Defragmentation Algorithms for Partially
Reconfigurable Hardware

Markus Koester!, Heiko Kalte?, Mario Porrmann', and Ulrich Riickert!

! Heinz Nixdorf Institute, System and Circuit Technology,
University of Paderborn, Germany
{koester, porrmann, rueckert}@hni.upb.de
2 School of Computer Science and Software Engineering,
University of Western Australia, Australia
heiko@csse.uwa.edu.au

Abstract. Dynamic reconfiguration is a promising approach for re-
source efficient utilization of microelectronic systems. Standard plat-
forms for partial dynamic reconfiguration are field-programmable gate
arrays (FPGAs). Multiple hardware tasks can share the same FPGA re-
sources over time, which increases the device utilization in comparison to
non-reconfigurable systems. Although, similar resource management is
already known in the area of operating systems, there is a requirement
to adapt these concepts to the special needs of dynamically reconfig-
urable systems. Additionally, there is a lack of underlying mechanisms,
e.g., to suspend hardware tasks and restart them at a different position
within the FPGA. In this article we introduce a mechanism for task
relocation that includes saving and restoring of state information of the
task. Based on this approach we address the problem of defragmen-
tation. We present defragmentation algorithms that minimize different
types of costs. With the help of a detailed simulation model and a
benchmark, we finally provide realistic simulation results and compare
the different algorithms.

1 Introduction

Field Programmable Gate Arrays (FPGAs) are reconfigurable architectures
that enable the integration of complete systems on a single chip. Currently
available FPGAs have the feature of partial reconfiguration, which offers a high
flexibility. Arbitrary functions in form of a hardware task can be configured
on demand and can be removed after execution at run-time thus allowing the
sharing of FPGA hardware resources over time. With the increasing amount of
hardware resources, dynamically exchanging hardware tasks require a resource
management and methods for placement and relocation of the tasks. While sev-
eral approaches address the problem of placing tasks on partial reconfigurable
FPGAs [1, 10], there is a lack of underlying mechanisms, e.g., to suspend hard-
ware tasks and restart them at another time or relocate them to another area of
the FPGA. In this paper we describe an approach to an efficient task relocation

2 Markus Koester, Heiko Kalte, Mario Porrmann, and Ulrich Riickert

at run-time. The necessary relocation mechanisms are mainly implemented in
hardware allowing to save and restore state information while relocating the
hardware task.

Recurrent allocation and de-allocation of various sized tasks cause the free
FPGA resources to split into small fragments over time. But for placing a hard-
ware task the FPGA resources need to be available contiguously in a single
block. In order to increase the utilization of the FPGA, tasks can be rearranged
at run-time by using the relocation mechanisms with the aim to cluster free re-
sources to larger blocks, thus enabling placement of larger hardware tasks. This
process is called defragmentation. In this paper we present defragmentation
algorithms with the objective to minimize different reconfiguration costs. The
defragmentation algorithms have been implemented in our simulation frame-
work SARA. Simulation results show that the defragmentation algorithm we
present here can be useful to increase the utilization of the FPGA.

2 Task Relocation

The basic requirement for all kinds of task reorganizations (including defrag-
mentation) on the FPGA fabric is a proper mechanism to stop and relocate a
running task. In almost all cases this means that not only the hardware struc-
tures of the task have to be relocated, but also the current state information
that are stored in registers and memory. In order to relocate a task, the current
state information have to be read, the new instance of the task has to be placed,
the state information have to be restored, and finally the old instance of the
task has to be erased. There are basically two approaches to read and restore
state information that are stored in registers and memory all over the FPGA
area of the task.

The Task Specific Access Structures approach realizes reading and restoring
by adding an extra read/write interface to all state registers which leads to extra
resource consumption and especially to extra design effort. Consequently, each
hardware task has to be redesigned to be used in a reconfigurable environment.
However, one advantage of this approach is the high data efficiency, as only
the raw state information are read. In [9] Ullmann et al. have presented an
implementation of this approach.

In contrast to that, the Configuration Port Access approach is based on the
bitstream readback facilities of the configuration port (in our case the Xilinx Se-
lectMAP /ICAP interface, see [11]) of the FPGA. This port offers the possibility
to read arbitrary columns of the configuration memory including the current
register values and the RAM contents. After or during reading the bitstream,
the state information have to be filtered out of the readback stream. Before con-
figuring the new instance the preset bits of the flip flops and the RAM content
are modified according to the previously extracted state information (see [8]).
As the Configuration Port Access approach uses the inherent access structures
of the configuration circuitry and the configuration port, no hardware struc-

Defragmentation Algorithms for Partially Reconfigurable Hardware 3

tures have to be added to the tasks itself. However, one disadvantage of this
approach is the low efficiency, as the portion of state information in the read
data can be less than 1%.

