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Abstract. In this paper we study the use of pseudorandom test tech-
niques for linear and nonlinear devices, in particular Micro Electro Me-
chanical Systems (MEMS). These test techniques lead to practical Built-
In-Self-Test techniques (BIST). We will first present the pseudorandom
test technique for Linear Time Invariant (LTI) systems. Next, we will
illustrate and evaluate the application of these techniques for weakly
nonlinear, purely nonlinear and strongly nonlinear devices.

1 Introduction

Although MEMS have been around since the early 80s, most research has fo-
cused on fabrication technology, design and packaging. Therefore, unlike other
areas of test research, the MEMS test area is immature and not practical for
mass production. Current test and characterization practices include mainly vi-
bration and shock techniques where mechanical stimuli are generated using an
off-chip input physical module. These current techniques involve considerable
difficulties. For example, tests involving mechanical stimuli require precision
shaking, proper alignment of devices in fixtures, and minimization of fixture
resonance [1].Temperature control is needed as well for accurate testing and
calibration of commercial microsensors such as accelerometers [2]. The work in
[1] and [2] shows the sophistication that accompanies inertial MEMS testing
when actuated using an off-chip input physical module. This was one of the
main reasons to integrate on-chip the input physical module and then contem-
plate Built-In Self-Test for MEMS which is very practical for mass production
and in-the-field monitoring.

In microsystem testing, defects and faults, test metrics, and fault simulation
practices keep the same definition as for analog ICs [3]. However microsystems
sustain more failure mechanisms because of micromachining, and their fault
models are more sophisticated due to the multiple energy domains, the large
number of basic design elements, the new technological defects and operational
failures, and the enormous possible faults which turn structural testing very
much device dependent. Functional testing may be more practical than struc-
tural testing. This is the reason why only functional testing is today considered
during production. In some cases it is possible to apply a simple electrical test
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signal (pulse or step) to stimulate the device under test. The transducer response
is next analyzed off-chip. This is not enough for performing on-chip a functional
analysis that fully tests the device and that can be exploited for other tasks
such as manufacturing testing [4]. Pseudorandom (PR) testing of mixed-signal
circuits has been introduced in [5]. An earlier work based on pulse-like excita-
tion and subsequent analysis of the transient response of a mixed signal circuit
is presented in [6]. In [7], an algorithm for test signature generation based on
sensitivity analysis is presented. However, none of these works includes a study
on the circuit implementation of the BIST technique and a comparison between
different Impulse Response (IR) measurement methods taking into considera-
tion noise and nonlinear distortions. In addition, none of these previous works
consider the extension to nonlinear systems.

Several authors have considered self-test techniques for MEMS, in particular
for accelerometers as in [8], [9] and [10]. Dedicated mechanical beams are used to
generate an electrostatic force that mimics an external acceleration. The same
idea was introduced in commercial accelerometers [11]. Alternative methods of
self-test stimuli generation have been considered (e.g. electrothermal stimuli in
[4], [9], and [12]. All these approaches apply electrical test pulses to stimulate
the device. The transducer response is next analyzed off-chip. The work in [8]
suggests computer-controlled verification and calibration when a Digital Signal
Processor (DSP) is available on chip. The differential BIST presented in [13]
addresses some limitations of previous self-test approaches but is only applicable
for structural testing of differential sensors. A similar approach is presented in
[14]. In both cases, functional testing is not considered.

It is well known that the impulse response of a LTI system provides enough
information about the system functional evaluation. In [15] and [16] we have
proposed a complete IR-based BIST technique for linear MEMS. The Maxi-
mal Length Sequence (MLS or m-sequence) method was used for finding the
IR of linear MEMS, without any consideration of nonlinear and noise distor-
tions that can exist in the measurement circuitry. In this chapter, different IR
measurement techniques are applied to a commercial MEMS accelerometer in
the presence of weak nonlinearities. They are then compared according to their
immunity to nonlinear and noise distortions. The pseudorandom test methods
prove high suitability for BIST implementation, and good immunity to noise
and nonlinear distortion. Especially the Inverse-Repeat Sequence (IRS) pseudo-
random technique which is used here for the first time in analog circuit testing.

Next, the pseudorandom method is applied for the case of pure nonlinear
systems. Here, a microbeam MEMS with electrothermal excitation and piezore-
sistive detection is used as a case study. Finally, the pseudorandom method will
be generalized for testing any nonlinear system. While considering nonlinear
systems, the results of the pseudorandom method will be compared with the
Volterra kernel coefficients used to model nonlinear systems.



