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Abstract. In highly parallel Multi-Processor System-on-Chip (MPSa@sign
stages, interconnect performance is a key optimizatiogetaiTo effectively
achieve this objective, true-to-life IP core traffic mustibjected and analyzed.
However, the parallel development of MPSoC components raage IP core
models to be still unavailable when tuning communicatiorigrenance. Tradi-
tionally, synthetic traffic generators have been used tocovee such an issue.
However, target applications increasingly present nitatrexecution flows
and synchronization patterns, especially in presenced#nlying operating sys-
tems and when exploiting interrupt facilities. This prdgenakes it very diffi-
cult to generate realistic test traffic. This paper presargslection of applica-
tion flows, representative of a wide class of applicatiorthwomplex interrupt-
based synchronization; a reference methodology to sptih sypplications in
execution subflows and to adjust the overall execution stigased upon hard-
ware events; a reactive simulation device capable of ctyreeplicating such
software behaviours in the MPSoC design phase. Additignak validate the

proposed concept by showing cycle-accurate reproducfiapreviously traced
application flow.

1 Introduction

The design space exploration for the interconnect fabrignismportant but time-
consuming step in designing a multiprocessor SoC (MPSo&)ebding on the appli-
cation and the processing cores, the communication acthitemay need to support
wide ranges of traffic patterns, from bandwidth-intensiems$actions such as cache
refills to latency-critical transactions such as semaphooesses or interrupt events.
Unfortunately, areliable analysis and optimization pssaequires cycle-true IP simu-
lation models of both cores and interconnects to be simedtasly available and ready
to interoperate, which is only possible late in the desigw.flo
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Fig. 1. Bus congestion over time for a multitasked application.

To cut on development time, Traffic Generators (TGs) are lysdaployed in-
stead of IP core models until the very last design stages.CB@B®perate in a variety
of ways, for example by creating synthetic traffic patterosoading to some parame-
ters €.g.bandwidth and latency distributions), or by playback ofrpoerded trans-
action traces collected on a reference system. Unfortlynate former approach is
only a gross estimation of the real traffic patterns that ballinjected into the SoC,
and fails to correctly capture the time distribution of ti@épikes which would occur
in a real application. As for the latter approach, any prerged trace can be signif-
icantly different from the traffic that should actually tagkace, due to the eventual
deployment of different cores and interconnect architestuFor example, synchro-
nization by semaphore polling can require an unknown amofunis accesses before
getting lock ownership, and the resulting bus congestidmaigl to model with tra-
ditional trace-based mechanisms. Our approach is significdifferent; in that, we
abstract away the computation aspect of the IP core, bustieally render externally
observable communication behaviour, including respottsggerrupt events.

Modelling application flows in response to inherently agyionous communica-
tion events such as interrupts can be challenging, paatigilon a general-purpose
processor, where it may involve Operating System (OS)aatens. While interrupts
themselves typically have a low impact on communicatiooueses, interrupt han-
dling can cause severe network traffic peaks. For exampdsigere 1, where the bus
usage over time is reported for a shared bus MPSoC. In theiplo¢tween a boot and
a shutdown stage, it is easy to recognize a time-sliced tasked benchmark where
two tasks alternate; one of them has heavy bandwidth regeinés, while the other one
mostly operates in cache. Here, the context switch is treggyby an interrupt event,
which subsequently causes a skew in the application flow.hissexample shows,
proper modeling of system tasks, including their commuioceand synchronization
properties, is a key enabling factor in understanding timgract on interconnect re-
sources, and consequently perform interconnect and sygtéimization. Any model
describing IP core traffic should feature extenswactive capabilitiesto mimic the
behaviour of the core even when facing unpredictable enmiental events and net-



Fig. 2. Simulation Environment with bit- and cycle-true: (a) IPres, (b) TG model.

work performanceg.g.due to resource contention, bus arbitration and routinigiesl
Sample applications needing such complex modeling willHzews in Section 3.

