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Abstract. This paper aims at introducing a complete methodology that
allows to easily implement on an FPGA a system specification by exploit-
ing the capabilities of partial dynamic reconfiguration provided by the
modern boards. In the resulting system, which includes a set of fixed
components (such as a processor and a controller) as well as some re-
configurable area (which can be allotted to different tasks running con-
currently and replaced independently of one another — thus possibly
hiding reconfiguration times), reconfiguration is handled internally by
the system, without the use of external hardware. In order to meet the
software requirements of complex systems, the solution is provided with
a porting of a real-time GNU/Linux 0s, uCLinux, which allows software
processes to exploit a rich set of features, and with a Linux module that
simplifies and enhances the handling of reconfiguration.

1 Introduction

To cope with changing user requirements, evolving protocols and data—coding
standards, together with demands for the support of a variety of different user
applications, many emerging appliances in communication, computing and con-
sumer electronics need that their functionalities remain flexible after the system
has been manufactured. FPGAs provide a means to meet these requirements, and
have thus received increasing attention over the last years: not only they can im-
plement arbitrary logic functions, but can also be reprogrammed an unlimited
number of times during their lifetime.

Most applications running on FPGA—based systems are implemented using a
single configuration per FPGA. This means that the functionality of the circuit
does not change while the application is running. Such an application can be
referred to as being Compile-Time Reconfigurable (CTR), because the entire
configuration is determined at compile-time and does not change throughout
system operation. Another strategy is that of implementing an application with
multiple configurations per FPGA. In this scenario the application is divided into
time—exclusive operations that need not (or cannot) operate concurrently. Each



of these operations is then implemented as a distinct configuration which can be
downloaded onto the FPGA as necessary at run—time. This approach is referred
to as Run—Time Reconfiguration (RTR) or Dynamic Reconfiguration.

FPGASs approaches to dynamic reconfiguration can be further divided into two
categories: small bits and modular based. The former consists in changing small
portions of the design in order to modify the system behavior — an example
of this reconfiguration technique can be found in Xilinx XAPPs [1,2]. The latter
allows the creation of complex reconfigurable systems, composed of different 1pP—
Cores. The Caronte methodology [3-5] describes how to create a flexible system
design, where each core can be seen as a module that implements a specific
functionality of the system.

Reconfiguration can be also classified in terms of external or internal. In the
former scenario there exists an external entity which drives the configuration
— either a PC connected to the board (for example using the JTAG controller)
or some other kind of dedicated device. In this case the FPGA has a passive
role, simply receiving the configuration data from the outside. With internal
reconfiguration, instead, it is the system itself that modifies its own structure,
and the code running on the local processor is communicating with the Internal
Configuration Access Port (1CAP). This allows the system to run without needing
to be connected to other devices, as long as it is possible to store all the necessary
configuration information in the system memory. An example of such a system
is the one proposed in [6].

The last generation of FPGAs, due to the high density of reconfigurable logic
blocks present in the device, allow the designer to implement on them a complete
system. This means that it is possible to include also a general purpose micropro-
cessor, whether hard core or soft core. The designer, thus, must be ready to take
into account also the software requirements of such a specification: in particular
the processor, whether hardcore (such as the Powerpc) or softcore (MicroBlaze
and Neos), typically runs a standalone executable implementing the application
logic and exploiting the underlying hardware. On the other hand, though, there
are scenarios that require the presence of a more complex software system to
manage multiple tasks, interrupts and various system resources. This is the task
typically delegated to an operating system.

There is a huge number of embedded and real-time operating systems, of-
ten built on top of a microkernel implementing basic management of interrupts
and peripheral 1/0. Also ¢NU/Linux, which is a complete operating system ker-
nel, has been ported to architectures such as PowerPC and MicroBlaze, and
adapted to support embedded systems such as development boards using Virtex—
11 and Virtex—11 Pro FPGAs. For example, the pClinuz project [7] contains a set
of patches and extensions to the standard Linux kernel for specific hardware
mounted on the most common development boards.

The Linux kernel modular architecture makes it easy to implement new mod-
ules and load or unload them dynamically in a running system.

The next section will present the state of the art of dynamic reconfigurable ar-
chitectures and in section three we will propose our own methodology. Sections



four and five will show the physical implementation of the proposed reconfig-
urable architecture both for the hardware and the software components. Finally
section seven will show some experimental results.

