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Abstract. This paper presents the design of a function-specific dynam-
ically reconfigurable architecture for error detection and error correc-
tion. The function-unit is integrated in a pipelined 32 bit RISC processor
and provides full hardware support for encoding and decoding of Reed-
Solomon Codes with different code lengths as well as error detection
methods like bit-parallel Cyclic Redundancy Check codes computation.
The architecture is designed and optimized for the usage in the medium
access control layer of mobile wireless communication systems and pro-
vides simultaneously hardware support for control-flow and data-flow
oriented tasks.

1 Introduction

For wireless communication systems the capability of receivers to detect and
correct transmission errors is of great importance. While error detection meth-
ods require bandwidth expensive retransmissions, error correction methods lead
to a better bandwidth efficiency. Albeit this advantage, error correction codes
are not often used for mobile wireless communication systems due to their de-
coding complexity. Software solutions would require powerful processors, lead-
ing to an unacceptable power consumption for battery powered mobile de-
vices. Hardware solutions are often optimized for throughput, yet are inflexible
and do not consider the requirements of mobile terminals. For mobile wireless
communication terminals, the critical design parameter is not throughput but
area efficiency and power consumption. Though works exist on area-efficient
or (re)configurable Reed-Solomon decoders (e.g. [2, 15]), the potentials of dy-
namically reconfigurable approaches concerning hardware savings are often not
∗ The authors performed this work while at Darmstadt University of Technology
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taken into consideration. However, temporal reuse of hardware within the de-
coding offers the best potential to achieve an area-efficient design. The inherent
hardware overhead of reconfigurable solutions can be avoided by restricting
the reconfiguration capabilities to one application area, resulting in a function-
specific reconfigurable device.

In the following the design of a dynamically reconfigurable function-unit
(RFU) supporting Cyclic Redundancy Checks (CRC) and Reed-Solomon Codes
with different code lengths is presented. The RFU is optimized regarding area
and fulfills the performance requirements for actual wireless communication
standards. In combination with a processor, the RFU allows the design of a
flexible solution for the MAC (M edium Access Control) layer of WLANs. Re-
configuration can be done during runtime, allowing the processor to utilize all
arithmetic components and memory elements of the RFU for additional tasks
like multiplication in the Galois Field required for encryption standards like
AES (Advanced Encryption S tandard) [1].

The outline of the contribution is as follows: Section 2 provides a short
review of error detection and error correction codes. In Section 3, a reference
design for a Reed-Solomon decoder is presented. This decoder was used as a
starting point for the design of the function-specific reconfigurable architecture
introduced in Section 4. Section 5 deals with the system integration of the RFU,
and Section 6 presents performance and synthesis results. Finally, conclusions
are given in Section 7.

2 Error Detection and Correction Codes

Error detection codes have efficiently been employed in many communication
protocols. They enable the receiver to detect whether a received code word is
corrupted or not. As the receiver does not have the information required for
correcting the error, a retransmission of the corrupted data has to be initiated.
Error correction codes extend the redundant part of the message with informa-
tion so that errors up to a certain degree of corruption can be corrected. Thus
the retransmission probability can be reduced considerably by using forward
error correction (FEC).

2.1 Cyclic Redundancy Check

Cyclic Redundancy Check codes are a powerful subclass of error detection codes
and are well-suited for detecting burst errors. The basic idea is to expand a k-
bit message, described by a polynomial u(x) with coefficients in {0,1}, with
the remainder Rg(x) of the division of xn−k · u(x) by a m = (n − k)th-order
generator polynomial g(x) using modulo-2 arithmetic, resulting in an n-bit code
word v(x). If v(x) is affected by an error polynomial e(x), a receiver can check
the integrity of the received data ve(x) = v(x)+ e(x) by dividing ve(x) by g(x).
A non-zero remainder r(x) indicates the presence of errors [14].
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There exist two common approaches to perform CRC computation, a bit-
serial and a bit-parallel one. The serial approach uses a linear feedback shift
register (LFSR) based on the generator polynomial g(x). One bit is processed
per cycle which results in low performance. The parallel CRC computation
method is based on multiplications in Galois Fields. Here, a message u(x) is
divided into blocks of length m = n−k denoted by Wi(x). Using the congruence
properties of modulo-2 operations and the fact that the degree of Wi(x) is less
than m, the code word v(x) can be written as v(x) = WN−1 ⊗ βN−1 ⊕ . . . ⊕
W0 ⊗ β0, where ⊗ and ⊕ denote the multiplication and addition over a Galois
Field GF (2m), respectively. The coefficients βi depend only on the generator
polynomial g(x) and can be computed in advance. A more detailed description
can be found in [11].

