seen by increased AS- and IP-path lengths, and a
better geographical coverage as shown by the RTT increase as



well as probes’ country and RIR distribution. In addition, the
flexibility of Metis allows the user to explore different distance
metrics that best suit their use case.

IV. IPv6 MEASUREMENTS

We also evaluated Metis with IPv6 probes. The total number
of IPv6 probes in Atlas is 5502, spread over 1657 ASes
and 115 countries. We, again, conducted experiments with
selections of 1000 probes. The distribution of probes per
country for each selection are analogous to IPv4 (Figure 6a).
All Metis selections result in more diverse sets of countries
compared to WW, for instance, RTT improves the number of
covered countries by 45% to a total of 103 (up from 71).
Furthermore, WW picks over 50 % of probes in only three
countries (Germany, United States, France), whereas the RTT
selection manages to spread the same fraction of probes over
eleven countries.

The RIR distribution is also similar to IPv4, with only
subtle differences (Figure 6b). First, the number of probes for
AFRINIC and LACNIC is even less, both for the WW and
Metis selections. For the default Atlas selection, AFRINIC is
only represented by five probes, LACNIC by 15. The RTT
selection is able to improve that to 24 probes for AFRINIC
and 47 probes for LACNIC. While these numbers might seem
low, they already contain 50 % of all AFRINIC IPv6 probes
(48 probes) and 45 % of LACNIC IPv6 probes (104 probes).
Another difference to IPv4 is that IPv6 favors more ARIN
probes, although RIPE is still prevalent in the sets with roughly
two thirds of probes.

The smaller probe pool also has an influence on the number
of unique source ASes covered by the WW set. Only 358
distinct ASes are selected, out of which 23.7 % contain more
than one probe. In addition, the first ten ASes represent over
40 % of probes.

Looking at the unique ASes visible on the paths in Fig-
ure 6¢, we observe that all Metis selections are able to at least
double the number of ASes compared to WW.

The traceroute results are overall more homogeneous —
possibly attributed to the fact that the selection of 1000 probes
represents a large share of all available probes. Indeed, since
Metis selects one probe per AS and the number of available
IPv6 probe ASes is even smaller, the Metis selections share
62.5 % of probe ASes. As a consequence, there are almost no
discernible differences between the Metis selections in terms
of RTT, and all of them provide a slightly increased median
of 275 ms to 278 ms, compared to 254 ms for WW. In terms
of AS-path length, all Metis selections feature less short paths
and come closer to the average path length observed in global
routing [23].

V. RIPE ATLAS PROBE PLACEMENT

The above experiments demonstrate that Metis identifies
distant sets of Atlas probes. In this section, we apply the same
method to address a related problem, the identification of ASes
on the Internet that are distant from Atlas probes. The goal
here is different, we are aiming at revealing locations where

Atlas probes are needed, thus providing help for a better probe
deployment [25].

This application requires some adjustments to the distance
matrices. First, we compute distance matrices from all results
of the topology measurements, including traceroutes towards
non-probe ASes. Next, we keep only the discrete distance
vectors of non-probe ASes. Each vector represents the dis-
tances from multiple probe ASes to the specific non-probe
AS. Finally, in order to make relevant recommendations we
only consider ASes that were reached by at least 50 % of the
probe ASes. The sifting procedure is unchanged but we stop
it after the first iteration, then report ASes with a low score.

For this analysis we also tuned the time window differently.
Due to the random selection of targets in the topology mea-
surements, ASes with many announced IP prefixes are more
likely to appear in the distance matrices. Consequently, for a
four-week window the distance matrices contain mainly large
non-probe ASes with a median number of prefixes equal to
216. In contrast, using a longer time window of 24 weeks we
collect traceroutes from more ASes with fewer prefixes, hence
the median number of prefixes for non-probe ASes is reduced
to 48. Therefore, in this section we employ a 24-weeks time
window, which results in a total of 67420 non-probe ASes
targeted by traceroutes from which 2990 remain after applying
the minimum threshold of 1804 distance values (50 % of the
3607 probe ASes). Computed scores are available at [12].