2.1 Our Relocation Approach

We have developed a relocation approach that is based on the Configuration
Port approach. As simply all register values are stored there is no need to know
anything about the internal structure or behavior of the task and no extra
design effort has to be spent. In contrast to existing implementations that are
based on the Configuration Port Access approach (e.g., by Simmler et al. in [8]),
our approach does not read all configuration data, but only those that include
state information and belong to the task to be suspended. Furthermore, the
actual state information extraction is not done after but during reading the
configuration data. These differences to other approaches significantly reduce
the amount of data to be read back, the data to be stored, and finally the
processing time.

Platform Information

The mechanism of task relocation basically depends on the underlying FPGA
architecture and on the degree of freedom during the task placement (2D-,
1D-placement or fixed task slots). We use the Xilinx Virtex FPGAs because
these are the only devices which combine system level complexity and partial
reconfiguration (in a column-wise manner). The internal configuration memory
of a Virtex FPGA stores the bitstream and can be visualized as a rectangular
array of bits. The bits are grouped into one bit wide vertical columns that extend
from the top of the device to the bottom. These so called frames are the atomic
unit of configuration and are addressed by the major address (MJA) and the
minor address (MNA). A detailed description can be found in [11]. The column-
wise reconfigurability of the Virtex FPGAs also inspired our reconfigurable
system approach [7]. All hardware tasks can be dynamically placed, relocated
and erased along a horizontal communication infrastructure (1D-placement).
The communication infrastructure is completely homogeneous, which makes
it possible to dynamically relocate hardware tasks along the horizontal bus
structure. This relocation process can be realized by bitstream manipulations
that change the column addresses (MJA) of individual hardware tasks during
the download process of the configuration bitstream (see Fig. 1, [7] and [5] for
further information).

Architecture Overview

The architecture of our context relocation approach can be seen in Figure 1.
There are four main function blocks and a database to perform a relocation
process. The main blocks are the Configuration Manager, the State Extrac-
tion Filter, the State Inclusion Filter and the REPLICA Filter. The first step
of a context relocation process is to stop the clock of the particular hardware

4 Markus Koester, Heiko Kalte, Mario Porrmann, and Ulrich Riickert

Database Entry Read
{ !
Task Name: CPU Current Location of Task
Current Start Location: Col. 4 i J"
Current End Location: Col10 State Partial
Bitstream Addr (Alloc): 0x0100 0000 -« Values Readback . .
Bitstream Addr (De-Alloc): 0x0200 0000 Sla[e_ Bitstrear] | CONfiguration
State Extraction |- Manager
Location " A
> Filter (Rea)
States:
{
Signal Name: PRG_CNT<0> “
Location: Col. 7, Row 27, Slice 0, FF 1 . " . . N
State Value: 1 Partial Bitstream (orig. Loc., orig. States) P_artlal (new Loc.,
1 Writeback
. Bitst new States)
Signal Name: PRG_CNT<31> L4 Stae Writeback itstream
Location: Col. 7, Row 35, Slice 1, FF 0 Location
State Value: 0 > Partial 7
Statg Bitstream REPLICA / 1D Placement Approach
} State Inclusion > Filter /
} Values | Filter (orig. Location,| (Task Relocation) H
V\/\/_,_/\/\,\/_\/\,\, new States) //

I New Column Location

Fig. 1. Relocation Approach Overview.

task or of all hardware tasks to prevent state changes during the read process
(e.g., by clock gating). Subsequently, the Configuration Manager initiates the
Select MAP interface to read all frames that contain state information. The ad-
dresses of the frames are calculated on basis of the location information given
by a database entry of the task. The database stores the current location of each
task, the memory addresses of the partial bitstreams and finally the location of
all state registers. During the read process, all frames are continuously trans-
ferred to the State Extraction Filter, which determines the state value within
each frame. The task is now suspended, but not deallocated. That means, a
partial empty” bitstream has to be downloaded to completely erase the cir-
cuitry of the task. The restoring process starts with the State Inclusion Filter,
which inserts the register values of the database into the original partial bit-
stream of the hardware task. The resulting bitstream would still allocate the
task at its original location, but with the new initial register states. Therefore,
the REPLICA Filter relocates the hardware task from its original location to
the FPGA column that is determined by the New Column Location input. Fi-
nally, the new partial bitstream, which is relocated and includes the states, is
downloaded by the Configuration Manager. After resetting the hardware task,
all registers are set to the proper value and the task can start processing in
exactly the state it was interrupted before. In the following, the four blocks are
described in more details.

