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Abstract. In highly parallel Multi-Processor System-on-Chip (MPSoC) design
stages, interconnect performance is a key optimization target. To effectively
achieve this objective, true-to-life IP core traffic must beinjected and analyzed.
However, the parallel development of MPSoC components may cause IP core
models to be still unavailable when tuning communication performance. Tradi-
tionally, synthetic traffic generators have been used to overcome such an issue.
However, target applications increasingly present non-trivial execution flows
and synchronization patterns, especially in presence of underlying operating sys-
tems and when exploiting interrupt facilities. This property makes it very diffi-
cult to generate realistic test traffic. This paper presentsa selection of applica-
tion flows, representative of a wide class of applications with complex interrupt-
based synchronization; a reference methodology to split such applications in
execution subflows and to adjust the overall execution stream based upon hard-
ware events; a reactive simulation device capable of correctly replicating such
software behaviours in the MPSoC design phase. Additionally, we validate the
proposed concept by showing cycle-accurate reproduction of a previously traced
application flow.

1 Introduction

The design space exploration for the interconnect fabric isan important but time-
consuming step in designing a multiprocessor SoC (MPSoC). Depending on the appli-
cation and the processing cores, the communication architecture may need to support
wide ranges of traffic patterns, from bandwidth-intensive transactions such as cache
refills to latency-critical transactions such as semaphoreaccesses or interrupt events.
Unfortunately, a reliable analysis and optimization process requires cycle-true IP simu-
lation models of both cores and interconnects to be simultaneously available and ready
to interoperate, which is only possible late in the design flow.
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Fig. 1. Bus congestion over time for a multitasked application.

To cut on development time, Traffic Generators (TGs) are usually deployed in-
stead of IP core models until the very last design stages. TGscan operate in a variety
of ways, for example by creating synthetic traffic patterns according to some parame-
ters (e.g.bandwidth and latency distributions), or by playback of prerecorded trans-
action traces collected on a reference system. Unfortunately, the former approach is
only a gross estimation of the real traffic patterns that willbe injected into the SoC,
and fails to correctly capture the time distribution of traffic spikes which would occur
in a real application. As for the latter approach, any prerecorded trace can be signif-
icantly different from the traffic that should actually takeplace, due to the eventual
deployment of different cores and interconnect architectures. For example, synchro-
nization by semaphore polling can require an unknown amountof bus accesses before
getting lock ownership, and the resulting bus congestion ishard to model with tra-
ditional trace-based mechanisms. Our approach is significantly different; in that, we
abstract away the computation aspect of the IP core, but realistically render externally
observable communication behaviour, including responsesto interrupt events.

Modelling application flows in response to inherently asynchronous communica-
tion events such as interrupts can be challenging, particularly, on a general-purpose
processor, where it may involve Operating System (OS) interactions. While interrupts
themselves typically have a low impact on communication resources, interrupt han-
dling can cause severe network traffic peaks. For example, see Figure 1, where the bus
usage over time is reported for a shared bus MPSoC. In the plot, in between a boot and
a shutdown stage, it is easy to recognize a time-sliced multitasked benchmark where
two tasks alternate; one of them has heavy bandwidth requirements, while the other one
mostly operates in cache. Here, the context switch is triggered by an interrupt event,
which subsequently causes a skew in the application flow. As this example shows,
proper modeling of system tasks, including their communication and synchronization
properties, is a key enabling factor in understanding theirimpact on interconnect re-
sources, and consequently perform interconnect and systemoptimization. Any model
describing IP core traffic should feature extensivereactive capabilities, to mimic the
behaviour of the core even when facing unpredictable environmental events and net-
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Fig. 2. Simulation Environment with bit- and cycle-true: (a) IP-cores, (b) TG model.

work performance,e.g.due to resource contention, bus arbitration and routing policies.
Sample applications needing such complex modeling will be shown in Section 3.