In this paper, we presentteaffic generation modekencompassing an instruction
set and a programmable simulation device, that attemptsriergte SoC traffic com-
pliant with the behaviour of the IP cores that it is replaciRagure 2). The proposed
cycle-true TG approach allows the separation of computatiam communication con-
cerns, so that the designers can focus on accurate explocdtihe SoC interconnect.
This model allows both for the generation of synthetic tcadiind for the reproduction
of prerecorded traffic streams, but in any case is capableatistically adjusting its
output depending on complex external synchronizationtsyéke semaphore interac-
tion and interrupt notification. The TG device is a very siaipistruction set processor,
and is attached via a bit- and cycle-true OCP 2.0 [2] port&dSbC interconnect. Our
approach is significantly different from a purely behaved@ncapsulation of applica-
tion code into a simulation device, in analogy with TLM maddgt we aim at faithfully
replicating traffic patterns generated bygracessor running an applicationot just by
the application. This includesg.accurate modeling afache refills

While the TG that we propose can be used in the same way atdradiTGs, a
novel feature of our approach is that any knowledge aboubéhaviour of the actual
system can be thoroughly taken into account and rendereccbynsmofTG programs
The device programmability allows for the implementatidrentire communication-
dominated SoC applications on top of it, including ones thake use of OS facilities.
Resulting traffic patterns closely resemble those of theaggalication running on top
of the real IP core, while accurately handling the synchratibn and intercommu-
nication issues typical of multiprocessor systems. We $dmth on the dynamics of
core-initiated communication (reads, writes) [10] and gstem-initiated messages,
such as interrupts [3].

As a demonstration of the flexibility and accuracy of the mpae will show how
the proposed flow can be applied to a complex test case, witbrgepurpose ARM
processors running an OS in a multicore environment. The B@eatis integrated into
MPARM [9], a homogeneous multiprocessor SoC simulatiorf@ien, which pro-
vides a bit- and cycle-true SoC simulation environment andvbich a port of the
RTEMS [1] real-time OS is available. After performing a nefiece simulation, where
execution traces were collected, we will process them tivelsuitable TG programs
capable of capturing fundamental application flow propsréind synchronization pat-



terns. It is essential to notice that such programs are regtiy@translations of the
original traces, but instead that they feature significaattiveness to external events.
By subsequently replacing ARM cores with traffic generatarsiing such programs,
we will analyze the accuracy of the proposed TG concept.

The rest of the paper is organized as follows. Section 2 pteselated work. Rel-
evant interrupt-aware applications to be modeled are digzliin Section 3. Section 4
presents details of the proposed implementation of th&drgénerators, specifically
stressing flow control handling in presence of interrupéxti®n 5 describes possible
ways to write programs for execution on top of TGs, and Sadihighlights an ex-
ample TG deployment flow. Section 7 presents simulationtesinich document the
potential of our TG approach. Finally, Section 8 providesalosions.

2 Previous Work

The use of traffic generators to explore NoC architecturastisiew.

In [8], a stochastic model is used for NoC exploration. Tedffehavior is statisti-
cally represented by means of uniform, Gaussian, or Poidsributions. Statistical
approaches lack accuracy and can potentially exhibit Edoas among system activ-
ities which are unlikely in a SoC environment. Further, atyonous events such as
interrupts are not easy to represent by these stochastielmddhe simplicity and sim-
ulation speed of stochastic models may make them valuabiegipreliminary stages
of NoC development, but, since the characteristics (fonetiity and timing) of the IP
core are not captured, such models are unreliable for ogptignNoC features.

A modeling technique which adds functional accuracy andality is transaction-
level modeling (TLM), which has been widely used for NoC amdSlesign [4, 5, 6,
11,12, 14].In[11, 12], TLM has been used for bus architecexploration. The com-
munication is modeled as read and write transactions whielinaplemented within
the bus model. Depending on the required accuracy of thelaiion results, timing
information such as bus arbitration delay is annotatediwitiie bus model. In [12]
an additional layer called “Cycle Count Accurate at TratisadBoundary” (CCATB)
is presented. Here, the transactions are issued at the saneeas that observed in
Bus Cycle Accurate (BCA) models. Intra-transaction vidipis here traded off for a
simulation speed gain. While modeling the entire systemtaglaer abstraction level
i.e. TLM, both [11] and [12] present a methodology for presenéeguracy with gain
in simulation speed. Such models are efficient in capturegular communication
behaviour, but the fundamental problem of capturing systepredictability in the
presence of interrupts is not addressed.