The Configuration Manager is connected to the SelectMAP configuration
interface to read and write configuration data. When writing a bitstream the
Configuration Manager reads 32-bit bitstream words from arbitrary memory
locations and converts them to 4 x 8-bit bitstream words, which are passed to
the configuration interface. For performance reasons, this part is implemented
in hardware (see [5] for further details). When reading the state information, the
Configuration Manager selects only the frames that contain state information.

Defragmentation Algorithms for Partially Reconfigurable Hardware 5

Therefore, the Configuration Manager takes the column (Col), slice (Slice) and
flip flop (F'F') values of the database entries for each state bit and generates an
address of the frame that contains the current state value. The frame address
consists mainly of the major address (MJA) and the minor address (MNA).
Equation(1) and (2) show the necessary calculations (Chip_Cols determines the
maximum CLB column number of the FPGA).

MJA = Chip_Cols — Col -2 +2 (1)
(left chip half and Virtex only)

MNA = Slice-(12- FF —43) —6- FF + 45
with Slice, FF € {0,1} (2)

= MNA € {2,8,39,45}

The MNA can have only four different values, which means all flip flop
states of one CLB column are stored in only 4 frames. This results in a heavy
reduction of the amount of data to be read, as a complete CLB column consist
of 48 frames. Consequently, it makes sense to implement tasks in as few CLB
columns as possible to ensure a reasonable amount of state information in each
frame that is read. The output of the Configuration Manager is finally a stream
of single frames that contain the state information of the hardware task.

The State Extraction Filter takes the readback stream of the Configuration
Manager, extracts the state values and updates the database entries. For ex-
tracting the state value, the filter determines the bit index within the readback
frames by using the following equation (see also [11]).

Bit_idx = (18 - row) + 1 (3)

As a result, the bit index only depends on the CLB row of the appropriate flip
flop, which means that all flips flop values of the same column and the same
type (e.g. Slice=0, FF=1) are located within one frame.

The State Inclusion Filter performs the first step of the restoring process.
The filter takes the original partial bitstream of the hardware task and inserts
all database state values by manipulating the preset bit of the registers. Similar
to the state extraction process, the frame address and bit index of all state bits
have to be calculated. The computation of the MJA and the bit index are the
same as for the state extraction process (cf. (1) and (3)); solely the MNA values
are different. See [8] for further information.

The REPLICA Filter is capable of relocating tasks by manipulating the
partial bitstream of the task. Downloading the output stream of the State In-
clusion Filter would allocate the task at its original location (after initial place
and route). However, in most cases a new location has to be found according to
the current resource allocation. In order to perform the proper manipulations,
the REPLICA filter parses the bitstream and replaces the column addresses
(MJAs) within the bitstream. The relocation process can only be performed
horizontally. The necessary manipulation, including the update of the CRC

6 Markus Koester, Heiko Kalte, Mario Porrmann, and Ulrich Riickert

(Cyclic Redundancy Check) values within the bitstream, is implemented in
hardware and does not cause any extra time overhead. The architecture and
the hardware implementation of the REPLICA filter as well as an example
application are published in [5].

2.2 Relocation Time Overhead

A key performance issue in a reconfigurable system approach is the time over-
head to place or relocate a hardware task. The relocation time in our hardware
implemented relocation approach consists of three times: the state capture time,
the de-allocation time, and finally the allocation time. The bitstream manipu-
lation processes of state inclusion and task relocation are assumed to be com-
pletely hidden in the task allocation time, which has already been shown for
the task relocation with the REPLICA filter in [5].