2 Previous work

Many implementations are now available both for CTR, such as [8-10], and for
RTR [11-13].

In [14] the authors propose a new methodology to allow the platforms to hot—
swap application specific modules without disturbing the operation of the rest
of the system. This goal is achieved through the use of partial dynamic recon-
figuration. The application has been implemented onto a Xilinx Virtex—E FPGA,
and external reconfiguration is handled by an external device such as a Personal
Computer, while ensuring the correct operation of those active circuits that are
not being changed [15]. The reconfigurable modules are called Dynamic Hard-
ware Plugin (DHP). A methodology is proposed to transform standard bitfiles,
computed by common computer aided design tools, into new partial bitstreams
that represent the DHP modules, using the PARtial Bltfile Transform tool, PAR-
BIT [16]. The PARBIT tool transforms FPGA configuration bitstreams to enable
Dynamically Hardware Plugins modules in the Field—programmable Port Ex-
tender (FPX) [17]. The tool accepts as input the original bitfile, a target bitfile
and some parameters given by the user, and provides as output the new bit-
stream, which then can be used to load a DHP module into any region of the
Reprogrammable Application Device (RAD) on the FPX.

In [18] the hardware subsystem of the reconfiguration control infrastructure
sits on the on—chip peripheral bus (0PB). The microprocessor, PowerpC or Mi-
croBlaze, communicates with this peripheral over the oPB bus. The hardware
peripheral is designed to provide a lightweight solution to reconfiguration. It
employs a read/modify/write strategy. At any time, only one frame of data is
considered. In this way no external memory is not needed to store a complete
copy of the configuration memory. The program installed on the processor re-
quests a specific frame, then the control logic of the peripheral uses the 1CAP
to do a readback and loads the configuration data into a dual-port block RAM.
One block RAM can hold an xc2v8000 data frame easily. When the read—back is
complete, the processor program directly modifies the configuration data stored
in the BRAM. Finally, the ICAP is used to write the modified configuration data
back to the device. The software subsystem is implemented using a layered ap-
proach. This solution allows a change in the implementation of the lower layers
without affecting the upper layers, and proved useful for debugging. There are
functions for downloading partial bitstreams stored in the external memory, for
copying regions of configuration memory, and pasting it to a new location [18].

In [19], the authors considered reconfigurable computing as a close combina-
tion of hardware cores and of the run—time instruction set of a general purpose
processor. The classification of core types is generally accepted to be split into
three classes [20]: Hard cores, Firm cores and Soft cores. In [21], a new class



of cores called run—time parameterizable (RTP) has been introduced. RTP cores
allow a single core to be computed and customized at run—time. For example, an
adder core can be produced, and then parameterized at run—time for different
operand widths. The core produces all the required configuration data to de-
fine the logic and the routing. The possibility of determining limited amounts of
routing at run—time is also dealt with in [21]. An innovation of this approach con-
sists in considering the RTP cores as a specific example of a reconfigurable core,
placed on the programmable device in a dynamic fashion to respond to the chang-
ing computational demands of the application. A problem of this methodology,
though, is that the RTPs are targeted only to a single device family and there
is no information about the communication channel between RTPs and about
how they solve the physical reconfiguration problem. To control the mapping
of cores at application run—time onto the programmable device, a management
mechanism is required.

Our aim in this work is threefold. First of all, we show a novel implementation
of internal partial dynamic reconfiguration requiring only tools that are already
widely used for FPGA-based systems in order to be implemented. Secondly, we
propose a new methodology that introduces the partial dynamic reconfiguration
degree of freedom directly in the design phase. Lastly, we build an innovative
modular Linux driver that greatly simplifies the software handling of reconfig-
uration, allowing the programmer to concentrate on a hierarchical view of the
system to be implemented.

3 The proposed methodology

In this section we introduce a new design methodology for the implementation
of a dynamic reconfigurable system using a common FPGA, through the com-
bination of different design flows and using a development tool such as EDK,
Embedded Development Kit, produced by Xilinx Inc. The proposed methodol-
ogy could be applied within any specific device just porting it to a different design
technology. In order to show the possibility of implementing the reconfiguration
design flow we decided to use the Xilinx tools but it could be easily ported to be
reused for different systems that can achieve embedded dynamic reconfiguration.
One of EDK most important features is the possibility of developing complete
systems, integrating both the software and the hardware components of the de-
sign in a single tool. In fact, EDK provides developers with a rich set of design
tools, such as xps (Xilinx Platform Studio), gee, XsT (Xilinx synthesizer), and
a wide selection of standard peripherals required to build systems with embed-
ded processors using the MicroBlaze softcore processor or/and the 1BM PowerPC
cpU [22]. The proposed methodology aims at introducing dynamic reconfigura-
tion in the hardware part of the system, without increasing the complexity of
the implementation, simply by changing the tools employed [4,5]. In this way
the implementation can be easily mapped on a standard FPGA. The Caronte
Flow [3,4] is mainly composed of three phases:
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Fig. 1. Reconfiguration Design Methodology Flow.