In this paper, we present atraffic generation model, encompassing an instruction
set and a programmable simulation device, that attempts to generate SoC traffic com-
pliant with the behaviour of the IP cores that it is replacing(Figure 2). The proposed
cycle-true TG approach allows the separation of computation and communication con-
cerns, so that the designers can focus on accurate exploration of the SoC interconnect.
This model allows both for the generation of synthetic traffic and for the reproduction
of prerecorded traffic streams, but in any case is capable of realistically adjusting its
output depending on complex external synchronization events, like semaphore interac-
tion and interrupt notification. The TG device is a very simple instruction set processor,
and is attached via a bit- and cycle-true OCP 2.0 [2] port to the SoC interconnect. Our
approach is significantly different from a purely behavioural encapsulation of applica-
tion code into a simulation device, in analogy with TLM modeling; we aim at faithfully
replicating traffic patterns generated by aprocessor running an application, not just by
the application. This includese.g.accurate modeling ofcache refills.

While the TG that we propose can be used in the same way as traditional TGs, a
novel feature of our approach is that any knowledge about thebehaviour of the actual
system can be thoroughly taken into account and rendered by means ofTG programs.
The device programmability allows for the implementation of entire communication-
dominated SoC applications on top of it, including ones thatmake use of OS facilities.
Resulting traffic patterns closely resemble those of the real application running on top
of the real IP core, while accurately handling the synchronization and intercommu-
nication issues typical of multiprocessor systems. We focus both on the dynamics of
core-initiated communication (reads, writes) [10] and on system-initiated messages,
such as interrupts [3].

As a demonstration of the flexibility and accuracy of the model, we will show how
the proposed flow can be applied to a complex test case, with general-purpose ARM
processors running an OS in a multicore environment. The TG model is integrated into
MPARM [9], a homogeneous multiprocessor SoC simulation platform, which pro-
vides a bit- and cycle-true SoC simulation environment and on which a port of the
RTEMS [1] real-time OS is available. After performing a reference simulation, where
execution traces were collected, we will process them to derive suitable TG programs
capable of capturing fundamental application flow properties and synchronization pat-
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terns. It is essential to notice that such programs are not passive translations of the
original traces, but instead that they feature significant reactiveness to external events.
By subsequently replacing ARM cores with traffic generatorsrunning such programs,
we will analyze the accuracy of the proposed TG concept.

The rest of the paper is organized as follows. Section 2 presents related work. Rel-
evant interrupt-aware applications to be modeled are discussed in Section 3. Section 4
presents details of the proposed implementation of the traffic generators, specifically
stressing flow control handling in presence of interrupts. Section 5 describes possible
ways to write programs for execution on top of TGs, and Section 6 highlights an ex-
ample TG deployment flow. Section 7 presents simulation results which document the
potential of our TG approach. Finally, Section 8 provides conclusions.

2 Previous Work

The use of traffic generators to explore NoC architectures isnot new.
In [8], a stochastic model is used for NoC exploration. Traffic behavior is statisti-

cally represented by means of uniform, Gaussian, or Poissondistributions. Statistical
approaches lack accuracy and can potentially exhibit correlations among system activ-
ities which are unlikely in a SoC environment. Further, asynchronous events such as
interrupts are not easy to represent by these stochastic models. The simplicity and sim-
ulation speed of stochastic models may make them valuable during preliminary stages
of NoC development, but, since the characteristics (functionality and timing) of the IP
core are not captured, such models are unreliable for optimizing NoC features.

A modeling technique which adds functional accuracy and causality is transaction-
level modeling (TLM), which has been widely used for NoC and SoC design [4, 5, 6,
11, 12, 14]. In [11, 12], TLM has been used for bus architecture exploration. The com-
munication is modeled as read and write transactions which are implemented within
the bus model. Depending on the required accuracy of the simulation results, timing
information such as bus arbitration delay is annotated within the bus model. In [12]
an additional layer called “Cycle Count Accurate at Transaction Boundary” (CCATB)
is presented. Here, the transactions are issued at the same cycle as that observed in
Bus Cycle Accurate (BCA) models. Intra-transaction visibility is here traded off for a
simulation speed gain. While modeling the entire system at ahigher abstraction level
i.e.TLM, both [11] and [12] present a methodology for preservingaccuracy with gain
in simulation speed. Such models are efficient in capturing regular communication
behaviour, but the fundamental problem of capturing systemunpredictability in the
presence of interrupts is not addressed.