In this chapter, we illustrate an accurate framework whichapable not only of
modeling processor-initiated communication in preserid¢atency uncertainties [10],
but even the processor behaviour when responding to fufyndamsonous system
events, such as interrupts. As is demonstrated in [13], tigact of interrupts can
be significantly different for different OSs and network @ngzations. By providing
cycle- and bit-true ports to the SoC communication backbane a few flow control
instructions, we are able to accurately model the IP’s reawess, which is essential
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Fig. 3. Execution flow of interrupt-aware applications. DotteceBrrepresent suspended tasks.

for realistic fabric performance evaluation. Our methadgi for application model-
ing, originally presented in [3], takes into account makking and the impact of an
underlying OS, and is capable of representing a wide ranggméhronization pat-
terns. Additionally, we have deployed the flow in a test emvinent, and in Section 7
we will show this flow to be over 98% accurate and providing eeslup that, while
nominal, favourably compares to [12].

3 Interrupt-Aware Synchronization Scenarios

Many communication and synchronization patterns are plesamong tasks in a mul-
tiprocessor environment. This is especially true wherrinfgs are involved, since in-
terrupts represent intrinsically asynchronous, systeitiated communication towards
IP cores. To analyze such a wide variety of patterns [15],deatified three parallel
applications, interacting both among their tasks and with underlying OS, which
highlight interrupt handling scenarios typical of realtgyss. These applications per-
form relatively light computation but exhibit non-triviflow patterns, which makes
them much more difficult to model than computation-inteagasks. As such, these
test cases are used to derive requirements of the most typmaupt-based flow con-
trols.
The application templates we identified are:

— A multi-tasking application“fask” ), as in Figure 3(a). In this case, two tasks run
on each processor; a variable amount of system processgrbenaresent. No ex-
plicit communication is performed between tasks, neith&at nor inter-core. The



context switching between tasks is performed by the OS iporese to an external
interrupt, which may typically be sent by a timer device slirnportant to notice
that, if tasks are asymmetric, any rescheduling transiateglifferent traffic work-
loads for the communication fabric. This effect must be cegad.

— A pipelined parallel applicatiorigipe” ), as in Figure 3(b). For this case, a single
task is mapped onto every system core. Tasks are progranomechimunicate with
each other in a point-to-point producer-consumer fashewary task acts both as a
consumer (for an upstream task) and as a producer (for a d@anstask), therefore
logical pipelines can be achieved by instantiating mudtigres. Synchronization is
needed in every task to check the availability of input daté af output space be-
fore attempting data transfers. To guarantee data ingegéimaphores are provided
to assess such availability. For example, the consumekshesemaphore before
accessing producer output. If this semaphore is foundlhjitiocked, a continuous
polling might be attempted, but at the expense of wastedggraerd saturation of
the system interconnect. Instead, we implemented a mesthamhich, in such a
scenario, suspends the consumer task and resumes it ontydateeis ready.

— Anl/O-aware applicatiorf(O” ), as in Figure 3(c). A single task is running on every
system processor. These tasks do not communicate with e¢laeh and perform
independent computation. However, at random times, arsylé@ device sends an
interrupt to all of the cores to signal data availability. response to this signal,
all of the processors execute an interrupt handler routihéch moves data blocks
across the system interconnect. When such handling is edetpltasks resume
their normal operation.

Evenin these three experimental applications, the efégiiired to accurately cap-
ture the interrupt propagation (and therefore the syndhadion schemes) is not triv-
ial.

The applications described above are timing-sensitivevéder, within the single
task, the overall performed computation does not changentkpg on the order of
arrival of external events, and data dependencies can ligredpOnly the amount
of computation between each pair of events can vary. Shaulénaironment con-
straint not be satisfied, tasks always enter some form ofesisspn, albeit in very
different manners in each of the three examples. So, whikxanution trace of these
benchmarks shows varying traffic patterns depending ornrreadtémings, the major
computation blocks are still recognizable.

Even though tasks with even more timing-dependent behadmexist, modeling
such tasks requires an intra-task notion of context swigghhich we omit here.
It is worth stressing that, though not all interrupt-drivieehaviours are represented,
the applications we try to analyze here are definitely repriegive of a vast class of
computation. The model we will propose can capture all suyarachics with proper
insight on the mechanics of the applications and the OS.