The total time for relocating a task depends on the number of utilized
CLB columns Ncois, the frame size Npyte/prame, and the Select MAP frequency
fsetectrap- For each CLB column, which is to be relocated, 4 frames have to
be read for capturing the states of the flip-flops (see Eq. (2)). The first frame
of every new read access is always a pad frame, which does not contain any
significant data. Hence, in order to capture all states of a CLB column 2-4 =8
frames have to be read and the total time for capturing the states of the flip
flops is:

8+ Neois * NByte/Frame
Tcap =

(4)

fSelectMap

For the allocation of a task 48 frames per task column must be written (see [11]
for further details) and the allocation time of a task is:

48 - Neois - NByte/Frame

(5)

alloc =
fSelectMap

If the time for allocating and de-allocating a task is assumed to be the same
(Tiet = Tatioc), the time for a complete task relocation can be approximated
by:

104 - Neois - NByte/Frame

Treloc ~ Tcap + Talloc + Tdel =
fSelectMap

(6)

Equation (6) assumes a de-allocation process for every task relocation, but as
described in Section 3, the de-allocation can be avoided if it is ensured that the
task area is overwritten anyway (e.g. during a defragmentation process).

In order to give an overview of realistic relocation times we have imple-
mented several designs on an XCV2000E device (see [6] for further details).
The frame length of this device is 196 bytes and the Select MAP frequency is
50 MHz. The task size ranges from 1 (8-bit divider) to 36 (RISC-CPU) CLB
columns (30% of the device) and the overall relocation time ranges from 0.4 ms

Defragmentation Algorithms for Partially Reconfigurable Hardware 7

(1 CLB column) to 14.8 ms (36 CLB columns). For each task the time for cap-
turing the states is only 8.2% of the complete relocation time. This is because
the de-allocation and allocation time outweighs the state capturing process.

In the following section various run-time defragmentation algorithms are
discussed, that consider the underlying mechanisms and timing models as de-
scribed in this section. By using the approximation of the relocation times,
simulations of a run-time defragmentation can be performed under realistic
timing constraints.

3 Defragmentation Algorithms

In dynamic reconfigurable systems recurrent allocations and de-allocations of
various sized tasks cause a so called external fragmentation, i.e., the contigu-
ous regions of unused reconfigurable cells gradually become scattered in small
fragments all over the FPGA. An important criteria for the placement of a re-
quested hardware task is the largest contiguous region of unused reconfigurable
cells. Any hardware task larger than that region cannot be placed. A solution to
increase the size of the region is to apply run-time defragmentation, i.e., to re-
locate currently configured hardware tasks aiming to cluster the unused cells in
one contiguous region. In [3] Diessel et al. described the one-dimensional order-
preserving compaction used for defragmentation in 2D system approaches. The
idea of one-way one-dimensional order-preserving compaction is sliding the al-
located hardware tasks to be compacted in a single direction along a single
dimension while preserving their relative order. The concept of this algorithm
can be adapted to the 1D system approach described in [7] since hardware tasks
are inherently placed in a single dimension. Algorithm 1 is showing the principle
of one-way one-dimensional order-preserving compaction. Consider a set of al-
located hardware tasks M = {m1, ma,...}. In the one-dimensional approach the
position z(m) of a hardware task m € M can be fully described by the leftmost
cell column of the task. The width w(m) of a hardware task can be described
by the number of cell columns that are used by the task. The defragmentation
according to Algorithm 1 is performed within the so called defragmentation
area from column is¢qr+ to column %epng. Myefrag is the set of hardware tasks
which are located within the defragmentation area (line 1). 4.y, is the currently
selected column for the placement of the tasks and is initialized by the value
iend (line 2). Inside the loop (lines 3-8) the task m is selected, which is located
rightmost within the defragmentation area (line 4). The selected hardware task
m is relocated by sliding it rightmost within the defragmentation area (lines
5-6). After relocation, the hardware task m is removed from the set Myefrqq
(line 7) and the loop is repeated until all tasks are compacted at the right. As
a result of the defragmentation, a single region with unused reconfigurable cells
is located starting from position isq.¢-

Although applying the defragmentation to the whole FPGA will result in
an optimal situation with no fragmentation, where all unused cells are located

8 Markus Koester, Heiko Kalte, Mario Porrmann, and Ulrich Riickert

[] unused cell [used cell [] area of module

defrag. area

TTTT LTI T I T T I T T TTT]
5 10 15

5 istart 10 feng 15 5 listart 10 feng 15

(a) Before defragmentation (b) Selected defrag. area (c) After defragmentation

Fig. 2. Example for a locally defragmentation using the 1D system approach.

in a single block, probably all hardware tasks need to be relocated, which will
cause a large reconfiguration overhead.