On-chip Pseudorandom Testing for Linear and Nonlinear MEMS 3

2 Linear pseudorandom test method

In [15] we have described the MEMS pseudorandom test technique. The ar-
chitecture of the test approach is shown in Figure 1. The LFSR (Linear Feed-
back Shift Register) generates a periodic two-level deterministic MLS of length
L =2™ — 1, where m is an integer denoting the order of the sequence. A 1-bit
DAC is used to verify the values of the two-level signal at the output of the
digital circuit of the LFSR. The 1-bit DAC is necessary for generation of a low
noise analog two-level signal at the input of the DUT. Without the use of the
1-bit DAC we will need to eliminate the input signal noise by performing more
averages at the ouput.

MLS SE < | AMSLTI v
Generator DAC cuT —| ADC

Correlator

hk)

Signature Analyzer pecsion
EAEWTE ARELZEE Faulty or Fault-free Circuit

Fig. 1. Block diagram of the test approach.

The output of an LTI system is y(k) = x(k) * h(k), where x(k) is the input
signal and h(k) is the impulse response of the system. The input/output cross-
correlation ¢, (k) can be written in terms of the convolution as:

Puy (k) = y(k) * (k)
= h(k) * (z(k) * z(—k))
= h(k) * ¢pu(k)
= Gay(k) = (k) if ¢au(k) = 6(k) (1)

An important property of an MLS is that its autocorrelation function is, except
for a small DC error, an impulse that can be represented by the Dirac delta
function. We can see from Equation (1) that in the case of MLS-based mea-
surements, crosscorrelating the system input and output sequences gives the
IR. The cross-correlation operation in the case of a discrete sequence is defined
by:

L-1
Guy(K) = 7 D22~ ) y()) &)
3=0

Since the elements of x(k) are all 1, only additions and subtractions are
required to perform the multiplication in the above correlation function, which
turns the design less complex and decrease the estimation period. To obtain
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the k' component h(k) of the impulse response, we can proceed, according to
Equation (2), as shown in Figure 2. Each sample of the output sequence y(j)
is multiplied by 1 or —1 by means of the multiplexer unit (MUX) controlled by
the input sequence x(j — k), and the result is added to the sum stored in the
accumulator. The value obtained at the end of the calculation loop is divided
by L using a shifter.

x(j-k)

Fig. 2. Simplified Correlation Cell (SCC).

The first m components of the impulse response (h(k), k =0 tom —1) can
be obtained by the scheme shown in Figure 3.

LFSR
®
m m n+1 n 1

xk-1) x(k-m+1)
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Comparison
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Fig. 3. BIST architecture.

The on-chip implementation shown above does not give the overall impulse
response but only the first m components [15],[16]. Such information can be ex-
ploited as a system pattern (test signature) that can be used for fault detection.
If a larger number of components is demanded, more sophisticated algorithms
can be used which would result in increased silicon overhead. In [16], we map
specifications from the transfer function space to the impulse response space us-
ing Monte Carlo simulations. Then we perform a sensitivity analysis to choose
the impulse response samples with highest sensitivity to faults, thus, forming
the signature that permits the best fault coverage. These samples form the test
signature to be compared with the tolerance range obtained by the Monte Carlo
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simulations. According with this comparison the DUT is classified as faulty or
not.

3 Case-study: MEMS accelerometer

The measurement system in Figure 4 has been designed to stimulate the com-
mercialized MEMS accelerometer ADXL103 [17]. The BIST circuit of Figure 3
is implemented in Labview where stimulus generation and response analysis
take place.

. Test Signal
Labview

NIPCI-6115

Fig. 4. Schematic representation of the measurement setup.

Data Acquisition

In Labview the PR test signal is generated and low pass filtered to eliminate
the high slew rate represented by the transitions between the different levels of
the PR sequence. Without the low pass filtering, the high frequency components
due to high slew rates provoke nonlinear distortions and causes artifacts (spikes)
in the measurements [18]. Digital low pass filtering was performed using a 5th
order Kaiser-Bessel window FIR filter which is usually employed to smooth
signals that contain discontinuities. In the frequency domain, this is translated
by side lobe attenuation. The filtered PR signal is then applied through the
data acquisition card NI PCI-6115 to the ADXL103.