Instruction Size Description
(Words)

OCP Instructions
Read( Addr Reg) 1 Read from an address
Wite(AddrReg, DataReg) 1 Write to an address
1
1

Bur st Read( Addr Reg, Count Reg) Burst read an address set
Burst Wite(Addr Reg, DataReg, Count Reg) Burst write an address set
Other Instructions
Set Regi ster(reg, val ue) 2 Set register (load immediate)
If(argl, arg2, operand) 2 Branch on condition

Jump( | abel) 1 Branch direct

I dl e(counter) Wait for given no of cycles

=

Table 1. OCP master TG instruction set.

4 Support for Application Flow Replication

In this section, we describe (i) an instruction set whichdpable of replicating the
traffic patterns generated by an IP core, (ii) an implemeértatf it by means of a
Traffic Generator Instruction Set Simulator (TG ISS), arni)l én example program
written to exploit TG capabilities. The whole approach gigantly extends [10] to
support interrupts and task switching.

The TG has an OCP master interface, and it can emulate IP aoresg one or
multiple tasks with and without OS. The TG is able to issuequsace of commu-
nication transactions separated by idle wait periods,dasethe programmed flow
control conditions. In order to handle interrupts and ogyerchronization events, it is
reactive for example, if necessary, it is able to switch betweengagion notification.
The TG is implemented as a non-pipelined processor with w siemple instruction
set, as listed in Table 1. The processor has an instructiomaneand a register file for
each task, but no data memory. The instruction set condistgmup of instructions
which issue OCP transactions and a group of instructiowsvalg the programming
of conditional sequencing and parameterized waits. Witiénregister file, some reg-
isters are designated as special purpose for flow controhgement; their usage is
described in Table 2. The rest are general purpose regiateigheir number can be
configured.

Of the interrupt-related registersnt r pMaskReg can be used to mask critical
sections of the TG program from interrupts. As seen in Se@iodifferent applica-
tions require different responses to interrupt eventseikample, inO modeling, the
main task is always interruptible, while once in the OS’eintipt handling routine, ad-
ditional (nested) interrupts should be disablegijre modeling, the interrupt handling
is more specialized: interrupts are only enabled afterablethas suspended, while they
are masked during normal operatiomt r pReg holds the base location of the inter-
rupt handling code within the TG progra®W nt r pReg allows the TG program to
assert “software interrupts”, to which the TG model will cewith jumps to different
parts of the program. Software interrupts are managedialigrby the TG model. In
contrast, hardware interrupts are routed through extevinas from the NoC, and are



|Special Register|Usage

Interrupt Registers
I nt r pMaskReg|Masks or unmasks interrupts
I ntrpReg Stores a backup of the program counter
SWntrpReg |Sends a software interrupt from within the program
Other Registers
Thr dl DReg Stores the ID of the current task
RDReg Stores the data value returned by BRead( Addr Reg) instruction
Rt nReg Stores a jump target location

Table 2. TG Special Registers.

available on the sideband signa® at er r upt ) of the OCP interfacelhr dI DReg,
RDReg andRt nReg provide support for specific flow control functions.

Within the TG ISS, by maintaining copies of the Program CeufPC) and reg-
ister file associated with each subtask, the context switchpon an interrupt event
can be realized. Upon interrupt notification, the valueshef PC and register file of
the interrupted task are saved, the PC is updated with a vahdfrom the special
registerl nt r pReg, and the register file values for the designated task are=thdd
is afterwards possible to safely exit from the interrupttim@iand resume a suspended
task by jumping to the backup value of the source PC and riglgdlde backup of the
register file.

Let us now consider an example of a TG program. In Figure 4ogram to model
thelO application is sketched; the interrupt handling routineaged together with
the task itself. The TG program starts with a header desgitiie type of core and
its identifier. The next few statements express initialraof the register file. The PC
is increasing by either one or two locations along the tréus;is because some of
the opcodes in Table 1, namedgt Regi st er andl f , require longer operands and
therefore fill two program slots. The main body of the TG pesgris composed of
sequences of bus reads and writes, interleaved with registesses (mostly to set up
transaction address and data). Flow control instructioesreserted where appropri-
ate. The interrupt handling routine is located at PC 37; thise address is stored in
I nt r pt Reg, which is initialized at PC 2. Within the interrupt routinghich is the
critical section of the flow, interrupts are disabled. Updraedware interrupt event, the
TG swaps the content dfnt r pt Reg with that of PC. The TG program then executes
any OS- or programmer-driven interrupt instructions, uildéhg transactions over the
communication architecture. At the end of the flow, a sofeniaterrupt is triggered
to restore the PC to the previously interrupted locatiotrigeed froml nt r pt Reg).
The flow thus mimics Figure 3(c).