HW-SSP Phase The HardWare Static System Photo Phase identifies a set
of EDK system descriptions that will be (partially) dynamically reconfigured
at run—time. These functional blocks are called BlackBox cores and will be
described in Section 4.2.

Design Phase Aim of this phase is to collect all the information needed to
compute all the bitstreams to physically implement the embedded reconfig-
uration of the FPGA.

It solves three different problems:

— Identify the structure of each reconfigurable block by providing a specific
implementation for each of them. This phase is based on the Xilinx
Modular Based Design approach;

— Identify, using the Floorplanner tool provided in the ISE tool chain, the
area of each reconfigurable component of the system;

— Solve the communication problem between reconfigurable modules, by
introducing Bus Macros that allow signals to cross over a partial recon-
figuration boundary.



Bitstream Creation Phase This phase creates all the bitstreams needed to
implement the system description onto an FPGA through the dynamic em-
bedded reconfiguration.

Figure 1 shows the described methodology and how it can be included into the
standard FPGA flow.

The Caronte Flow accepts as input the result of a previous partitioning and
analysis phase [4]. Whatever the reason for creating a dynamic hardware config-
uration may be, there are common implementation issues: the system descrip-
tion must be partitioned in a fixed set of components that will be dynamically
mapped onto a partitioned architecture. For this purpose, both the FPGA phys-
ical area and the initial system description have to be divided into several parts
to provide the correct starting point for a dynamic reconfigurable design suitable
to the system description provided. This first phase identifies all the processing
elements of the description that will be mapped onto the corresponding part of
the FPGA, as shown in Figure 2.
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3.1 HW-SSP Phase

The input of the Caronte Flow is composed of a special set of EDK Cores, the
BlackBox elements, described in Section 4.2, that are used by the HW—SSP phase
to create all the HW Static System Photos, as shown in Figure 3.
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Fig. 3. HW-SSP definition.

An HW—SSP is an EDK system based on the Caronte architecture, described
in Section 4. This architecture contains a fixed part and several reconfigurable
blocks, named BlackBoxes. The application moves from an HW—SSP to another by
reconfiguring the BlackBoxes and by leaving the fixed part unchanged. The idea
is to consider the system in time as a sequence of static photos. All those HW—SSP
share the static part of the system, which is used to implement the embedded
reconfiguration of the other components, as shown in Figure 4. Finally, the EDK
output is used as input for the next phase.

3.2 Design Phase

The idea is to implement a specific reconfiguration—oriented environment that,
starting from a system description provided by EDK and using the Modular Based
Design (MBD) generates all the bitstream for the final system implementation.
To obtain all the HW—SSPs needed by the MBD the designer will use a part of the
EDK implementation chain, starting from the design phase to the VHDL genera-
tion one. The produced VHDL descriptions must take into account the dynamic
nature of the system: the main issues are raised by the communication channel
between modules. In order to allow communication among dynamic modules
a special bus, the BUS Macro, has to be introduced into the design descrip-
tion. Each time a partial reconfiguration is performed, the bus macro is used to
establish unchanging routing channels between modules, guaranteeing correct
connections.

The synthesis provided by EDK does not take into account the placement of
components into specific FPGA areas; for our purpose this is indeed necessary,



since the FPGA is partitioned in fixed and reconfigurable areas. To accomplish
this task, the Floorplanner, a tool contained in the 1SE Xilinx package, can be
used. The Floorplanner provides an easy way to constrain the placement of every
component of a project onto a specific area of the physical architecture. When
the FPGA is partially reconfigured, the configuration bitstream, called partial
bitstream, contains data only for the area to be reconfigured. Partial bitstreams
are computed as the logical difference between two complete configuration bit-
streams. This means that, without constraining the components placement, it is
impossible to guarantee that the partial bitstream between two configurations
will affect only the desired area.