2.2 Reed-Solomon Codes

Reed-Solomon (RS) Codes are a very common group of systematic linear block
codes and are based on operations in Galois Fields. A RS(n,k) code word v(x)
consists of n symbols of length m, divided into k message symbols and (n− k)
parity symbols. Up to (n− k) symbol errors can be detected and t = (n− k)/2
symbol errors can be corrected.

The binary representation of the original data is segmented into k symbols
of m bits. These symbols are interpreted as elements of a Galois Field GF (2m),
constructed by a primitive polynomial p(x) of degree m. The resulting message
polynomial u(x) is then multiplied by the polynomial xn−k and added to the
remainder polynomial r(x) to form the code word polynomial v(x) = xn−k ·
u(x) + r(x). The term r(x) is the remainder of the division of xn−k · u(x) by a
generator polynomial g(x) of degree n− k.
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Fig. 1. Reed-Solomon Decoder Structure

Decoding Reed-Solomon Codes is much more complex. As shown in figure
1, the decoding process can be divided into four processing blocks.
Syndrome Calculation: First, the syndrome polynomial S(x) =

∑2t−1
i=0 Si ·xi

is determined. In case S(x) is zero, the received word w(x) can be assumed
to be error free. Si is defined as Si =

∑n−1
j=0 wj · αij , where α is a root of the

primitive polynomial p(x) using the power notation for elements in GF (28).
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Euclid’s Algorithm: In the second step, the error locator polynomial σ(x)
and the error value polynomial ω(x) are calculated by solving the key equation
S(x) · σ(x) = ω(x) mod x2t. This is done by using Euclid’s Algorithm which
can be summarized as follows [9, 5]: Three temporary polynomials R(x), B(x)
and Q(x) are introduced. They are initialized as R−1(x) = x2t, R0(x) = S(x),
B−1(x) = 0 and B0(x) = 1. For the i-th iteration, the equations Ri(x) =
Ri−2(x) − Ri−1(x) · Qi−1(x) and Bi(x) = Bi−2(x) − Bi−1(x) · Qi−1(x) are
solved, where Qi−1(x) is the quotient and Ri(x) is the remainder of the divison
of Ri−2(x) by Ri−1(x). This is done for s iterations until the degree of Ri(x) < t.
The error locator polynomial is defined as σ(x) = Bs(x)

Bs(0) and the error value

polynomial as ω(x) = Rs(x)
Bs(0) .

Chien Search: This block determines the error positions in the received symbol
block. To this end, the roots αi (1 ≤ i ≤ 8) of the error locator polynomial σ(x)
are determined, e.g. it is checked whether σ(αi) = 0. This is done by means of
an exhaustive search over all possible field elements αi in GF (28). In addition,
the derivate σ′(αi) is determined.
Forney Algorithm: The last step consists of calculating the error value ei =
ω(αi)
σ′(αi) (0 ≤ i ≤ n − 1). This value is added to the received symbol to correct
the error.

3 Reed-Solomon Decoder Structure

In the following, the hardware design of a reference Reed-Solomon decoder is
presented. The decoder is capable to support variable n and k values with an
error correction capability of up to eight symbol errors (t ≤ 8). This decoder
structure is then mapped onto the function-specific reconfigurable architecture
in Section 4.

3.1 Galois Field Arithmetic

All operations on Reed-Solomon Codes RS(n,k) are defined at byte-level, with
bytes representing elements in a Galois Field GF (28). Addition (and substrac-
tion) in GF (28) result in a bitwise XOR operation denoted by ⊕. Multiplication
and division are much more complex and depend on the used primitive polyno-
mial. To date, numerous works have been devoted to the design of configurable
Galois Field multipliers (e.g. see [8]). Most of them realize bit-serial architec-
tures. Yet, for the proposed reconfigurable architecture, single cycle bit-parallel
multipliers should be used in order to minimize the latency of the decoder.