5 Coding TG Programs

Depending on IP model availability to the designer, difféar@ays exist to write TG
programs which best represent the desired type of traffic.



MASTER[<corelD>]

; Initializations
REGISTER IntrpMaskReg O ; Mask HW interrupts

BEGIN ; Comments PC
SetRegister(IntrpMaskReg, 1) ; Unmask HW interrupts|0
SetRegister(IntrptReg, 37) ; Int handler is at PC 37 |2
Idle(10) ; Idle for 10 cycles 4
SetRegister(AddrReg, 2) ; Normal flow 10
SetRegister(DataReg, 1) ; 12
Write(AddrReg, DataReg) ; 14
Jump(myPRGM) ; Jump to PC 58 36

; Continue to normal flow

; Start Interrupt Handling
IRC SetRegister(IntrpMaskReg, 0) ; Mask HW Interrupts 37

SetRegister(AddrReg, 23) ; 30
SetRegister(DataReg, 1) ; 41
Write(AddrReg, DataReg) ; 43
SetRegister(IntrpMaskReg, 1) ; Unmask HW interrupts |54
SetRegister(SWintrpReg, 1) ; Trigger SW interrupt b6

; End Interrupt Handling
; Normal Application Flow

myPRGM SetRegister(AddrReg, 11) ; 58
Read(AddrReg) ; 60
END ; 124

Fig. 4. 10 TG Program.

5.1 Trace Parsing

In this scenario, availability of a pre-existing model foetlP under study is assumed.
In this case, the approach for TG program generation goesghrtwo steps:

— Areference simulation is performed by using the avail#Bleodel, even plugged
into a different SoC platform from the target one. An exemutrace is collected.

— The trace is parsed with an off-line tool. The output of thel is the desired TG
program.

In this approach, the IP core to be modeled by the TG is agtaathilable in
advance. Nevertheless, there is a rationale for still wartt deploy the TG. The TG-
based flow might provide a quick functional yet cycle-actaiport of the IP model to
a SoC platform, in which, for whatever reas@ng.licensing or technical issues), the



IP model might not be directly or immediately suitable falelgration. Moreover, the
TG device allows for a somewhat faster system simulatioe@p&hich is valuable in
the design space exploration stage.

The off-line parsing tool must of course have some notioruabiwe traced appli-
cation in order to correctly analyze and rearrange executares into TG programs.
While this effort is not trivial, we will show its feasibiltby presenting a complete
validated cycle-accurate flow in Section 6.

5.2 Trace Parsing and Editing

In a related scenario, an IP model might be available, butay wiiffer under some
respect from the IP that will eventually be deployed in th€Sevice. The designer
may then follow a route similar to the one outlined above. e, an additional off-
line postprocessing tool might be interposed to edit therezfce trace so that it more
closely resembles that of the target IP. Some examples adtimg steps which are
possible include:

— Removing or adding bus transactions to model a more or fésgent cache sub-
system

— Removing or adding bus transactions to model a more or taspiehensive target
Instruction Set Architecture (ISA)

— Altering the spacing among bus transactions to reflecewdifit pipeline designs or
timing properties

— Grouping or ungrouping bus accesses to reflect write-kackrite-through cache
policies

The effort required to automate these kinds of trace alteratis expected to be
quite low, although the alterations themselves are verydéent on the differences
among the pre-existing and the final IP model. It is certaiahsonable to expect that
the coding time will be substantially than that required évelop or refine the target
IP model, thus allowing for earlier exploration of the irdennect design space.

In this scenario, overall cycle accuracy with respect toghentual system is of
course not guaranteed. However, the TG will still be ablestct with cycle accuracy
to any optimization in the SoC interconnect. Provided tlhat transaction patterns
are kept close to the ones of the target IP core, the approdgicresult in valuable
guidelines.