Time

Fig. 4. HW-SSP point of view: the system execution.

4 The Hardware Architecture

This section describes the proposed model of dynamic reconfiguration under the
GNU/Linux operating system environment, using a board equipped with a Xilinx
Virtex—11 Pro FPGA with a Powerpc 405 processor and a Linux distribution based
on the pClinux kernel.
The core of the architecture is the PPC405 processor which implements both
the controller and the scheduler for the given system implementation. Figure 5
presents the complete architecture, showing both the fixed and reconfigurable
sides.

Both from the hardware and the software point of view, the starting point
for our work has been the Board Support Package (BSP) supplied by the board
producer, Avnet Inc. The hardware support consists of a project to use with



Xilinx design tools, EDK and ISE, including most of the physical hardware com-
ponents of the board, such as processor, system buses (OPB and PLB), flash and
RAM memory, Ethernet controller and serial port.

The Avent BSP also contains the Embedded Linux Development Kit (ELDK),
a package including tools for cross—development such as the gcc compiler for
PowerpC and MicroBlaze architectures and the pClinux kernel. ELDK can run
on any Linux distribution on x86 machines. Both ELDK and the kernel have been
modified by Avnet to include kernel support for specific hardware of the board
(Ethernet, flash, leds) and some scripts to download the kernel image to the
board using a network connection.
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Fig. 5. The Architecture Overview

4.1 The Fixed Architecture of Caronte

The body of the Caronte architecture is the real physical implementation of the
fixed part. It is basically a Von Neumann architecture composed of six classes
of components:

— ICAP, used to read/write a configuration from/to the BRAM to/from a
specific BlackBox;

— IP-Core Manager, IPCM, this hardware module is a sort of bridge be-
tween the sSw side of the architecture, the kernel of the operating system,
and the HW side, the BlackBoxes;

— Memory, used to store all the partial bitstream data information;

— Buses, used to implement the architectural communication infrastructure.
It is possible to identify two different kind of busses:

e The 1BM CoreConnect technology, that represents the 90% of the entire
communication system of the architecture;



e The bus macro technology, which provides a fixed bus of inter—design
communication. Each time partial reconfiguration is performed, the bus
macro is used to establish unchanging routing channels between modules,
guaranteeing correct connections.

— PPC405 Processor, used to provide the physical support for the executable
code;

— Interrupt Controller, used by the PPCc405 processor and the BlackBoxes
to dialog one to each other.

4.2 The reconfigurable side: the blackboxes

A BlackBox is a reconfiguration core, mainly defined by a processing element of
the starting system description, which is set into a fixed known portion of the
FPGA that can be completely reconfigured without interfering with the execution
of the remaining part of the FPGA. Therefore, a BlackBox can be considered as
a shell for processing elements. The BlackBox includes not only the logic im-
plementing the component functionalities, but also the communication channel
interface between the node and the system. This interface allows the node to
send data directly on the communication channel or to temporally store a fixed
number of data in an internal communication spooler, which is used during the
reconfiguration action.

EDK defines as a component any part of an EDK architectural design such as a
bus, or a peripheral or even a processor. A BlackBox can be considered as an
EDK component, although this is a simplified way of thinking of a BlackBox. The
main difference is that a BlackBox is not a static component mapped onto the
FPGA, as any classical EDK component. It can be considered as a virtual shell
used to contain different processing elements of the system description that need
to be mapped onto the FPGA. In order to be able to implement a partial recon-
figuration of a portion of the FPGA it is important to know which is the portion
that has to be reconfigured. The Xilinx Platform Studio Tool of EDK, used to
create FPGAs architectures, offers an automatic synthesis engine that generates
a real project implementation by arranging each logic unit in a standard way. A
BlackBox provides the interfaces needed by the VHDL description of a process-
ing element to dialog with all the other components of the architecture, such
as the CoreConnect bus, the processor, the interrupt controller and the other
blackboxes. The BlackBox is shown in Figure 6.

During reconfiguration the Processing Element node logic will be modified,
while the communication interface and 1P Interconnect (IPIC) between the node
logic and the interface will remain the same. This means that a BlackBox is
constituted by two VHDL, Verilog or EDIF files, the first one containing the
architecture—dependent logic interface and the second one the processing element
hardware description.
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5 The Software Architecture

The software side of the Caronte architecture consists of a scheduler for dynamic
computation of the execution times, and a controller which manages the reconfig-
uration process. Those components run as user processes under the GNU/Linux
operating system. To deal with the underlying hardware, such as the ICAP mod-
ule and the reconfigurable 1P—Cores, a driver system have been introduced, based
on the standard Linux kernel modules system.