The structure of a bit-parallel multiplier is presented in figure 2. Com-
putation is done by a repeated application of a xtime (xt) operation, which
is a left shift and a subsequent conditional bitwise XOR operation at byte-
level [1, 10]. The structure of an xtime module for the primitive polynomial
p(x) = x8 + x4 + x3 + x + 1 is shown in figure 3. In order not to restrict the
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Fig. 2. Structure of a bit-parallel GF (28) multiplier

design to a fixed primitive polynomial, an extended version of the xtime oper-
ation has been designed. This gxtime module can be configured to support any
primitive polynomial. Its structure is shown in figure 4.
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Fig. 3. Xtime Module
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Fig. 4. GXtime Module

Division in Galois Fields is done by an inversion followed by a multiplication.
As described in [4, 12] Euclid’s Algorithm or Fermat’s Theorem can be used
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for the inversion. In the reference architecture a third method based on look-
up tables is used. Although this approach requires more chip area than other
methods, the look-up tables were chosen since they offer higher flexibility and
higher speed. In the subsequent reconfigurable architecture the look-up tables
can also be used for several other purposes.

3.2 Reed-Solomon Decoder Blocks

The hardware structure of the Reed-Solomon decoder is based on the block di-
agram presented in figure 1. For the Syndrome Calculation, a hardware design
derived from [9, 15, 7] is used. This design mainly consists of 2t multiply-
accumulate circuits and requires n clock cycles to calculate the syndrome poly-
nomial.

Divider
Module

Multiply
Module

)(1 xQi−

D
D)(xS

D
)(xBi

)(xRi

)(xω

)(xσ

Fig. 5. Euclidean Algorithm Block [9]

Euclid’s Algorithm is realized by using a structure as shown in figure 5. It is
partitioned in a multiply and a divider module. The divider performs the divi-
sion Ri−2(x)

Ri−1(x) and generates the quotient Qi−1(x) and the new remainder Ri(x)
in each of the n−k

2 iterations. Each iteration requires three clock cycles. The
multiply module uses Qi−1(x) to compute Bi(x). The output of the multiply
module forms the error locator polynomial σ(x) while the result of the divider
module is the error value polynomial ω(x). In total 25 GF (28) multipliers are
required: 16 for the divider module and 9 for the multiply module. A more
detailed description of the realization of Euclid’s Algorithm can be found in [9].

The Chien Search block requires two clock cycles for initialization and then
computes ω(αi), σ(αi) and σ′(αi) simultaneously in each clock cycle. For the
computation, 8 GF (28) feed-back multipliers are used for determining ω(αi),
and 10 for calculating σ(αi). By calculating σ(αi) as a sum of its coproducts
σ(αi) = σeven(αi) + σodd(αi), the computation of σ′(αi) does not require any
extra hardware resources, as σodd(αi) = σ′(αi) · αi.

The last block inside the Reed-Solomon decoder represents the Forney Al-
gorithm. The division of ω(αi)

σ′(αi) is realized by an inversion and a multiplication.
For inversion a look-up table is used. The error values ei are added to the re-
ceived symbols stored in a FIFO. In total n clock cycles are required. Figure
6 shows the error dectection combined with the error correction using Forney
Algorithm.
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Fig. 6. Error Detection and Correction[9]

4 Reconfigurable Function-Unit

The design of the reconfigurable architecture was motivated by the idea to
accomplish an integrated design capable to perform error detection and error
correction algorithms as mentioned before. Designated to be part of a recon-
figurable function-unit in a pipelined processor, the architecture allows direct
access to all memory elements and arithmetic blocks, providing hardware sup-
port for additional tasks. The architecture is optimized in terms of hardware
efficiency and flexibility, yet its flexibility is restricted to a degree which can
be exploited by the dedicated application area. The RFU offers two levels of
(re)configuration. On the one hand, the RFU can be configured to perform dif-
ferent tasks, e.g. CRC computation or Reed-Solomon Code encoding/decoding
with different code lengths, on the other hand dynamic reconfiguration is used
to achieve a huge hardware reuse within one task, resulting in an area-efficient
design.
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Fig. 7. Reconfigurable Function-Unit (RFU)
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Figure 7 shows the structure of the RFU, which is composed of four different
blocks. The ECM block (E rror Control M odule) provides hardware support for
error detection and error correction algorithms. The AES block is mentioned for
the sake of completeness only. As the RFU is designated for the use in processors
realizing the MAC-layer of WLANs, the AES block is integrated to provide
hardware support for encryption/decryption tasks. A description of the AES
block can be found in [13]. The two remaining blocks are the LUT Module and
the Common Resource block. The LUT Module combines all memory elements
of the AES and ECM blocks while the Common Resource block combines all
complex arithmetic elements like the configurable Galois Field multipliers.