The defragmentation time is derived by the sum of the relocation times of
the hardware tasks that are located within the defragmentation area. According
to Section 2.2 the relocation time of a hardware task basically depends on the
SelectMAP frequency and the task size (number of cell columns). While the
Select MAP frequency is given by the hardware architecture, the only parameter
that influences the time for defragmentation is the number of cell columns
to be relocated. In order to avoid a long defragmentation time with a large
reconfiguration overhead, it is therefore necessary to keep the number of cell
columns to be relocated as low as possible.

Whenever a requested hardware task cannot be placed due to fragmentation,
sometimes only a few tasks need to be relocated to allow a placement. Hence,
to reduce the reconfiguration overhead, the defragmentation can be performed
only locally by selecting a suitable defragmentation area. The selection of the
defragmentation area can be influenced by the following objectives:

Task Movements: If a requested hardware task m cannot be placed due to
fragmentation, one objective for the defragmentation can be to minimize the
number of hardware task movements. For this, we need to define the availability
vector:
. 0 if cell column ¢ is used
b(i) = { 1 if cell column ¢ is unused (7)

Consider w(m) is the width of the requested hardware task m, then the bounds
of the defragmentation area can be found by solving the following optimization
problem:

lend
Minimize |Mgefrag| subject to Z b(n) = w(m).

N=1tstart

Column Movements: Minimizing the hardware task movements as described
above does not necessarily lead to the least reconfiguration overhead, since the

Defragmentation Algorithms for Partially Reconfigurable Hardware 9

Input Set of allocated hardware tasks M = {m1, ma, ...}, position of the tasks z(m)
(origin:left), width of a task w(m), boundaries of the defragmentation area isiart
and ienq under the condition b(ieng) = 1 and b(istart) = 1.

Output New positions Z(m) of the tasks within the defragmentation area.

Maefrag — {m|m e M A igart < z(m) A z(m)+w(m) < iena}
Leur < fend
while Mycfrag # {}
select an m € Mycfrqy with maximum x(m)
teur — feur — w(M)
Z(m) < teur + 1
Mdef’ra,g — Mdefrag \m
end while

Algorithm 1: 1D defragmentation.

hardware tasks in Mgcfrqq can be large and therefore cause a long reconfigu-
ration time. Another approach is to consider the required column movements
rather than the required hardware task movements. In this case, the bounds of
the defragmentation area can be found by solving a similar optimization prob-
lem:

lend
Minimize %eng — tstart SUbject to Z b(n) = w(m).

N=istart

Cost: Apart from configuration aspects such as column or hardware task move-
ments mentioned above, the bounds of the defragmentation area can be derived
with respect to parameters like, e.g., priorities of the allocated hardware tasks,
or the expected remaining time of the allocated hardware tasks.

Let us assume the function p(m) € [0, 1] describes the priority of the hard-
ware task m. If p(m) = 0 the hardware task m has the least priority and
if p(m) = 1 the hardware task m has the highest priority. In order to find
a defragmentation area with a low overall priority, the following optimization
problem must be solved:

lend
Minimize Z p(m) subject to Z b(n) = w(m).

MEMgefrag N=lstart

Regardless of the chosen objective — by solving one of the described optimiza-
tion problems and moving all allocated hardware tasks within column 4.+ and
column 4,4 to the right as described by Algorithm 1, the requested hardware
task m can be placed at column 4zq,¢.

An example of the defragmentation is shown in Figure 2. Consider a re-
quested hardware task m with the width w(m) = 4 and the reconfigurable
architecture is in a configuration as shown in Figure 2(a). In the current con-
figuration the placement of m is not possible although enough free configurable

10 Markus Koester, Heiko Kalte, Mario Porrmann, and Ulrich Riickert

cells are available. Applying the defragmentation with respect to minimal col-
umn movements results in a defragmentation area as shown in Figure 2(b) with
Istart = 7 and lenpg = 12. After defragmentation the allocated hardware task
within the defragmentation area is located rightmost, such that an unused re-
gion for placing the requested hardware task m is located at position igsqrt = 7
as shown in Figure 2(c).

4 Simulation Results

The defragmentation algorithms specified in Section 3 have been implemented in
the Simulation Framework for Analyzing Reconfigurable Architectures (SARA).
SARA is a discrete event simulator introduced in [4], which enables a realistic
simulation of system approaches for partially reconfigurable architectures.