5.1 The “Caronte Software”

In a first implementation, the Caronte software was realized as a standalone
system, while now it has been integrated in an embedded version of the Linux
operating system, moving it to a userspace process. The Caronte architecture
allows the mapping of each processing element according to placement informa-
tion. The estimated times for different reconfigurations are computed statically,
but actual times can differ from those calculated. For this reason, the processor
also runs a dynamic scheduler, which takes into account modifications from the
original schedule.

The controller stands in a time watching state, controlling that the running time
of each BlackBox meets its statically computed time.

In case the BlackBox running time exceeds the statically estimated time, the
controller informs the scheduler that the run time of the BlackBox is greater than
the estimated one. According to the information provided by the controller, the
scheduler updates the processing element time information and computes a new
schedule on the graph by following a list—based approach, in order to identify the
new critical path and reorder the processing elements accordingly. The Caronte
scheduler can be split in the following phases:



— Controller Information Checking Phase: stores the information pro-
vided by the controller;

— New Time Computation Phase: estimates a new execution time for the
processing element given by the controller;

— New Critical Path Computation Phase: computes the new critical path
and changes the Critical_Path, and Scheduled_Critical_Path variable values.

After informing the scheduler the controller returns in its time watching state,
waiting for a new event.

Anytime a BlackBox execution terminates within its estimated time, a recon-
figurable action has to be performed. At the end of its execution the BlackBox
informs the controller of this event. During reconfiguration the controller, that
knows which is the next node to be mapped on this BlackBox, downloads from
the memory to the BRAM the correct configuration bistream, as shown in Fig-
ure 7.
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At the same time the controller informs all the BlackBoxes (BBs) which can be
disturbed by the reconfiguration action to activate their spooler communication
system. At this point the PPC405 allows the ICAP to reconfigure the BlackBox
with the new bitstream. Finally, when the new BlackBox has been mapped and
starts its computation, the 1ICAP informs the processor that the reconfiguration
action has successfully completed.

At this point, the controller enables the normal communications for the BBs that
have been stopped.

5.2 Software support to dynamic reconfiguration

Stand alone code running on the FPGA needs to deal at a low level with hardware,
including the 1CAP. This means that creating a reconfigurable system has strong



implications also from the software point of view. If dynamic reconfiguration is
desired, the application must implement functions both addressed to the system
purpose (the actual computation) and to interface with the 1CAP.

The actual Caronte architecture is based on GNU/Linux operating system,
which is a complete multitasking operating system. The operating system con-
siders the reconfiguration process as an autonomous thread of computation.
For this reason, the software side of Caronte (the scheduler and the controller)
and the functions which deal and manage the hardware are separated. In this
case, the application code runs as a user process in the system; this means that
it does not have direct and low level access to the hardware, but it has to pass
all the requests through operating system calls (read, write, etc...). Therefore,
as far as reconfiguration is concerned, the 0S itself must take care of the com-
munication with the ICAP, by exporting an interface for user processes.

Since the pClinux kernel does not have any kind of support for 1cap, we
developed a Linux kernel module implementing a driver for the ICAP peripheral.
Linux operating system allows userspace programs to access devices via special
files, located under the /dev directory. Each device is assigned a couple of num-
bers as id, indicating the driver managing the device (the “major” number) and
the id of the specific device (the “minor” number); furthermore, they are also
distinguished in “character” and “block” devices, based on the kind of access
they support. When a kernel driver registers a major number, all access requests
to the corresponding devices are directed to it, and hence it must implement
handlers for various system calls: open, close, read, write, and so on. The 1ICAP
module, on startup, registers a character device major number (by default 120)
and reserves the memory—-mapped address space corresponding to the ICAP de-
vice (as shown in Figure 8); the base address can be specified as a parameter
when loading the module. At this point it is possible to a create a device file
with major number 120 and minor 0, for example /dev/icap, that processes can
access to execute reconfiguration.