4.1 Error Control Module

The structure of the ECM block is depicted in figure 8. It comprises of two
major blocks, Block A and Block B. The two blocks are derived from the sym-
metry of the underlying hardware structure. Block A is used for the Syndrome
Calculation and RS encoding. Block B is used for Forney Algorithm and CRC
encoding/decoding. Euclid’s Algorithm and Chien Search require both, Block A
and Block B. The structure of the cells inside Block A and Block B can be found
in figure 9 and figure 10, respectively. Note, that the Galois Field multipliers
shown in figure 9 and figure 10 are not realized in the cells but in the Common
Resource block of the RFU.
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Fig. 8. Structure of Error Control Module

The Input Module of the ECM block stores constants required during
processing and buffers the input data while the Output Module buffers the
output data. These input and output buffers ease the programming of the RFU
as no strict timing has to be met while accessing the ECM block. In addition,
the gap between the 8-bit data path of the ECM and the 32-bit data path of
the processor is bridged.
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4.2 Dynamic Reconfiguration

Computations like Reed-Solomon Code decoding require several reconfigura-
tions at runtime. In order to release the processor from the control overhead
of continuous reconfiguration, the control logic of the RFU is capable of per-
forming a sequence of configuration steps autonomously. The structure of the
reconfiguration control logic is shown in figure 11.

The main part of the control logic are its configuration tables, divided into
three sub-tables (Table 1,Table 2/4 and Table 3/5 ). These tables store the con-
figuration vectors for the RFU and can autonomously be loaded by the control
logic with configuration data from an external memory. The configuration ta-
bles are composed as follows: Tables 3/5 are used for storing vectors which are
fixed for a sequence of configurations. Tables 2/4 store configuration vectors
for different steps of a sequence of configurations and table 1 determines the
sequence of configurations. The execution of the sequence of configurations is
controlled by a run unit inside the control logic.
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Fig. 11. Reconfiguration Control Logic

In each clock cycle a new entry in configuration table 1 is selected by the
run unit. In total 128 entries are provided. Processed configurations can be
exchanged at runtime, enabling sequences of configurations with more than 128
steps. One table entry of table 1 consists of eight bits. Three of these bits are
either passed directly to the RFU or are used by the run unit for realizing
(un)conditional jumps and loops. The other five bits of table 1 are used as an
address for table 2 or table 4, consisting of 32 x 32 bits each. Table 3 and
table 5 have a capacity of 32 bits each. Besides their usage for storing the
fixed part of the configuration vector, they can also be used to provide the run
unit with the number of iterations for repeated execution and with the offset
values for (un)conditional jumps. This subdivision of the configuration memory
allows to reduce the required size of configuration memory as not the complete
configuration vector of 67 bits has to be stored for each step of the sequence. The
division also eases the reprogramming. Only one table combination table 2/3 or
table 4/5 can be active at runtime. The other combination can be reprogrammed
without affecting the system.

5 Processor Integration

The RFU was integrated into a 32 bit 5 stage pipelined RISC core, derived from
the DLX architecture [3]. Figure 12 shows the simplified datapath of the RISC
processor with the integrated RFU. All changes made to the original datapath
are highlighted. The RFU is placed next to the other function-units and utilizes
the same datapaths to access the register files. The output of the RFU is non-
registered. This constellation allows a full integration of the new function-unit
in the pipeline structure of the processor. It also eases the integration into other
processor designs.
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In order to configure and program the RFU, three new instructions, one
for configuration and two for execution, are added to the instruction set. The
new instructions are passed from the instruction decode unit directly to the
configuration control unit, which either performs the loading of the configura-
tion memory or passes the instructions to the run control logic. By specifying
the start address of the configuration data, block size, configuration table and
table entry, the configuration data is downloaded by the configuration control
unit autonomously to the dedicated configuration table. In the meantime the
processor can continue to execute its program.