In this chapter, we illustrate an accurate framework which is capable not only of
modeling processor-initiated communication in presence of latency uncertainties [10],
but even the processor behaviour when responding to fully asynchronous system
events, such as interrupts. As is demonstrated in [13], the impact of interrupts can
be significantly different for different OSs and network organizations. By providing
cycle- and bit-true ports to the SoC communication backbone, and a few flow control
instructions, we are able to accurately model the IP’s reactiveness, which is essential
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Fig. 3. Execution flow of interrupt-aware applications. Dotted lines represent suspended tasks.

for realistic fabric performance evaluation. Our methodology for application model-
ing, originally presented in [3], takes into account multitasking and the impact of an
underlying OS, and is capable of representing a wide range ofsynchronization pat-
terns. Additionally, we have deployed the flow in a test environment, and in Section 7
we will show this flow to be over 98% accurate and providing a speedup that, while
nominal, favourably compares to [12].

3 Interrupt-Aware Synchronization Scenarios

Many communication and synchronization patterns are possible among tasks in a mul-
tiprocessor environment. This is especially true when interrupts are involved, since in-
terrupts represent intrinsically asynchronous, system-initiated communication towards
IP cores. To analyze such a wide variety of patterns [15], we identified three parallel
applications, interacting both among their tasks and with the underlying OS, which
highlight interrupt handling scenarios typical of real systems. These applications per-
form relatively light computation but exhibit non-trivialflow patterns, which makes
them much more difficult to model than computation-intensive tasks. As such, these
test cases are used to derive requirements of the most typical interrupt-based flow con-
trols.

The application templates we identified are:

– A multi-tasking application (“task” ), as in Figure 3(a). In this case, two tasks run
on each processor; a variable amount of system processors may be present. No ex-
plicit communication is performed between tasks, neither intra- nor inter-core. The
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context switching between tasks is performed by the OS in response to an external
interrupt, which may typically be sent by a timer device. It is important to notice
that, if tasks are asymmetric, any rescheduling translatesinto different traffic work-
loads for the communication fabric. This effect must be captured.

– A pipelined parallel application (“pipe” ), as in Figure 3(b). For this case, a single
task is mapped onto every system core. Tasks are programmed to communicate with
each other in a point-to-point producer-consumer fashion;every task acts both as a
consumer (for an upstream task) and as a producer (for a downstream task), therefore
logical pipelines can be achieved by instantiating multiple cores. Synchronization is
needed in every task to check the availability of input data and of output space be-
fore attempting data transfers. To guarantee data integrity, semaphores are provided
to assess such availability. For example, the consumer checks a semaphore before
accessing producer output. If this semaphore is found initially locked, a continuous
polling might be attempted, but at the expense of wasted energy and saturation of
the system interconnect. Instead, we implemented a mechanism which, in such a
scenario, suspends the consumer task and resumes it only when data is ready.

– An I/O-aware application (“IO” ), as in Figure 3(c). A single task is running on every
system processor. These tasks do not communicate with each other, and perform
independent computation. However, at random times, a system I/O device sends an
interrupt to all of the cores to signal data availability. Inresponse to this signal,
all of the processors execute an interrupt handler routine,which moves data blocks
across the system interconnect. When such handling is completed, tasks resume
their normal operation.

Even in these three experimental applications, the effort required to accurately cap-
ture the interrupt propagation (and therefore the synchronization schemes) is not triv-
ial.

The applications described above are timing-sensitive. However, within the single
task, the overall performed computation does not change depending on the order of
arrival of external events, and data dependencies can be captured. Only the amount
of computation between each pair of events can vary. Should an environment con-
straint not be satisfied, tasks always enter some form of suspension, albeit in very
different manners in each of the three examples. So, while anexecution trace of these
benchmarks shows varying traffic patterns depending on external timings, the major
computation blocks are still recognizable.