The output signal is digitized in the 12-bit ADC at the input of the NI
PCI-6115 card and entered to Matlab where signal processing is done to elim-
inate noise by averaging and calculate the impulse response components by
crosscorrelating the input and output signal.

The die photo of ADXL103 sensor region is shown in Figure 5.

The block diagram of the ADXL103 measurement system is shown in Fig-
ure 6. The activation of the digital input self-test pin (ST) by a voltage pulse
induces an electrostatic force which displaces the seismic mass. The dynamic
response at the output X,,; is analyzed off-chip to verify the functionality of
the ADXL103.

As given by the designer [17], the transfer function of the ADXL103, for a
supply voltage VDD =5V, is:

- Xout - 0.011
"~ Acceleration  8.374 x 10~1052 + 5.788 x 1065+ 1

F(s) mV/g  (3)
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Fig. 5. Die photo of ADXL103 sensor region (4x3 self-test cells and 42 sense cells).
(Source: Analog Devices; reprinted with permission.)

Vgp /2
Vpp /2

Oscillator

Acceleration  Self-test
(ST)

Synchronous
demodulator

Fig. 6. Basic block diagram of the ADXL103 measurement system. (Source: Analog
Devices; reprinted with permission.)

where g is the unit of acceleration at the input of the accelerometer
(1g ~ 9.8m/s), and X,,; is the output voltage. According to Equation (3),
the theoretical impulse and frequency responses of the ADXL103 are as shown
in Figure 7.

For the length of the LFSR and the value of the sampling frequency, we
must consider two main conditions. Firstly, if an m-sequence is mapped to an
analog time-varying waveform, by mapping each binary ‘0’ to ‘-1’ and each bi-
nary ‘1’ to ‘4+1’, then the autocorrelation function will be as shown in Figure 8.
Unity for zero delay and —1/(2m — 1) for any delay greater that one sample.
We can notice that for a long MLS at small T, (sampling period) the autocor-
relation is almost an impulse function of period = LT,. This property is used in
Equation (1) to prove that the IR of a DUT equals the input/output crosscor-
relation when the test signal is an MLS. According to this MLS property, the
value of the multiplication of the length of the sequence by the sampling period
must be greater than the time needed by the impulse response to decay to zero.
Otherwise we will have impulse response aliasing. For our case, the length of
the sequence is 2'2 — 1 = 4095, the sampling period is 107° sec, and the decay
time is approximately 1.5 ms (this can be observed on Figure 7(a)). So, the
first condition is satisfied since 4095 x 107 = 40.95 ms is greater that 1.5 ms.
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Fig. 7. (a) Impulse response, (b) frequency response of the ADXL103 model.
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Fig. 8. Autocorrelation of a maximal length sequence represented by 1 and -1.

Secondly, the power spectrum of the MLS is a discrete spectrum whose up-
per 3 dB roll-off frequency is about 0.45 f.. By adjusting the clock frequency,
a broadband signal over a wide frequency range can be generated. According
to this MLS property, the value of the sampling frequency must be chosen
such that 0.45 f. is greater than the bandwidth of the DUT. Otherwise the
spectrum of the MLS will not be flat in the bandwidth of the DUT, which
means that the MLS cannot be considered as a pseudorandom noise with re-
spect to the DUT. In other words, the sampling frequency is not large enough
(i.e. the sampling period T, is not small enough) to approximate the MLS au-
tocorrelation function (Figure 8) to an impulse train. In our case, the sampling
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frequency is 100 kHz and the bandwidth of the accelerometer is less than 10 kHz
(this can be observed in Figure 7(b)). So the second condition is satisfied since
0.45x 100 kHz > 10 kHz. It is better to choose a very high sampling frequency
to avoid spectrum aliasing. However, for a certain LFSR length, the sampling
frequency has an upper limit restricted by the first condition. Figure 9 shows ex-
perimental results of the application of the PR technique. Here, the impulse and
frequency responses are unitless because both the input stimulus (at the Self-
Test pin) and the output response are electric and of the same units (V). Using
the measurement setup of Figure 4, a 12-bit LFSR and a sampling frequency of
100 kHz (much larger than the bandwidth of the ADXL103) are programmed
by Labview to generate an MLS stimulus at 5V (the dynamic range of the ac-
celerometer when stimulated through its Self-Test input). The analog output of
the ADXL103 is then digitized by the 12-bit ADC of the data acquisition card.
Notice that this ADC plays the role of the ADC of the PR BIST in Figure 1.
Finally the IR is calculated as the input/output crosscorrelation.