5.3 Direct Development

Of course, TG programs can be written from scratch. In thigegcthe flexible TG

instruction set allows for a full-featured traffic geneoatisystem. The availability of
built-in flow control management lets the designer implentkea same synchroniza-
tion patterns which are presentin real world applicatice® (Section 4 and [10]). Ad-
ditionally, the application chunks enclosed within syrafization points can quickly
be rendered by exploiting the flexible loop structures ptediby the TG ISS, thus

10



MCmd WR MAddr 0x01bedfbO0 MData 0x00015958 MBurstSingleRef
MBurstSeq INCR 0x4 MBurstLength 1 Time 6860265

SCmdAccept Time 6860295

Sinterrupt SFlag 0x00000001 Time 6860310

MFlag Time 6860310

MCmd WR MAddr 0x010b48dc MData 0x00000008 MBurst SingleReq
MBurstSeq INCR 0x4 MBurstLength 1 Time 6860375

SCmdAccept Time 6860385

MCmd RD MAddr 0x0100acb0 MBurstSingleReq 1
MBurstSeq INCR 0x4 MBurstLength 4 Time 6860720

SCmdAccept Time 6860730

Resp Data 0xe5901000 Time 6860760

Resp Data 0xe2411001 Time 6860780

Resp Data 0xe5801000 Time 6860800

Resp Data 0xe14f0000 Time 6860820

MCmd WR MAddr 0x0102c040 MData 0x00000000 MBurstSingleReq
MBurstSeq INCR 0x4 MBurstLength 1 Time 6860830

SCmdAccept Time 6860840

Fig. 5. Trace file snippet.

providing periodic traffic generation capabilities at keas par with those of tradi-
tional TG implementations. An alternate possibility, agnd@strated in [7], is using
the TG as an interface between formal and simulation model$ibrid environment.
Here, the TG programs are written based on guidelines peovig the arrival curves
obtained by formal analysis methods. These programs aneutted to generate com-
munication events for the simulation environment. Thus Mérsatility of our TG flow
allows for deployment in a number of situations.

6 A Test Case: A Trace-Based TG Deployment Flow

To test TG accuracy and viability, we set up a validation fl@lofving the outline
described in Section 5.1. First, the user performs a refereimulation of the target
applications where all IP cores are simulated using bit-@mie-true models to col-
lect traces from the cores’ OCP interfaces. Figure 5 showsppst of trace file. It
contains the communication event type (read, write or o), its response(s), and
its timestamp. Subsequently, these traces are conveti@d¢anresponding TG pro-
grams by dranslator. Finally, a custom assembler is used to convert the symbdic
program into a binary image which can be loaded into the T@uonson memory and
executed. The trace to TG program conversion process ysdutomated and the time
taken for this process is nominal ([10]). The validationtod TG flow is achieved by
coupling the TG with the same interconnect used for traciitly l? cores, and check-
ing the accuracy of the resulting IP core emulation. Experital results will be shown
in Section 7.

11
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Even though modeling an application in presence of intérhgndling is not
straightforward, we show an automated flow capable of caggunany synchroniza-
tion behaviours which are typical of complex systems. Thaigieer does not need
to handle them manually. Algorithms to detect such behasiouthe applications of
Section 3 are shown next.

Depending on the target application, one or more of the \ioilg pieces of in-
formation can be extracted about interrupt handling from titace file to help the
translator tool:

— the time when interrupt events occur,
— the end of an interrupt handling routine,
— the spontaneous suspension waiting for an interrupt engtilte.

The amount of annotations that can be extracted reflectseifped of access the
programmer has to the interrupt routine and to the OS interirethelO test case, the
interrupt handling is likely to be part of the functionaldfa custom device driver, and
thus we assume that the programmer has full access to botbdlesof the application
and of the interrupt handler. Therefore, trace files corttarime of occurrence of the
interrupt event; custom markerise, dummy memory accesses to specific locations)
can be appended by the programmer at the end of the interanpttihg routine. The
transactions within these bounds can be detected as iptdramdling code and be
encapsulated as such in the TG program.