Even though tasks with even more timing-dependent behaviour do exist, modeling
such tasks requires an intra-task notion of context switching, which we omit here.
It is worth stressing that, though not all interrupt-drivenbehaviours are represented,
the applications we try to analyze here are definitely representative of a vast class of
computation. The model we will propose can capture all such dynamics with proper
insight on the mechanics of the applications and the OS.
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Instruction Size Description
(Words)

OCP Instructions
Read(AddrReg) 1 Read from an address
Write(AddrReg, DataReg) 1 Write to an address
BurstRead(AddrReg, CountReg) 1 Burst read an address set
BurstWrite(AddrReg, DataReg, CountReg) 1 Burst write an address set
Other Instructions
SetRegister(reg, value) 2 Set register (load immediate)
If(arg1, arg2, operand) 2 Branch on condition
Jump(label) 1 Branch direct
Idle(counter) 1 Wait for given no of cycles

Table 1.OCP master TG instruction set.

4 Support for Application Flow Replication

In this section, we describe (i) an instruction set which is capable of replicating the
traffic patterns generated by an IP core, (ii) an implementation of it by means of a
Traffic Generator Instruction Set Simulator (TG ISS), and (iii) an example program
written to exploit TG capabilities. The whole approach significantly extends [10] to
support interrupts and task switching.

The TG has an OCP master interface, and it can emulate IP coresrunning one or
multiple tasks with and without OS. The TG is able to issue a sequence of commu-
nication transactions separated by idle wait periods, based on the programmed flow
control conditions. In order to handle interrupts and othersynchronization events, it is
reactive: for example, if necessary, it is able to switch between tasks upon notification.
The TG is implemented as a non-pipelined processor with a very simple instruction
set, as listed in Table 1. The processor has an instruction memory and a register file for
each task, but no data memory. The instruction set consists of a group of instructions
which issue OCP transactions and a group of instructions allowing the programming
of conditional sequencing and parameterized waits. Withinthe register file, some reg-
isters are designated as special purpose for flow control management; their usage is
described in Table 2. The rest are general purpose registers, and their number can be
configured.

Of the interrupt-related registers,IntrpMaskReg can be used to mask critical
sections of the TG program from interrupts. As seen in Section 3, different applica-
tions require different responses to interrupt events. Forexample, inIO modeling, the
main task is always interruptible, while once in the OS’s interrupt handling routine, ad-
ditional (nested) interrupts should be disabled. Inpipe modeling, the interrupt handling
is more specialized: interrupts are only enabled after the task has suspended, while they
are masked during normal operation.IntrpReg holds the base location of the inter-
rupt handling code within the TG program.SWIntrpReg allows the TG program to
assert “software interrupts”, to which the TG model will react with jumps to different
parts of the program. Software interrupts are managed internally by the TG model. In
contrast, hardware interrupts are routed through externalwires from the NoC, and are
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Special Register Usage

Interrupt Registers
IntrpMaskReg Masks or unmasks interrupts
IntrpReg Stores a backup of the program counter
SWIntrpReg Sends a software interrupt from within the program

Other Registers
ThrdIDReg Stores the ID of the current task
RDReg Stores the data value returned by theRead(AddrReg) instruction
RtnReg Stores a jump target location

Table 2.TG Special Registers.

available on the sideband signals (SInterrupt) of the OCP interface.ThrdIDReg,
RDReg andRtnReg provide support for specific flow control functions.

Within the TG ISS, by maintaining copies of the Program Counter (PC) and reg-
ister file associated with each subtask, the context switching upon an interrupt event
can be realized. Upon interrupt notification, the values of the PC and register file of
the interrupted task are saved, the PC is updated with a valueread from the special
registerIntrpReg, and the register file values for the designated task are loaded. It
is afterwards possible to safely exit from the interrupt routine and resume a suspended
task by jumping to the backup value of the source PC and reloading the backup of the
register file.

Let us now consider an example of a TG program. In Figure 4, a program to model
the IO application is sketched; the interrupt handling routine iscoded together with
the task itself. The TG program starts with a header describing the type of core and
its identifier. The next few statements express initialization of the register file. The PC
is increasing by either one or two locations along the trace;this is because some of
the opcodes in Table 1, namelySetRegister andIf, require longer operands and
therefore fill two program slots. The main body of the TG program is composed of
sequences of bus reads and writes, interleaved with register accesses (mostly to set up
transaction address and data). Flow control instructions are inserted where appropri-
ate. The interrupt handling routine is located at PC 37; thisbase address is stored in
IntrptReg, which is initialized at PC 2. Within the interrupt routine,which is the
critical section of the flow, interrupts are disabled. Upon ahardware interrupt event, the
TG swaps the content ofIntrptRegwith that of PC. The TG program then executes
any OS- or programmer-driven interrupt instructions, including transactions over the
communication architecture. At the end of the flow, a software interrupt is triggered
to restore the PC to the previously interrupted location (retrieved fromIntrptReg).
The flow thus mimics Figure 3(c).