System Calls There are currently three system calls, besides the open and the
close operations, implemented by the driver:

write when a process requires reconfiguration, it simply writes the partial bit-
stream to the 1CAP device; this can also be done manually by a user using
standard Unix commands, for example cat diff.bit > /dev/icap. The
reconfiguration does not take place immediately; instead configuration data
is stored in a memory buffer until a specific request is issued through ioctl:
in this way it is always possible to change the data stored by simply rewriting
a new bitstream onto the device.

read reading from the ICAP device allows a user process to access the data
stored in the memory buffer. The read operation allows reading a fragment
or the entire bitstream loaded in the memory buffer.

ioctl this system call is generally for device control, to get or set configuration
parameters and to interact with it in a more general way than allowed by
read and write. When performing an ioctl call, the only required argument
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to the function is a number indicating the type of operation requested.

In the driver, two ioctl operations are allowed: the first is used to discard
configuration data from the memory buffer, the second starts the partial re-
configuration, provided that a valid bitstream has been loaded into memory.
In the latter case, as shown in Figure 9, the operation is performed by send-
ing the bitstream, byte by byte, to the base address of the ICAP component.
After the reconfiguration has been completed, the driver prints a message in
the kernel log with the time used for the operation.

/proc filesystem interface The 1CcAP kernel module uses the standard Linux
proc pseudo—filesystem to give information on the status of the driver. This
filesystem, from a user point of view, is composed of normal files and directories,
but reading or writing files actually triggers functions that can do any kind of
action: usually reading a file results in getting information on devices status,
while writing sets or modifies some parameters.

On module initialization, the /proc/icap directory is created; here the following
files can be found:

info: the file contains information on the ICAP device, such as device id, address
range in memory—mapped space and amount of memory buffer used.



status: reading this file will send a command to the 1CAP which will result in
reading the FPGA status register, containing flags reporting information on
the status of the device and configuration mode.

devices/0: when a valid bitstream is loaded in the memory buffer, this file con-
tains a human-readable dump of the information contained in the bitstream
header, such as design filename, target part, creation time and date.

The module is designed to provide the capability of handling multiple 1cAP
devices (the actual number is specified at compile time), although current FPGAs
contain only one physical ICAP component. If more than one device is used, the
devices directory contains a file for each device.

configuration
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Fig. 9. Partial reconfiguration process with ICAP kernel module

The driver described can be used for both kinds of reconfiguration, small bits
or module based, as long as a partial bitstream is available for download. Yet, if
the small bits reconfiguration consists usually in modifying little configuration
details in mapped peripherals or 1P—Cores, not affecting the rest of the system,
when one or more 1P—Cores are added or removed, new features will be available
while others may no longer be. This means that the operating system must cope
with these changes and manage those resources, making them available to user
processes.



6 The reconfiguration system

The architecture described in this section aims at creating an integrated hard-
ware/software reconfigurable system where 1IP-Cores can be loaded and unloaded
while the system is running, based on the required functionalities and on the area
physically available on the FPGA. The idea is to create an hot—plug mechanism,
where new peripherals announce themselves, allowing automatic loading of the
corresponding software driver.

From the hardware side, it is necessary to have a controller that collects the
information on the newly added 1P—Cores, passing them to the software that
manages the dynamic loading of the drivers. The information mainly consist of
the Core type, which allows selection of the proper driver, and the 1/0 memory
range.

The software side, instead consists of a core module that interfaces with the
hardware controller and loads the specific drivers.

This hardware/software architecture has been implemented on an Avnet
Virtez-11 Pro Evaluation Board, connected to a Communications/Memory Mod-
ules, also produced by Avnet. The board integrates a Xilinx Virtex-1I FPGA
with an embedded PowerPc 405 processor, used to run the software part of the
system, various kinds of RAM memory, Flash (where the operating system im-
age is stored) and many additional components such as communication ports
(ethernet, serial, ...) and general purpose 1/0 connectors.

6.1 Modular software architecture

The structure of the software component of the architecture is in some way spec-
ular to the hardware counterpart, implementing the dynamic reconfigurability
as the possibility of loading and unloading at runtime drivers for the 1P—Core
mapped on the FPGA. As already discussed, addition and removal of 1P—Cores
results in changes in resources availability, which has deeper implications on sys-
tem functionalities than small bits reconfiguration. The proposed architecture
extends the one presented in [6], introducing a software layer that interfaces the
operating system and, as a consequence, the userspace, with 1P—Cores, through
specific drivers.

Similarly to the hardware controller, there must be a software manager, called
1p—Core Manager (TPCM), which acts as a layer between the kernel and the lower—
level 1P—Core drivers.