%107 Impulse response Transfer function

T T T
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Fig. 9. Impulse and frequency responses of the ADXL103 circuit using the pseudo
random impulse measurement method.

Figure 9 shows the IR and TF after 10 averages of the output signal. Av-
eraging is used to eliminate noise. To realize 10 averages, a stimulation time of
11(4095 x 107°) = 0.45 sec is needed. The multiplication of the MLS period
by 11 rather than 10 is because we always use the first MLS to stabilize the
accelerometer, and thus the measurement starts from the second sequence.

In fact, the impulse and frequency responses of the accelerometer when
stimulated mechanically are highly correlated with the impulse and frequency
responses when it is stimulated electrically through its self-test input. This is
because the two responses represent the reaction of the same structure to a
moving force, whether this force is mechanical or electrostatic. Due to this high
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correlation, the impulse and frequency responses that we have measured by
stimulating the accelerometer electrically are relevant to characterization.

The gain difference between the impulse responses of Figure 7 and Figure 9
is due to the fact that the ADXL103 has lower sensitivity when stimulated artifi-
cially (at its Self-Test input pin). This difference can be calibrated. However we
can notice by comparing Figure 7 and Figure 9 that using the PR BIST we can
evaluate a precise impulse response. This precision is demonstrated through the
transfer function (Figure 9) which shows the same resonant frequency, quality
factor, bandwidth, and roll-off factor.

Notice that the IR of Figure 9 is in fact composed of 4095 samples since it
is the output of the crosscorrelation operation between the 4095-sample MLS
and its corresponding digitized output (in Figure 9, the IR is just zoomed in to
275 samples). To calculate the 4095-sample impulse response according to the
PR BIST implementation of Figure 3, we would need to have 4095 SCCs and
flip-flops. Moreover, in a BIST environment, it is too complex to implement a
comparator that verifies the values of 4095 samples, each with 12 bits precision
(the precision of the ADC of the data acquisition card). All this may increase
the test overhead to an unacceptable value.

But in fact, only several highly fault sensitive samples (test signature) are
necessary to be calculated by the BIST. A similar study to that we have pre-
sented in [16] can be applied using Monte Carlo simulations to form the test
signature after a sensitivity analysis. In this way we can first derive the test
signature tolerance ranges out of the specification tolerance ranges. Then, we
can inject parametric variations to calculate the test metrics [3]. Finally, we
can optimize the length of the MLS stimulus and the bit-precision of the BIST
digital circuit.

4 Weakly nonlinear systems

In real life, there exist always some sources of nonlinear distortion. Here, the
term “weakly nonlinear system” is used. The sources of nonlinear distortion
can be due to MEMS nonidealities, due the presence of an ADC that normally
has harmonic and intermodulation nonlinear distortions, and due to distortion
in the analog part of the measurement circuit. Different IR measurement tech-
niques are more or less affected by distortion according to the test signal and
signal processing algorithms they use. In Section 4.1 we list different IR mea-
surement techniques that are compared in Section 4.4 according to their signal
to noise ratio SNR and distortion immunity I; described in Section 4.2. In
Section 4.3 we describe the IRS pseudorandom test technique.

4.1 Measurement techniques

Theoretically, the IR of a DUT is simply the output that corresponds to a
stimulus equal to a Dirac delta function §(¢). However, this is not practical
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since d(t) is a mathematical function that can not be generated physically.
Even if it is approximately generated, its high amplitude drives the circuit to
work outside its dynamic range and its short duration leads to a low signal to
noise ratio. Several techniques have been proposed to measure the IR response
using signal processing. These can be classified into four classes:

— White Noise technique where the stimulus is a white noise and the IR is
calculated by finding the DUT input/output crosscorrelation.

— Time-delay Spectrometry (TDS) [19] like the linear sine sweep and the log-
arithmic sine sweep [20] methods. In the linear sine sweep the IR is usually
calculated by the inverse Fourier transform of the output signal. In the loga-
rithmic sine sweep it is usually calculated by the deconvolution of the output
with respect to the input using an inverse filter.