5 Coding TG Programs

Depending on IP model availability to the designer, different ways exist to write TG
programs which best represent the desired type of traffic.
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MASTER[<coreID>]
; Initializations
...
REGISTER IntrpMaskReg 0 ; Mask HW interrupts
...

BEGIN ; Comments PC
SetRegister(IntrpMaskReg, 1) ; Unmask HW interrupts 0
SetRegister(IntrptReg, 37) ; Int handler is at PC 37 2
Idle(10) ; Idle for 10 cycles 4
...
SetRegister(AddrReg, 2) ; Normal flow 10
SetRegister(DataReg, 1) ; 12
Write(AddrReg, DataReg) ; 14
...
Jump(myPRGM) ; Jump to PC 58 36

; Continue to normal flow

; Start Interrupt Handling
IRC SetRegister(IntrpMaskReg, 0) ; Mask HW Interrupts 37
SetRegister(AddrReg, 23) ; 39
SetRegister(DataReg, 1) ; 41
Write(AddrReg, DataReg) ; 43
...
SetRegister(IntrpMaskReg, 1) ; Unmask HW interrupts 54
SetRegister(SWIntrpReg, 1) ; Trigger SW interrupt 56

; End Interrupt Handling

; Normal Application Flow
myPRGM SetRegister(AddrReg, 11) ; 58
Read(AddrReg) ; 60
...

END ; 124

Fig. 4. IO TG Program.

5.1 Trace Parsing

In this scenario, availability of a pre-existing model for the IP under study is assumed.
In this case, the approach for TG program generation goes through two steps:

– A reference simulation is performed by using the availableIP model, even plugged
into a different SoC platform from the target one. An execution trace is collected.

– The trace is parsed with an off-line tool. The output of the tool is the desired TG
program.

In this approach, the IP core to be modeled by the TG is actually available in
advance. Nevertheless, there is a rationale for still wanting to deploy the TG. The TG-
based flow might provide a quick functional yet cycle-accurate port of the IP model to
a SoC platform, in which, for whatever reason (e.g.licensing or technical issues), the
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IP model might not be directly or immediately suitable for integration. Moreover, the
TG device allows for a somewhat faster system simulation speed, which is valuable in
the design space exploration stage.

The off-line parsing tool must of course have some notion about the traced appli-
cation in order to correctly analyze and rearrange execution traces into TG programs.
While this effort is not trivial, we will show its feasibility by presenting a complete
validated cycle-accurate flow in Section 6.

5.2 Trace Parsing and Editing

In a related scenario, an IP model might be available, but it may differ under some
respect from the IP that will eventually be deployed in the SoC device. The designer
may then follow a route similar to the one outlined above. However, an additional off-
line postprocessing tool might be interposed to edit the reference trace so that it more
closely resembles that of the target IP. Some examples of theediting steps which are
possible include:

– Removing or adding bus transactions to model a more or less efficient cache sub-
system

– Removing or adding bus transactions to model a more or less comprehensive target
Instruction Set Architecture (ISA)

– Altering the spacing among bus transactions to reflect different pipeline designs or
timing properties

– Grouping or ungrouping bus accesses to reflect write-backvs.write-through cache
policies

The effort required to automate these kinds of trace alterations is expected to be
quite low, although the alterations themselves are very dependent on the differences
among the pre-existing and the final IP model. It is certainlyreasonable to expect that
the coding time will be substantially than that required to develop or refine the target
IP model, thus allowing for earlier exploration of the interconnect design space.

In this scenario, overall cycle accuracy with respect to theeventual system is of
course not guaranteed. However, the TG will still be able to react with cycle accuracy
to any optimization in the SoC interconnect. Provided that the transaction patterns
are kept close to the ones of the target IP core, the approach will result in valuable
guidelines.