The IP-Core Manager The 1PCM architecture exploits the Linux kernel mod-
ularity, creating a hierarchical structure among the kernel, the 1pcM itself and
the 1P—Core drivers, as shown in Figure 10. From the kernel point of view, it
is a standard module which registers a major number (by default 121) among
character devices that will be used to access all the iP—Core devices. The 1PCM
requests to the kernel an address space to be assigned to the registered 1P—Cores,
allowing them to use memory mapping to communicate with the drivers.
The basic functions of the tPcM are the following:
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Fig. 10. Linux kernel and IPCM modules hierarchy

IP—Cores registration/deregistration: to accomplish the task, the iPCM needs
to interface with the hardware controller; upon each partial reconfiguration,
the controller sends an interrupt request to the iPcM. In the interrupt service
routine, the IPCM gets from the controller the information on which devices
have been deconfigured and which added. An 1P—Core is essentially identified
by its type (a numeric identifier) that defines the driver to be loaded for its
management, and by its address space (base address and range), which must
be in the address range registered by the 1PCM.

specific drivers load /unload: 1p—Core drivers are implemented as Linux ker-
nel modules, but they don’t need to be loaded manually; instead, each time
a core is loaded for which a driver is not already present, the IPCM automat-
ically loads it.

Besides loading the driver, the manager exports a function that registers a
structure containing data on the driver; the driver, during the loading phase,
provides the 1pcM all the necessary data (driver id, name, list of implemented
system calls) invoking the function exported by the manager. In this way,
the IPCM maintains an updated list of all registered drivers; each driver data
structure also contains the list of the 1P-Cores managed by the driver.
system calls management: other than providing registration and deregistra-
tion capabilities, the module must also allow the use of the iP—Core from the
userspace. A unique character device major number is associated with the
1P—Cores; the IPCM uses the minor number to identify the different 1P—Cores.
Since this identifier is currently implemented in Linux with an unsigned 8-
bit wide integer, this allows up to 256 different 1P—Cores to be registered,
which is a fairly large number for current FPGA capabilities.
When a system call is issued for a device, the 1PCM delivers this request
to the correct driver which implements this call for the specific underlying



hardware. To be able to distinguish 1P—Cores both by their type and by a
unique identier, we adopted the rule to consider the 4 most significant bits
of the device minor number as identifier of the device type (indicating the
associated driver), and the other 4 bits as device identifier within the driver.
This means that there can be up to 16 drivers, each managing 16 1P—Cores.

Driver modularity Since the 1P—Cores all use memory mapping to communi-
cate, the drivers managing them will be very similar, the main difference being
the functions performing reads and writes with the device and interrupts. Ac-
cording to this observation, a hierarchical architecture has been implemented to
manage the driver creation and implementation.

The proposed solution has been implemented as a sort of stub, as shown in
Figure 11. This simplifies the writing of 1P—Core drivers, as the stub contains the
implementation of functions common to all drivers, such as module initialization
and shutdown, registration and deregistration with the 1PcM. The main aim
of this process is to hide as much as possible the Linux kernel programming
interface, so that a user wanting to write a driver for an 1P—Core does not need
to know all kernel programming details or the internal structure of the 1PCM, but
has only to implement the specific functions complying to a simplified interface,
while the stub performs the linking with the corresponding system calls and
interfacing with the 1pcM.

P Core
device data
syscall handlers IP Core
device data IPCM
interrupt handlers o
IP Core
device data

int hdir IP Core driver int hdlr IP Core driver

Fig. 11. IP-Core Manager and drivers structure

7 Test and results

The Caronte flow has been applied to the AES (Rijndael) algorithm to test
Caronte architectural features, such as the possibility of storing the reconfig-
uration data on the board without external resources.



The first phase of the analysis and partitioning of the system description has
been applied to the AES algorithms to obtain a first HW/sw codesign solution of
the entire system to test the proposed methodology. After that step we further
partitioned the hardware description of the system to obtain all the processing
elements needed as input by the Caronte flow.

We decided to adapt our execution model to be able to justify the reconfig-
uration approach using a model similar to the one proposed in [23]. The idea is
to iterate the execution of each BlackBox a certain number of times, and in such
a way to obtain “blocks” whose running time is comparable to the reconfigura-
tion time of other BlackBoxes, thus hiding reconfiguration overhead, as shown

in Figure 12.
Input e ‘ QOutput
— > Round 4 —
Fig. 12. Execution model.