— Pulse Excitation (PE) technique which uses a single short duration pulse
excitation signal, the IR is directly the corresponding output of the DUT.

— Pseudo Random (PR) technique. The test excitation signal is a pseudo ran-
dom white noise like the MLS and the IRS. The IR is then found using the
input/output crosscorrelation.

Among the above four techniques the PE and the PR are the most suitable
for BIST implementation. In PE, the pulse signal generator can be implemented
easily and no calculation is needed to find the IR. The problem of this method
is its low SNR resulting from the low energy of the exciting signal. Averaging
the output signal can be a solution for improving the SNR. In PR, the test
signal (MLS or IRS) generator can be implemented easily using an LFSR, and
the input/output correlation can be simply implemented using SCC. However,
this is not the case of the white noise technique where the input/output cross-
correlation needs hardware to carry out all the multiplication operations. This
is why it is less suitable for a BIST implementation. TDS techniques are less
suitable for BIST implementation because of the complexity of the sine sweep
generator and of the inverse Fourier transform calculator [19] or the inverse
filter needed to perform the deconvolution of the output signal with respect to
the input [20].

4.2 Distortion immunity

Any weakly nonlinear system can be modeled by the nonlinear model used by
[21] and shown in Figure 10.

The distortion error component e(k) can be calculated by subtracting the
ideal IR h(k) from the distorted one h4(k). A memoryless r** — order nonlin-
earity d{.} can be written as:

d{z(k)} = Aalzs (k)] (4)

where Ay sets the amplitude of the nonlinearity.
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Fig. 10. Nonlinear system modeling.

In general the error due to nonlinearity contains a linear component e;(k)
identical in shape to the linear impulse response of the system, and a non-
linear component e, (k). It is the nonlinear component e,;(k) which causes
the distortion. The linear component e;(k) represents only a gain error g in
the measurement. e,;(k) can be extracted from e(k) according to the following
equation:

ent = e(k) — g - h(k) (5)

ey is minimized by setting the gain error g to
_ Sio e(k) (k) 6
9= -1, (6)

r—o h*(k)

where L is the number of samples of IR, Zﬁ;ol e(k) h(k) represents the energy
correlated between e(k) and h(k), and Zé;é h2(k) is the total energy of h(k).

The distortion immunity I; of the impulse response measurement is then cal-
culated as the ratio of the linear impulse response energy to nonlinear error
energy [21] as follows:

] .

I; =10 logyg l 2L
ko e (k)

Distortion immunity is an important performance parameter for evaluating
an IR measurement technique. But measurement environments suffer both non-
linear distortion and noise. So immunity to noise must be considered as well. In
Section 4.4, the distortion and noise immunities are evaluated for each method.
Finally, the best method is the one having the best immunity to distortion and
noise.

4.3 Inverse-Repeat Sequence technique

Consider a periodic binary signal z(k) suitable for impulse response measure-
ment, where the second half of the sequence is the exact inverse of the first half,
that is:

z(k+ L) = —x(k) (8)
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The period of 2L of such a sequence will always contain an even number of
samples. It is proved in [21] that all even-order autocorrelations (r even) are
exactly zero. Such a sequence therefore possesses complete immunity to even-
order nonlinearity after cross correlation. Due to the anti-symmetry in x(k)
the first order autocorrelation will also possess anti-symmetry about L, that
is, ¢1(k) = —¢1(k + L). A signal that satisfies these conditions is the so-called
Inverse-Repeat Sequence (IRS), obtained from two periods of MLS s(k) such
that the next period is inverted.

x(k) = s(k) neven,0 <k <2L

= —s(k) nodd,0 <k < 2L (9)

where L is the period of the generating MLS (Note that the IRS period is 2L
which doubles the test time). The first-order autocorrelation of an IRS (¢rs)
is related to the corresponding signal for the generating MLS by the following
expression.

2L—1
brrs(k) = ﬁ > o) alh )

= édumrs(k), k even
= —¢mrs(k), k odd

(="
=0(k) 1 0(k—L), 0<k<2L (10)
clearly showing anti-symmetry about L.

By exciting a linear system with an IRS we obtain the impulse response of
the system in the same way that we would if using an MLS excitation. The IRS
is generated using an LFSR, and since it is a 2-level sequence the input/output
crosscorrelation can be done using the SCC blocks. So the same BIST as the
MLS can be used for the IRS technique.