5.3 Direct Development

Of course, TG programs can be written from scratch. In this case, the flexible TG
instruction set allows for a full-featured traffic generation system. The availability of
built-in flow control management lets the designer implement the same synchroniza-
tion patterns which are present in real world applications (see Section 4 and [10]). Ad-
ditionally, the application chunks enclosed within synchronization points can quickly
be rendered by exploiting the flexible loop structures provided by the TG ISS, thus
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MCmd WR MAddr 0x01bedfb0 MData 0x00015958 MBurstSingleReq0
MBurstSeq INCR 0x4 MBurstLength 1 Time 6860265

SCmdAccept Time 6860295
SInterrupt SFlag 0x00000001 Time 6860310
MFlag Time 6860310
MCmd WR MAddr 0x010b48dc MData 0x00000008 MBurst SingleReq0

MBurstSeq INCR 0x4 MBurstLength 1 Time 6860375
SCmdAccept Time 6860385
MCmd RD MAddr 0x0100acb0 MBurstSingleReq 1

MBurstSeq INCR 0x4 MBurstLength 4 Time 6860720
SCmdAccept Time 6860730
Resp Data 0xe5901000 Time 6860760
Resp Data 0xe2411001 Time 6860780
Resp Data 0xe5801000 Time 6860800
Resp Data 0xe14f0000 Time 6860820
MCmd WR MAddr 0x0102c040 MData 0x00000000 MBurstSingleReq0

MBurstSeq INCR 0x4 MBurstLength 1 Time 6860830
SCmdAccept Time 6860840

Fig. 5. Trace file snippet.

providing periodic traffic generation capabilities at least on par with those of tradi-
tional TG implementations. An alternate possibility, as demonstrated in [7], is using
the TG as an interface between formal and simulation models in a hybrid environment.
Here, the TG programs are written based on guidelines provided by the arrival curves
obtained by formal analysis methods. These programs are then used to generate com-
munication events for the simulation environment. Thus, the versatility of our TG flow
allows for deployment in a number of situations.

6 A Test Case: A Trace-Based TG Deployment Flow

To test TG accuracy and viability, we set up a validation flow following the outline
described in Section 5.1. First, the user performs a reference simulation of the target
applications where all IP cores are simulated using bit- andcycle-true models to col-
lect traces from the cores’ OCP interfaces. Figure 5 shows a snippet of trace file. It
contains the communication event type (read, write or interrupt), its response(s), and
its timestamp. Subsequently, these traces are converted into corresponding TG pro-
grams by atranslator. Finally, a custom assembler is used to convert the symbolicTG
program into a binary image which can be loaded into the TG instruction memory and
executed. The trace to TG program conversion process is fully automated and the time
taken for this process is nominal ([10]). The validation of the TG flow is achieved by
coupling the TG with the same interconnect used for tracing with IP cores, and check-
ing the accuracy of the resulting IP core emulation. Experimental results will be shown
in Section 7.
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Even though modeling an application in presence of interrupt handling is not
straightforward, we show an automated flow capable of capturing many synchroniza-
tion behaviours which are typical of complex systems. The designer does not need
to handle them manually. Algorithms to detect such behaviours in the applications of
Section 3 are shown next.

Depending on the target application, one or more of the following pieces of in-
formation can be extracted about interrupt handling from the trace file to help the
translator tool:

– the time when interrupt events occur,
– the end of an interrupt handling routine,
– the spontaneous suspension waiting for an interrupt in idle state.

The amount of annotations that can be extracted reflects the degree of access the
programmer has to the interrupt routine and to the OS internals. In theIO test case, the
interrupt handling is likely to be part of the functionalityof a custom device driver, and
thus we assume that the programmer has full access to both thecode of the application
and of the interrupt handler. Therefore, trace files containthe time of occurrence of the
interrupt event; custom markers (i.e. dummy memory accesses to specific locations)
can be appended by the programmer at the end of the interrupt handling routine. The
transactions within these bounds can be detected as interrupt handling code and be
encapsulated as such in the TG program.