The allocation of a hardware task is performed under real world conditions,
i.e., the configuration is done by simulating a Select MAP interface at a clock
frequency of 50 M Hz. Only a single hardware task can be configured or re-
moved at a time. The hardware tasks used in the simulations are considered
to be implemented on an XCV2000E FPGA and are based on the synthesis
results mentioned in [6]. The hardware task size ranges from 1 CLB column (8-
bit divider) to 36 CLB columns (RISC-CPU). Each simulation has a length of
4 sec, while within this 4 sec randomly 200 hardware tasks are requested to be
placed on the FPGA. Hardware tasks that cannot be placed due to unavailable
FPGA resources will not be placed again later. Defragmentation is initiated,
whenever a hardware task cannot be placed due to unavailable contiguous un-
used CLBs, although the total number of unused CLBs is larger than the size of
the requested hardware task. The online placement of a hardware task is done
by the Best-Fit algorithm [2]. It is possible to use arbitrary execution times
for the hardware tasks. However, for the discussed simulations we decided that
the execution times of the hardware tasks linearly depend on the size of the
hardware task (e.g. 8-bit divider: 4 ms, RISC-CPU: 115 ms). After execution
the hardware tasks are removed from the FPGA as soon as the configuration
device is available. In this work we consider defragmentation to be performed
as follows:

The relocation is realized as described in Section 2.1. At the beginning the
clocks of the hardware tasks that are located within the defragmentation area
(Mgefrag in Alg. 1) are stopped. Subsequently, the state information of the
hardware tasks are captured and stored by the configuration device. Then the
hardware tasks are relocated to the new positions, which are calculated by the
defragmentation algorithm presented in Section 3. During relocation the pre-
viously captured states are restored, so that no extra time for the state write-
back is necessary. After all hardware tasks are located at their new positions
the requested hardware task is placed. Finally, previously used CLB columns,
which still contain old configuration data, are erased by a corresponding empty

Defragmentation Algorithms for Partially Reconfigurable Hardware 11

Device Utilization (mean) Rejected Modules (mean)
CLK cont No Complete| Local No Complete| Local
[MHz] || Defrag. | Defrag. | Defrag. || Defrag. | Defrag. | Defrag.
10| 24,88%| 30,78%| 26,89%|f 34,16%| 36,01%| 34,72%
25| 32,63%| 37,14%| 35,95%| 18,08%| 19,40%| 17,45%
50| 34,25%| 36,91%| 37,08%| 14,45%| 13,54%| 12,03%
100|| 34,91%| 38,27%| 38,25%|f 13,50% 8,70% 8,70%
(no)|| 37,85%| 38,64%| 38,64%) 9,09% 7,25% 7,25%

Table 1. Device utilization and rejected hardware tasks of the simulations.

bitstream. Now that the defragmentation is done, the clocks of the relocated
hardware tasks are started again.

We consider two different defragmentation algorithms. In the first defrag-
mentation algorithm a complete defragmentation is performed by considering
the whole FPGA area as the defragmentation area. The second defragmenta-
tion algorithm selects the defragmentation area with the objective of minimal
column movements to allow a placement of the requested hardware task. There-
fore, only a local defragmentation is performed.

The simulations have been performed with complete defragmentation, local
defragmentation and without defragmentation. For a comparison we considered
the metrics device utilization and rejected hardware tasks. The device utiliza-
tion v = Negecor.Bs/NorLps 1s the number of CLBs of the currently executing
hardware tasks (NezecorBs) compared to the total number of CLBs (N Bs).
In the simulations we used a XCV2000E which has Norgs = 80 - 120 = 9600.
The metric rejected hardware tasks p = Nyeject/Nhardwaretasks 18 the number of
unplaceable hardware tasks (Nyeject) divided by the total number of hardware
tasks in the simulation (Npardwaretasks)-

In the simulations we have varied the configuration device clock frequency in
order to change the ratio of the configuration times to the execution times of the
hardware tasks. The simulation results are shown in Table 1. At a configuration
clock speed of 10 M H z defragmentation has a negative effect on the percentage
of rejected hardware tasks. In all simulations approximately every third hard-
ware task cannot be placed. However, the simulation with no defragmentation
has the least number of rejected hardware tasks.