In the pipe scenario, the task is interacting with the OS internals bynarily
suspending should certain conditions be true. {inding a semaphore locked). Ad-
ditionally, the task negotiates with the OS to be resumeduptrrupt receipt. The
task may also want to ignore an interrupt in the followingdition: it is possible that
the upstream producer, or the downstream consumer, nadifegtability of data or
buffer space before the actual need for such resourceg)dtize current task is still

12



busy with previous internal processing. Despite the corpiteraction, usually the
synchronization functionality required lpjpe can be achieved by properly using OS
APIs, without direct access to the interrupt handler codese exit point is therefore
assumed to be not accessible by the programmer. As a rémutinty annotations of
significance within the trace file are the synchronization{sqsemaphore checks) and
the interrupt arrival time. A TG program can thus mimic theflhown in Figure 3(b),
first by reading the semaphore location, and then by chodsiogntinue or suspend
depending on the lock. Upon resumption by hardware intéreufinal (re-)check of
the semaphore unlock can be done to ensure safe task opefétare 6 shows the
equivalent flow. In the TG program, hardware interrupts aeduto wake up from the
suspension state within OS routines, while software inf#s redirect the execution
flow towards the main task. Note thiant r pMaskReg is set to the masked state for
the regular program and OS execution, and is only unmaskednwhe suspended
state.

In thetask benchmark, the interrupt handler is typically completaly af the pro-
grammer’s control, as it is tied to the OS scheduling code. fékks are not explicitly
notified upon the receipt of an interrupt, and are just sudperand resumed by the
OS. Therefore, trace files are annotated only with the timecofirrence of interrupt
events. The TG execution toggles among tasks upon theseujite This is not very
different fromlO, but, since it is assumed for the programmer to be imposgida-
plicitly tag the handler exit point with a custom flag, thegimupt handling routine is
merged with a stage of the next scheduled task because tistatia tool has no way
to detect this jump. Additionally, control is never sporgansly released by means of
software interrupts: the previously active task is onlyurasd upon arrival of a hard-
ware interrupt. The TG ISS automatically supports contestching, as described in
Section 4, with multiple register sets.

Once critical points within the trace file are recognized, tfanslator tool accord-
ingly inserts interrupt handling routines into the TG pragis by using the TG flow
control instructions described in Section 4. The above aeatl issues in flow recog-
nition within the tracesd.g. interrupt handler code being captured as a part of the
instructions of the next task) introduce some minor inaacias, which will be quan-
tified in Section 7.

7 Experimental Results

We coded the three test cases mentioned in Section 3 as tasksg on top of an
operating system and we simulated them within the MPARM #&wawork. Each was
tested with two (2P), four (4P) and six (6P) system processartask andlO, we
devoted one of the system cores to the generation of intestrapulating the role of
a timer or an IO device; this processor is not generating angrdraffic on the bus,
and is just idling between interrupt generation events. fipe benchmark does not
need this, since interrupts are directly triggered by theestasks which perform the
computation. Subsequently, we applied the flow describeeition 6 as one of the
ways to get TG programs.
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Benchmark# IPs ARM TG
ExecutionReads Writes| Sim ||Executior] Read| Writes| Sim
Cycles Time (s)| Cycles Time (s

task 2 || 5864410|24163142529 109 || 5863463|24163142534 48
4 || 6357457/5361836200Q 205 || 6353359(53627362020 92
6 || 7029779|83134582383 299 || 6966958|82351578375 140

pipe 2 621954 {16809 48268| 9 627326 {16812 48267| 5
4 961581 (34300 98143 20 980000 (34305 98143 13

6 || 1390443|51251148243 37 1417000/51261148241 27

10 2 || 1754773|23999 78379 30 1749258|23999 78379| 15
4 || 2118506/534911180169 58 2117514|53515180169 31

6 || 2647029(829662819671 93 2647071|82989281947 53

Table 3. TG vs. ARM performance with AMBA.

Benchmarké# IPs Relative Error Speedup
Executior ReadsWrites|  (X)
Cycles
task 2 0.02% |0.00940.00%| 2.27
4 0.06% [0.02940.01%| 2.22
6 0.89% (0.949%40.69%| 2.13
pipe 2 0.86% [0.02940.00%| 1.8
4 1.92% |0.01940.00%| 1.53
6 1.91% |0.02940.00%| 1.37
10 2 0.31% {0.00%4 0.00% 2
4 0.05% |0.04940.00%| 1.87
6 0.00% |0.03940.01%| 1.75

Table 4.Relative Error and Speedups.