In the pipe scenario, the task is interacting with the OS internals by voluntarily
suspending should certain conditions be true (i.e. finding a semaphore locked). Ad-
ditionally, the task negotiates with the OS to be resumed upon interrupt receipt. The
task may also want to ignore an interrupt in the following condition: it is possible that
the upstream producer, or the downstream consumer, notifiesavailability of data or
buffer space before the actual need for such resources, because the current task is still
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busy with previous internal processing. Despite the complex interaction, usually the
synchronization functionality required bypipe can be achieved by properly using OS
APIs, without direct access to the interrupt handler code, whose exit point is therefore
assumed to be not accessible by the programmer. As a result, the only annotations of
significance within the trace file are the synchronization points (semaphore checks) and
the interrupt arrival time. A TG program can thus mimic the flow shown in Figure 3(b),
first by reading the semaphore location, and then by choosingto continue or suspend
depending on the lock. Upon resumption by hardware interrupt, a final (re-)check of
the semaphore unlock can be done to ensure safe task operation. Figure 6 shows the
equivalent flow. In the TG program, hardware interrupts are used to wake up from the
suspension state within OS routines, while software interrupts redirect the execution
flow towards the main task. Note thatIntrpMaskReg is set to the masked state for
the regular program and OS execution, and is only unmasked within the suspended
state.

In thetask benchmark, the interrupt handler is typically completely out of the pro-
grammer’s control, as it is tied to the OS scheduling code. The tasks are not explicitly
notified upon the receipt of an interrupt, and are just suspended and resumed by the
OS. Therefore, trace files are annotated only with the time ofoccurrence of interrupt
events. The TG execution toggles among tasks upon these interrupts. This is not very
different fromIO , but, since it is assumed for the programmer to be impossibleto ex-
plicitly tag the handler exit point with a custom flag, the interrupt handling routine is
merged with a stage of the next scheduled task because the translator tool has no way
to detect this jump. Additionally, control is never spontaneously released by means of
software interrupts: the previously active task is only resumed upon arrival of a hard-
ware interrupt. The TG ISS automatically supports context switching, as described in
Section 4, with multiple register sets.

Once critical points within the trace file are recognized, the translator tool accord-
ingly inserts interrupt handling routines into the TG programs by using the TG flow
control instructions described in Section 4. The above mentioned issues in flow recog-
nition within the traces (e.g. interrupt handler code being captured as a part of the
instructions of the next task) introduce some minor inaccuracies, which will be quan-
tified in Section 7.

7 Experimental Results

We coded the three test cases mentioned in Section 3 as tasks running on top of an
operating system and we simulated them within the MPARM framework. Each was
tested with two (2P), four (4P) and six (6P) system processors. Fortask andIO , we
devoted one of the system cores to the generation of interrupts, emulating the role of
a timer or an IO device; this processor is not generating any other traffic on the bus,
and is just idling between interrupt generation events. Thepipe benchmark does not
need this, since interrupts are directly triggered by the same tasks which perform the
computation. Subsequently, we applied the flow described inSection 6 as one of the
ways to get TG programs.
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Benchmark# IPs ARM TG
ExecutionReads Writes Sim Execution Read Writes Sim

Cycles Time (s) Cycles Time (s)

task 2 5864410 24163142529 109 5863463 24163142532 48
4 6357457 53618362000 205 6353359 53627362020 92
6 7029779 83134582383 299 6966958 82351578375 140

pipe 2 621954 16809 48268 9 627326 16812 48267 5
4 961581 34300 98143 20 980000 34305 98143 13
6 1390443 51251148242 37 1417000 51261148241 27

IO 2 1754773 23999 78379 30 1749258 23999 78379 15
4 2118506 53491180169 58 2117514 53515180169 31
6 2647029 82966281967 93 2647071 82989281942 53

Table 3.TG vs. ARM performance with AMBA.

Benchmark# IPs Relative Error Speedup
ExecutionReadsWrites (x)

Cycles

task 2 0.02% 0.00% 0.00% 2.27
4 0.06% 0.02% 0.01% 2.22
6 0.89% 0.94% 0.69% 2.13

pipe 2 0.86% 0.02% 0.00% 1.8
4 1.92% 0.01% 0.00% 1.53
6 1.91% 0.02% 0.00% 1.37

IO 2 0.31% 0.00% 0.00% 2
4 0.05% 0.04% 0.00% 1.87
6 0.00% 0.03% 0.01% 1.75

Table 4.Relative Error and Speedups.