4.4 Comparison between PE and PR techniques

For each of PE, MLS and IRS techniques we have used the model of Figure 10
to calculate the error signal e(k). Once e(k) is found, the distortion immunity
I; can be calculated using Equations (5), (6) and (7). Table 1 shows distor-
tion immunities of each of the three techniques for distortion orders from 2 to
5. The amplitude of the excitation signal is 20 dBmV and that of distortion
is Ag = —20 dBmV . The commercial MEMS accelerometer ADXL105 from
Analog Devices is taken as a DUT.
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The last two columns of Table 1 show that IRS has total immunity advantage
over both MLS and PE, and MLS has total immunity advantage over PE. Notice
that for even-order nonlinearities IRS has a very high immunity advantage over
MLS (235.6 dB at the second-order nonlinearity and 79.3 dB at the fourth-
order nonlinearity). However only approximately 3 dB of immunity advantage
can be offered by the IRS for the case of odd-order nonlinearity. So, the IRS
appears more interesting when testing a DUT with even-order nonlinearities.
However, in the presence of just odd-order nonlinearity, choosing the MLS is
better because it is simpler, and the 3 dB of immunity advantage offered by the
IRS can be compensated by a single averaging of the output sequence in the
case of an MLS input. The presence of only odd-order nonlinearities is typical of
systems that have odd symmetry, such as “differential” or “balanced” systems.

Noise
Distortion| Distortion immunity and
order (dB) distortion immunity
r advantage of
14(PE)|14(MLS)|I4(IRS)|M LSover PE|IRSover M LS
2 41.4 16.1 248.7 7.7 235.6
3 63.9 22.1 23.3 12.1 3.6
4 86.4 22.6 251.7 11.84 79.3
5 109.7 25.1 28.1 11.9 3.7

Table 1. Comparison between the PE, MLS and IRS test techniques.

5 Purely nonlinear systems

In general, purely nonlinear systems can be modeled by the Hammerstein model
shown in Figure 11. The term “purely nonlinear” stands for the absence of any
linear behavior. This is caused by the nonlinear function at the input of the
dynamic linear block.

x(k)

—

Static w(k) Dynamic y(k)
nonlinear linear A(k)

Fig. 11. Hammerstein model.

As case study of a purely nonlinear system, we consider a basic cantilever
MEMS with electrothermal stimulation and piezoresistive detection. Figure 12
shows the image of a chip containing three microbeams that have been fabri-
cated in a 0.8um CMOS bulk micromachining technology. The surface of each
cantilever is covered with heating resistors made of polysilicon. The heating of
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the cantilever causes it to bend, and the actual deflection is measured by means
of piezoresistors placed at the anchor side of the cantilevers. For each cantilever,
a Wheatstone bridge is used for measurement.

Fig. 12. Image of a fabricated microstructure.

The average temperature T,,, of the MEMS structure depends on the injected
thermal power Py, that is a function of the voltage V; applied on the heating
resistance Ry according to:

Pth = (11)

In this application the presence of an electrothermal coupling makes the circuit
purely nonlinear. This is because of the squaring function at the input of the
model, represented by Equation (11). The nonlinearity is thus static and of ond
order. According to Hammerstein model, the dynamic linear part is the linear
IR of the suspended microbeam, and the static nonlinear part corresponds to
the squaring function induced by electrothermal excitation. The pseudorandom
test introduced in Section 2 is not applicable for a purely 2" order nonlinear
system. For example, if we stimulate the microbeam by an MLS with 1 and —1
levels, M LS(1,—1), the sequence will be squared by the electrothermal excitation
squaring function resulting in a DC signal at the input of the linear part. Of
course, a DC signal is not sufficient to stimulate a linear system with memory.

To avoid the effect of squaring, a modified binary MLS with 0 and 1 lev-
els, MLSg,1), can be used. Its autocorrelation can be deduced from that of
MLS 1y according to the following:

MLS1y(k) = (MLSn,—1y(k)+1)/2 for k=][0,L—1]

¢a,-n(k)  L—k (k)  L—k
= don(k) = =+ T~ (4)+ 1L

For x = MLS() and k = [0, L — 1], if we substitute Equation (12) in
Equation (1) we obtain:

(12)

Gzy(k) = h(k) * { + —
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hk) 1
= +12h(i) — =Y h(i) (k—i) (13)