The following analysis focuses on the 100 ASes with the
lowest S score (i.e., farther from Atlas), hereafter referred to
as recommendations. The distribution of recommendations in
terms of RIRs and countries is shown in Figure 7. There is
a noticeable difference in recommendations depending on the
distance metric. Especially AS-path length (Figures 7a and
7b) and RTT (Figures 7a and 7c) recommend very different
regions. These differences confirm that AS-path length and
RTT do not necessarily correlate: An AS may be reached by
a long AS path, but with a small RTT. The recommendations
in terms of AS-path length are mostly focused on the APNIC
region with 62 ASes, followed by LACNIC (18) and RIPE
(15). Many of the APNIC ASes are located in China (26)
followed by India (13) highlighting the topological distance
of these countries from existing probes. The average AS-path
length to the first 100 recommendations is 5.6 which is much
larger than the average observed in global routing [23].

Using RTT as the distance metric shifts the focus to the
LACNIC region (Figure 7a). 69 recommendations are located
in LACNIC, followed by 28 in APNIC. Notably, there are
no ASes from neither ARIN nor RIPE in the top 100 rec-
ommendations. This is somewhat expected as the existing
Atlas probes already have a strong presence in these regions
and RTT values are related to geographical distances. Further
inspection of the LACNIC recommendations shows that the
majority of ASes are located in Brazil (52), followed by
Argentina (13). Therefore, the South American region, and
Brazil in particular, offers the potential of increasing Atlas’
RTT diversity. The top 100 recommendations show an average
RTT of 244 ms, with a maximum of 319 ms.
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Figure 7. The distribution of the top 100 recommendations in terms of (a) RIR distribution show a clear tendency towards APNIC and LACNIC. The country
distribution for the (b) AS-path length selection reveals that the recommendations are mainly in China and India, whereas the (c) RTT selection recommends

placement in Brazil.

Finally, there is a noticeable lack of recommendations in
the AFRINIC region. We attribute this to the fact that there
are a lot less active ASes in the AFRINIC region (less than
1600 at time of writing, compared to, e.g., almost 11 000 for
LACNIC [23]), resulting in a smaller footprint in the topology
measurements.

VI. RELATED WORK

The uneven probe distribution of Atlas has been mentioned
multiple times in the literature [4]-[6]. Notably, in 2015 18 %
of Atlas probes were hosted by only ten ASes [4]. More
recently a comparison with a larger measurement platform
reveals the lack of Atlas probe in countries of South America,
Africa, and Asia [6] which corroborate with our findings.

Aware of these limitations different approaches have been
used to work with large-scale Atlas data. Numerous studies
derive Internet characteristics by selecting probes per region
[2], [3], [26], or using all Atlas probes worldwide [27], [28]
and acknowledging for potential bias. A few other studies
are carefully selecting probes to achieve probe diversity while
maintaining a broad geographic coverage [9], or normalizing
data collected with Atlas to address its bias [8]. All these
studies could benefits from our probe selection framework.

Similar to our work, a probe selection based on paths
similarities is proposed in [29]. The probe similarity metric
of [29] is however much more rigid than our approach using
a user-given distance metric since it is based solely on IP paths
similarities. In addition, the flexibility of our approach allows
us to plan probe deployment which is not possible with the
probe similarity metric.

VII. CONCLUSION

This paper demonstrates the geographical and topological
disparities of Atlas’ default probe selection. To mitigate this
we develop a flexible distance-based probe selection, Metis,
and show its benefits for worldwide probe selection. Overall,
Metis enables a better use of Atlas and may become even
more valuable in the future as Atlas users have to pick a
limited number of probes from an ever growing set of probes.
Although the presented experiments focus on worldwide se-
lections, the proposed approach is also applicable to smaller
regions, for example, selecting a set of probes from a single

continent or country. But in this case users should adjust
the number of selected probes accordingly to the number of
available probe in the region.

In addition, Metis provides recommendations for the de-
ployment of new Atlas probes which has been rarely addressed
in the literature. We hope this work can initiate more research
efforts in this direction hence improving the development of
Atlas and related measurement platforms.

In future work, we will explore the challenges of applying
Metis to other platforms, for example, routing data collection
systems such as Route Views and RIS.
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