Table 3 shows statistics for experiments carried out withinMPARM, both with
TG-injected traffic and with the original ARM cores. The figures express:

– the number of clock cycles required to complete a benchmarkrun, from the boot to
the end of the execution of the last processor;

– the amount of bus accesses done by a core to perform a read;
– the amount of bus accesses done by a core to perform a write;
– the number of seconds taken by the simulator to complete a benchmark run.

Table 4 shows the relative error in execution time and numberof bus accesses
when contrasting the original execution on ARM cores and that on traffic generators,
and simulation speedup values. Figure 7 depicts the accuracy of our modeling scheme,
by plotting the relative error values. Errors are due to an improper modeling of the ap-
plication under test, which misplaces some bus accesses done by the real cores when
mapping them onto a TG program. For example, this may happen if a bus access be-
longing to an interrupt handler is mistakenly assigned to the main application task
when detecting the application flow within the execution trace. In turn, such misplace-
ments result in skews of bus transactions and arbitrations,which potentially propagate
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Fig. 7. Accuracy of the execution on TGsvs.on the original ARM cores.

across the benchmark run, therefore causing a difference inthe final execution cy-
cle count. Such skews can also affect the amount of actual busaccesses, for example
whenever a semaphore polling has to be performed and the timing of the bus access
for the semaphore release is shifted in time.

The plot shows a good match between ARM and TG runs. The typical error, both
in execution time and bus accesses, is below 2%, resulting ina faithful reproduction of
the original execution flow and traffic patterns. The near-matching amount of read and
write accesses proves the role of the TG as a powerful design tool to mimic complex
application behaviour in replacement of a real IP core. Additionally, the correctness of
our TG program translation is validated. Some mismatches can be observed especially
in the execution time for thepipe benchmark. These are due to minor issues in properly
pinpointing single sections of internal OS code in the execution trace.

Figure 8 reports the simulation time speedup achieved as a side advantage when
running the benchmark code on TGs as opposed to ARM ISSs1. A nominal gain of
1.37x to 2.27x can be observed. Thetask and IO benchmarks exhibit a higher im-
provement due the presence of an IP core which is idle for mostof the time, in the
time lapses between interrupt injections. In addition, thepipe benchmark is at a dis-
advantage due to a higher bus utilization (with six processors, 78% against 63% for
IO and 38% fortask), which shifts simulation time emphasis upon the interconnect
model. This also explains whytask has the best speedup figures.

In terms of scalability, while it might be expected that replacing increasing num-
bers of IP cores with traffic generators should yield increasingly better performance,
this is not always true; while the absolute gain is present and increasing, the relative
speedup can often decrease. The explanation for this is that, with more cores attached
to the system bus, congestion becomes an issue and more core cycles are spent wait-
ing for bus arbitration. In this case, there is no simulationtime advantage in replacing
full-blown ISSs with traffic generators.

1 Benchmarks taken on a multiprocessor Xeon® 1.5 GHz with 12 GB of RAM, thus eliminat-
ing any disk swapping or loading effect. Time measurements were taken by averaging over
multiple runs.
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Fig. 8. Simulation speedup when replacing the original ARM cores with TGs.

8 Conclusions

Experimental results proved the viability of a modeling approach which decouples
simulation and optimization of IP cores and of interconnectfabrics. Even when tested
under complex synchronization scenarios, including asynchronous interrupts involving
OS interaction in a multiprocessor environment, the proposed instruction set is able to
reproduce IP traffic with full capability to express the application flow. Multiple ways
to write programs for this architecture are suggested, and athorough analysis of one of
them is presented. The accuracy of a simulation device providing an implementation of
said instruction set is validated in a cycle-true environment by benchmarking multiple
applications, additionally achieving a nominal but noticeable simulation speedup.

Future work will revolve around improving the accuracy of our flow, by more
clearly detecting sections of input traces and rendering them as completely separate
tasks within TG programs. We also plan on carefully studyingthe impact of changes
in modeled traffic onto the interconnect congestion and therefore on communication
latency.
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