Table 3 shows statistics for experiments carried out witliPARM, both with
TG-injected traffic and with the original ARM cores. The figarexpress:

— the number of clock cycles required to complete a benchmerkfrom the boot to
the end of the execution of the last processor;

— the amount of bus accesses done by a core to perform a read;

— the amount of bus accesses done by a core to perform a write;

— the number of seconds taken by the simulator to completeehineark run.

Table 4 shows the relative error in execution time and nunabdius accesses
when contrasting the original execution on ARM cores andl dharaffic generators,
and simulation speedup values. Figure 7 depicts the accafaair modeling scheme,
by plotting the relative error values. Errors are due to aoroper modeling of the ap-
plication under test, which misplaces some bus accesseslgotie real cores when
mapping them onto a TG program. For example, this may hagmehus access be-
longing to an interrupt handler is mistakenly assigned ® rtiain application task
when detecting the application flow within the executiorérdn turn, such misplace-
ments result in skews of bus transactions and arbitratiehish potentially propagate
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Fig. 7. Accuracy of the execution on TGs.on the original ARM cores.

across the benchmark run, therefore causing a differentieeiriinal execution cy-
cle count. Such skews can also affect the amount of actuadduesses, for example
whenever a semaphore polling has to be performed and thegtiafithe bus access
for the semaphore release is shifted in time.

The plot shows a good match between ARM and TG runs. The tygioar, both
in execution time and bus accesses, is below 2%, resultiaddithful reproduction of
the original execution flow and traffic patterns. The neatemag amount of read and
write accesses proves the role of the TG as a powerful des@na mimic complex
application behaviour in replacement of a real IP core. Addally, the correctness of
our TG program translation is validated. Some mismatched®eabserved especially
in the execution time for theipe benchmark. These are due to minor issues in properly
pinpointing single sections of internal OS code in the ekeaurace.

Figure 8 reports the simulation time speedup achieved adeaasivantage when
running the benchmark code on TGs as opposed to ARMSSgominal gain of
1.37x to 2.27x can be observed. Ttask and1O benchmarks exhibit a higher im-
provement due the presence of an IP core which is idle for wioste time, in the
time lapses between interrupt injections. In addition,ghes benchmark is at a dis-
advantage due to a higher bus utilization (with six processéB% against 63% for
IO and 38% fortask), which shifts simulation time emphasis upon the intereantn
model. This also explains wigsk has the best speedup figures.

In terms of scalability, while it might be expected that seghg increasing num-
bers of IP cores with traffic generators should yield incireglg better performance,
this is not always true; while the absolute gain is presedtiaareasing, the relative
speedup can often decrease. The explanation for this istfthtmore cores attached
to the system bus, congestion becomes an issue and moreyctes are spent wait-
ing for bus arbitration. In this case, there is no simulatiore advantage in replacing
full-blown ISSs with traffic generators.

! Benchmarks taken on a multiprocessor X&dn5 GHz with 12 GB of RAM, thus eliminat-
ing any disk swapping or loading effect. Time measurememrewaken by averaging over
multiple runs.
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Fig. 8. Simulation speedup when replacing the original ARM coreh WiGs.

8 Conclusions

Experimental results proved the viability of a modeling eggzh which decouples
simulation and optimization of IP cores and of interconriabtics. Even when tested
under complex synchronization scenarios, including dssorus interrupts involving
OS interaction in a multiprocessor environment, the predasstruction set is able to
reproduce IP traffic with full capability to express the apation flow. Multiple ways
to write programs for this architecture are suggested, ahdraugh analysis of one of
them is presented. The accuracy of a simulation device girtyan implementation of
said instruction set is validated in a cycle-true environtiy benchmarking multiple
applications, additionally achieving a nominal but nagicke simulation speedup.

Future work will revolve around improving the accuracy ofr dlow, by more
clearly detecting sections of input traces and renderiegntlas completely separate
tasks within TG programs. We also plan on carefully studyhgimpact of changes
in modeled traffic onto the interconnect congestion andefloee on communication
latency.
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