At a faster configuration clock speed of 25 M H z the local defragmentation
has the least number of rejected hardware tasks, while the complete defrag-
mentation results in the largest number of rejected hardware tasks. In this
simulation local defragmentation showed an improvement of the number of re-
jected hardware tasks compared to no defragmentation. At a configuration clock
speed of 100 M H z both defragmentation algorithms produced nearly the same
simulation results. Although the selected XCV2000E device does not support
that configuration clock speed, we intended to analyze the influence of short
configuration times compared to relatively long execution times of the hard-
ware tasks. In this simulation there is the largest improvement of the number

12 Markus Koester, Heiko Kalte, Mario Porrmann, and Ulrich Riickert

of rejected hardware tasks compared to no defragmentation. By assuming that
no configuration time is needed and tasks can be configured in 0 sec still 9, 05%
of the tasks cannot be placed and with defragmentation still 7,25% of the tasks
are rejected.

In most of the simulations the complete defragmentation leads to the largest
device utilization. One reason for this is that hardware tasks are suspended
longer due to the higher reconfiguration overhead of complete defragmenta-
tion. Therefore, they remain longer on the FPGA and cause a higher device
utilization. But this does not result in fewer hardware task rejections.

5 Conclusion

In this paper we have described our approach to run-time relocation. Hard-
ware tasks can be placed along a one-dimensional communication structure by
manipulating the partial bitstream during configuration of the hardware task.
When relocating a hardware task the internal state information is preserved
by a state extraction and state inclusion filter. To save the internal states no
extra hardware structure have to be added to a hardware task and there is no
need to have detailed knowledge about the internal structure or behavior of the
hardware task.

By using our hardware task relocation and context saving methods, run-time
defragmentation can be realized. We have described a defragmentation method
with the objective to minimize the reconfiguration time overhead. We have im-
plemented the defragmentation method in a simulation framework. Simulation
results have shown: If the configuration time of a task equals the execution time
of the task defragmentation is not beneficial. If the execution time of a task is
greater than the configuration time of the task, local defragmentation becomes
useful. In any simulation local defragmentation performed better compared to
complete defragmentation.

Acknowledgment

This work was partially supported by the Graduate College 776 ” Automatic
Configuration in Open Systems”, the Collaborative Research Center 614 ”Self-
Optimizing Concepts and Structures in Mechanical Engineering” of the Uni-
versity of Paderborn, and the Research Fellowship Programm of the German
Research Foundation (DFG).

References

1. K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template placement for re-
configurable computing systems. IEEE Design and Test of Computers, Vol. 17,
No. 1:68-83, 2000.

10.

11.

Defragmentation Algorithms for Partially Reconfigurable Hardware 13

E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approxzimation algorithms. PWS
Publishing Company, 1997.

O. Diessel and H. ElGindy. Run-time compaction of FPGA designs. In Field-
Programmable Logic and Applications. 7th Int. Workshop, volume 1304, London,
U.K., 1997. Springer.

H. Kalte, M. Koester, B. Kettelhoit, M. Porrmann, and U. Riickert. A comparative
study on system approaches for partially reconfigurable architectures. In Proc.
of the Int. Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA 04). CSREA Press, 2004.

H. Kalte, G. Lee, M. Porrmann, and U. Riickert. Replica: A bitstream manipula-
tion filter for module relocation in partial reconfigurable systems. In Proc. of the
19th International Parallel and Distributed Processing Symposium, 2005.

H. Kalte, M. Porrmann, and U. Riickert. Study on column wise design compaction
for reconfigurable systems. In Proceedings of the IEEE International Conference
on Field Programmable Technology (FPT’04), 2004.

H. Kalte, M. Porrmann, and U. Riickert. System-on-programmable-chip approach
enabling online fine-grained 1D-placement. In 11th Reconfigurable Architectures
Workshop (RAW 2004), Santa F, New Mexico, 2004.

H. Simmler, L. Levinson, and R. Manner. Multitasking on FPGA coprocessors.
In Proceedings of the 10th International Workshop on Field-Programmable Logic
and Applications, pages 121-130, London, UK, 2000. Springer.

M. Ullmann, M. Hiibner, B. Grimm, and J. Becker. An FPGA run-time system for
dynamical on-demand reconfiguration. In Proc. of the 18th International Parallel
and Distributed Processing Symposium. IEEE Computer Society, 2004.

H. Walder and M. Platzner. Non-preemptive multitasking on FPGAs: Task place-
ment and footprint transform. In Proc. of the Int. Conference on Engineering of
Reconfigurable Systems and Architectures, pages 24-30. CSREA Press, 2002.
Xilinx Inc. Application notes 151. Virtex series configuration architecture user
guide, 2000.