Let us show the details of the methodology on the Rijndael example. The
Rijndael algorithm is a succession of 4 basic operations that are iterated many
times. These operations are performed on a 128 bit block, called state, organized
as a 4x4 matrix of 8 bit elements.

After the sets identification phase [3], it is possible to identify all the processing
elements and so all the BlackBox cores. Having all the cores means that we
are now ready to define all the HW—SSPs for the algorithm. According to this
scenario the Caronte architecture chosen for the AES application is composed of
two BlackBoxes, BB and BB;, and of the Caronte Core, which in turn is made
up by all the static parts previously described. In this case we obtain the four
different HW—ssP that are shown in Table 1. Figure 13 shows a sample execution

Table 1. HW-SSP Description

HW-SSP| Fix Module | BBy |BB>
0 Empty Empty|Empty
1 Caronte Core| PE-A |PE-B
2 Caronte Core| PE-C |PE-B
3 Caronte Core| PE-C |PE-D
4 Caronte Core| PE-D |PE-A

of the AES algorithm where the reconfiguration of a BlackBox has been hidden
by the execution of an already mapped one.
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Fig.13. AES Caronte execution.

The reconfiguration time for the first two BlackBoxes of the AES algorithm,
A and B, is not shown in Figure 13 since these two components are mapped as
the start—up configuration of the entire FPGA.

Let us show the details of the methodology on a second example: the MD5

algorithm. The MD5 algorithm takes as input a message of arbitrary length and
produces as output a 128-bit fingerprint or message digest of the input.
The methodology allows the identification of two BlackBoxes, BB, and BB,.
Also the Caronte Core, composed of the processor, the memory, the ICAP module
and all the other static parts previously described, is included in the design. In
this case we obtain siz different HW—SSP that are shown in Table 2.

Table 2. HW—sspP Description

HwW-ssP| Fix Module | BBy |BB>
0 Empty Empty|Empty
Caronte Core| PE-A |PE-B
Caronte Core| PE-C |PE-B
Caronte Core| PE-C |PE-D
Caronte Core| PE-E |PE-D
Caronte Core| PE-E |PE-F
Caronte Core|Empty |PE-F

O = W N+~

The access time to the memory, where all the difference bitstreams are stored,
has been obtained via a timing test: writing 32 bits of data takes 0.135us, while
reading the same amount of data requires 0.020us. Without considering the first
configuration bitstream, which implies a complete configuration of the FPGA,
the comparison between the external reconfiguration and the embedded one are
shown in Table 3.



Table 3. Embedded Vs External Reconfiguration

Action External Rec.|Embedded Rec.
Rec. Time C block 14.558s 15.152ms
Rec. Time D block 14.597s 15.305ms
Rec. Time E block 14.560s 15.223ms
Rec. Time F block 15.482s 15.837ms

Also in this example the reconfiguration time for the first two BlackBoxes (A
and B) are not shown, as already said, because they are part of the starting up
configuration of the entire FPGA.

The results for both the architectures are shown in Table 4.

Table 4. Tests

nw(Rec. Times) [ p(Eze. Times)
Input|#RECs #55s 5B

MD5 5 15.379ms |16.765ms
AES 4 12.405ms [13.672ms

Column 2 lists the number of reconfigurations, RECs, that have to be per-
formed in order to implement the complete architecture, while columns 3, and 4
list the average of the embedded reconfiguration time and of the RECs execution
time, respectively.

8 Concluding Remarks

Preliminary results show that the Caronte methodology, implementing a module—
oriented approach based on an EDK system description, provides an effective and
low cost approach to the partial dynamic reconfiguration problem. Its strength
lies both on introducing the partial dynamic reconfiguration degree of freedom
at design time, and on the use of widely available tools. Also, the Linux driver
we have developed allows a simplified (and yet flexible and hierarchical) software
interface to hardware reconfiguration.

We are now working on a new version of the IPCM module that embeds the
IPCM, the ICAP and the Interrupt controller in just one module. This new module
will provide a single access point for the reconfiguration action both for the HW
and the sw side of the architecture, and will hence guarantee less area overhead
on the FPGA.

We are also developing an automated version of the entire flow (addressing
problems such as task scheduling and task partitioning, which are now only
semi—automated) able to define all reconfiguration bitstreams, transforming the
input description into VHDL code that will define the core of each BlackBox and
hence producing all the HW—SSP’s.
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