For the operation of the RFU, two instructions are available. The first oper-
ation performs a single-cycle operation while the second operation can be used
for specifying a multi-cycle operation. Figure 13 shows the format of the two
instructions. The multi-cycle instruction can be used to initiate an autonomous
execution of the RFU over several clock cycles. In order to avoid pipeline haz-
ards, the multi-cycle instruction does not contain a destination address for the
result of the operation. Therefore a singlecycle instruction has to be used for
writing the result to the register file. A more detailed description of the recon-
figuration and system integration can be found in [13].
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Fig. 13. Operation Instructions

6 Results

A test system was synthesized using Synopsys’ Design Analyzer with a 0.25µm
1P5M CMOS standard cell technology. The test system consists of the RFU
and the modified DLX processor as presented in the last section. For larger
memories like the LUT Module inside the ECM block and the configuration
tables of the RFU control logic, RAM macro cells have been employed. All area
values are normalized to the area of an eight bit multiplier without pipelining.

Table 1. Reed-Solomon Decoder Structure

Module Area (normalized) Freq.[MHz]

CRC En-/Decoder 9.9 205

RS Encoder 11.4 209

RS Decoder 95.0 59

Total Area 116.3 -

Table 2. Synthesis Results of the ECM Block

Module Area (normalized) Freq.[MHz]

Block A 9.3 140

Block B 10.0 172

Other Blocks 3.0 694

ECM 22.3 137

Synthesis and performance results of the reference designs are presented in
table 1. For CRC computation a hardware architecture based on parallel CRC-
8 encoding/decoding using Galois Field arithmetic was used. Values for Reed-
Solomon encoder and decoder base on a RS(255,239) code using the architecture
presented in section 3. The synthesis results for the ECM block can be found
in table 2. The ECM block requires only about 20% of the area of the reference
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design. Even if the Common Resource block and the LUT Module of the RFU
are counted to the area of the reconfigurable design, hardware savings of up
to 28% in comparison with the standard implementation presented in section
3 can be achieved. These hardware savings ease the design of area efficient
ASIC solutions for mobile terminals when using the RFU for error detection
and correction instead of standard implementations.

Table 3. Throughput of the Reference Design and the Reconfigurable Architecture

Application Recon. Arch. Ref. Design

RS(255,239) enc. 735.8 Mbps 1568.5 Mbps

RS(255,239) dec. 372.8 Mbps 220.7 Mbps

CRC8 enc./dec. 2512.3 Mbps 13113.7 Mbps

Throughput values for both architectures are given in table 3. For encoding
RS(255,239) codes and CRC8 encoding/decoding the reference architecture is
faster than the reconfigurable design, but for RS(255,239) decoding a speed-
up of 1,68 could be achieved. All throughput rates are more than sufficient
in relation to the data rates required for mobile terminals. Taking the actual
WLAN standard IEEE 802.11a as a reference, data rates of only 42 Mbps are
required at the MAC-layer [6].

Table 4. Synthesis Results for the RFU

Module Area (normalized) Freq.[MHz]

Basic CPU 44.3 199

ECM Block 22.3 137

AES Block 19.1 138

LUT Module 29.0 588

Common Res. 20.4 201

RFU Control 37.3 244

Total Design 170.0 98

Synthesis results for the DLX processor with the RFU and all components
of the RFU can be found in table 4. The chip area of the complete design has
a normalized value of about 170. Only 13% of the total chip area are required
by the ECM block. The area fraction of the RFU is about 74.1% of the overall
area. A huge part of the RFU is constituted by the configuration tables (648
bytes) and the look-up tables in the LUT module (1024 bytes). The memory
blocks add up to a normalized area of about 66 which is about 39% of the
overall area. To maximize the utilization of these memory blocks, the input and
output ports of the look-up tables are directly accessible and thus can be used
as additional memory for the processor.
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7 Conclusion

In this paper a function-specific dynamically reconfigurable architecture for er-
ror detection and error correction has been presented. The architecture offers
two levels of (re)configuration; on the one hand it can be configured to per-
form several algorithms (e.g. CRC, Reed-Solomon Codes with variable code
parameters), on the other hand it reuses hardware components by means of
dynamic reconfiguration. Synthesis and performance results have proved that
the architecture offers an attractive alternative to standard implementations,
in particular as its hardware resources can be utilized by the processor for
additional tasks.
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