Equation (13) shows how h(k) can be extracted out of ¢, (k) when an
MLS g, is used. This also means that ¢,,(k) and h(k) are highly correlated
which permits to form the signature in the crosscorrelation space rather than the
impulse response space. This modification can be generalized. According to the
Hammerstein model in Figure 11, once z(k) is chosen such that z(k) = w(k),
the crosscorrelation of z(k) and y(k) can be derived as function of h(k) as
in Equation (13). In the case of the microbeam used in our case study, h(k)
is the IR of the linear part of its model. The linear part corresponds to the
microbeam without considering an electrothermal excitation. Figure 13 shows
the calculated impulse response h(k) of the microbeam using Equation (13).
Notice the resemblance between h(k) and the diagonal of the 2"¢ Volterra kernel
in Figure 14. Volterra kernels are functions used to model nonlinear systems [22]
and we will use them in the next Section.

Amplitude (arbitrary units)
o

10 20 30 40 50 60
Sample number

Fig. 13. IR of the microbeam.
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Fig. 14. 2" Volterra kernels of the microbeam.
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Therefore, for MEMS that can be modeled by the Hammerstein model,
there is no need of sophisticated nonlinear modeling since the same results can
be obtained with a simple modification of the test signal in the proposed BIST.

6 Strongly nonlinear systems

Here we consider the nonlinear systems that cannot be modeled according to
the simple Hammerstein model as the case of purely nonlinear systems. In our
work we make use of the Volterra modeling technique to test strongly nonlinear
devices. It has been shown in [22] that any time-invariant nonlinear system with
fading memory can be approximated by a finite Volterra series to an arbitrary
precision according to the following equation:

N M-1 M-1 r
y(k) =ho+Y_ > - > hp(ma, -+ m,) [[ 2k —my) (14)
r=1m;=0 m,-=0 j=1

where x and y are respectively the input and output of the system, N is the non-
linearity order, M is the memory of the system, and h,.(mq, - ,m,) represents
a coefficient of the r*" — order Volterra kernel h,.. The kernel h, carries informa-
tion about the r* — order nonlinear behavior of the system. Our interest is to
calculate the kernel coefficients of a nonlinear DUT, then compare them with
the typical values to test whether a fault exists or not. Existing methods for the
identification of Volterra kernels have proved computationally burdensome. In
[22] the authors have proposed an efficient method to determine the Volterra
kernels, where they make use of the Wiener general model in Figure 15.

According to this method, the system is stimulated by a multilevel MLS
(Figure 16) to extract the Wiener coefficients from the values of the sampled
output response. The advantage of this method is that the multilevel MLS
stimulus can be easily generated on-chip. The Volterra kernels are then obtained
from the Wiener model using a simple calculation.

To illustrate the physical meaning of Volterra kernels, let us consider the
block models shown in Figure 17. Figure 18 shows the 1% and 2" kernels of
each of these models, calculated by the algorithm that we have implemented
based on the technique explained in [22].

The first two kernels of the linear system in Figure 17(a) are shown in
Figure 18(a) and Figure 18(b) respectively. Notice how the 1% kernel represents
the linear impulse response and the 2"? kernel is equal to zero since the system
is linear. The first two kernels of the nonlinear system of Figure 17(b) are
shown in Figure 18(a) and Figure 18(c) where the 2"¢ kernel is not equal to
zero anymore. The 15 kernel is always the same because the linear part of the
systems in Figure 17(a) and Figure 17(b) is the same. Similarly, the system of
Figure 17(c) has the same 1%¢ kernel and the 2" kernel is shown in Figure 18(d).
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Fig. 15. Wiener model with orthonormal basis.
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Fig. 18. Volterra kernels of the systems in Figure 17: (a) 1°¢ kernel for all systems, (b),
(c) and (d) 2"? kernels for the systems in Figures 17(a), 17(b) and 17(c), respectively.
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After finding Volterra kernels we can extract design properties out of these
kernels and prove that they correspond really to the system. For example, the
15t kernel in Figure 18(a) is nothing but the impulse response of the FIR Filter I
which plays the role of the linear part in the systems of Figure 17. This proves
the correctness of the 1%¢ kernel. The nonlinearity of the system in Figure 17(c)
is represented by squaring each input sample. Thus, there is no multiplication
between different input samples at different delays, which means that all the
274 kernel coefficients at n; # ny are zero. That is why Figure 18(d) has values
only through the diagonal nl = n2. Moreover, the values through the diagonal
correspond to the impulse response of the FIR Filter II since it is in cascade
with the squaring function. For the purpose of testing, we will be interested
in finding a test signature composed of only several Volterra samples that are
highly sensitive to faults. A similar signature analysis to that of linear MEMS
[16] can be applied. Finally the signature is compared with the tolerance range
to decide whether the nonlinear MEMS functions correctly or not.

7 Validity of the binary PR BIST for testing nonlinear
MEMS

It can be proved that applying the pseudorandom test method to a nonlinear
system results in:

L—-1L-1
Gay (K Zm o1k =)+ Y D ha(ij) - da(k — ik — )+
i=0 j=0
L-1L—-1L-1
SN ha(ingym) - gslk — ik — g,k —m)+ - (15)
=0 7=0 m=0

where each term is an r-dimensional convolution of a Volterra kernel h,(k;, ks,

-, k) with the r-dimensional autocorrelation function of the input sequence
¢r(ki, ko, -+ , k). The first term, Zl o "1y (i) - ¢ (k — i), equals hy(k) for the
case of an MLS which means that ¢,,(k) is directly related to hq(k), the
linear behavior of the system. So whenever there is a fault harming the linear
behavior it will be displayed in the input/output crosscorrelation space. In this
case a similar Monte Carlo simulation is used to find the tolerance range in the
crosscorrelation space rather than the impulse response space, and to perform
a sensitivity analysis to form a test signature composed out of several highly
sensitive-to-fault crosscorrelation samples.

As a result, the PR BIST is valid for any time invariant analog system and
for all faults that harm the linear behavior. We do in fact suppose that most
often faults that affect the nonlinear behaviors do also affect the linear behavior.
The multi-level PR BIST can be used for nonlinear MEMS characterization and
it is only necessary for testing a rare category of nonlinear microsystems where
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some faults can be nonlinear and only influence the nonlinear behavior. In this
case, Volterra kernels can be used to test and diagnose this kind of faults.
Finding Volterra kernels can also be used to classify linear and nonlinear faults
which is important for fault injection and simulation. Faults that affect the
linear behavior (1% Volterra kernel) are linear faults, and faults that only affect
the nonlinear behavior (higher order Volterra kernels) are nonlinear faults.

8 Conclusions and further work

This chapter has presented an evaluation of different IR measurement methods
suitable for simple MEMS BIST techniques. These techniques have been applied
to a commercial MEMS accelerometer. As a result, the IRS is the most suitable
when even-order nonlinearities exist. We have proved that it has a very high
total immunity against even-order nonlinearities. Such nonlinearities vanish for
differential systems where the MLS can give the same results as the IRS. The
pseudorandom test method has been modified and applied to a purely non-
linear microbeam with electrothermal excitation. The resulting input/output
crosscorrelation samples are the Volterra kernel coefficients needed for model-
ing. Finally, the validity of pseudorandom methods for nonlinear devices has
been discussed. The multi-level PR BIST can be considered as an advanced
version of the PR BIST presented in Section 2 for linear MEMS. With the new
version we are capable of testing and characterizing any linear or nonlinear cir-
cuit. However the new PR BIST version demands the presence of a DSP on-chip
to calculate the Volterra kernels.

Finding Volterra kernels allows isolating the linear behavior from the non-
linear behavior of nonlinear systems. The linear impulse response was extracted
from the total response by using multi-level pseudorandom sequences. The tech-
nique is compatible with the PR BIST that was demonstrated for linear and
purely nonlinear systems. This is because we are still using pseudorandom stim-
uli suitable for on-chip implementation, and also because the test is again based
on the measurement of the linear IR where the tolerance range and the test sig-
nature are formed. The test technique can be simplified by finding the test
signature in the space of Wiener expansion coefficients rather than Volterra co-
efficients. According to the test signature only some necessary modified MLSs
are selected to form shorter multi-level sequences. In this way, less calculation
is needed to find only the several Wiener expansion coefficients that form the
test signature. We consider this step as the main perspective of this work.

Finally we introduce the definition of linear and nonlinear faults and we
show that the multi-level PR BIST is necessary when nonlinear faults exist.
The MEMS pseudorandom BIST techniques have been studied using a real
MEMS device where MLS signals were generated and analyzed using Labview
and a date acquisition card.
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