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Abstract. This paper presents an innovating methodology for fast and easy 
design of Asynchronous Network-on-Chips (ANoCs) dedicated to GALS 
systems. A topology-independent building-block approach permits to design 
modular and scalable ANoCs with low-power and low-complexity 
requirements. A crossbar generator is added to the existing design flow for fast 
system architecture exploration. A multi-clock FPGA allows a fast prototyping 
of complex ANoC-centric GALS systems. A demonstrative platform is 
implemented onto an Altera Stratix FPGA. It includes synchronous standard IP 
cores and asynchronous modules connected through an asynchronous 6x6 
crossbar. Results about communication costs across the Asynchronous NoC 
and synchronous/asynchronous interfaces are reported. 

1 Introduction 

GALS paradigm is to partition a system design in decoupled clock-independent 
modules [1]. Design parameters of each block can be adjusted independently 
(performance, power consumption or clock-tree management to name but a few). 
Another benefit of GALS paradigm is to separate the design of communication from 
functionality by using handshake protocol synchronization (amongst other 
techniques).  

Asynchronous NoCs (ANoCs) strongly benefit to such a globally asynchronous 
design methodology. Clockless interconnect networks improve reliability by 
removing clock-domain crossing synchronizations and by using delay-insensitive 
arbiters for solving routing conflicts [2, 3]. Global design constraints are released. 
They also offer robust communications thanks to an automatic data transfer 
regulation (elastic pipeline): no data item can be lost or duplicated. Moreover, 
regular distributed network topologies (any topology based on point-to-point links, 
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such as meshes, tores or crossbars), built of independent routing nodes, fully exploit 
modularity and locality design properties of asynchronous circuits. To illustrate these 
benefits of using ANoCs for GALS systems, several publications bringing major 
research contributions can be cited.  

In [4] a stoppable clock methodology, based on asynchronous wrappers around 
synchronous blocks, is used to compare topology performances by using ad-hoc 
synchronous peripherals adapted to the asynchronous networks. Such techniques 
need training sessions and suffer from PVT sensitivity [21] and from penalties in 
restarting the clocks. 

Beigne et al. present in [3] an asynchronous mesh topology providing a high 
Quality-of-Service (QoS), using a multi-level design flow. This very efficient ad-hoc 
architecture is dedicated to a specific application and has a high complexity cost. 
Bolotin and al. use in [5] a generic architecture to evaluate four classes of packet 
services. After a training session on every class, the most appropriate service is 
implemented onto a point-to-point link between two components, according to the 
communication requirements. This NoC architecture is more modular than [3] but 
for a higher complexity cost. 

In [6] and [7], Bainbridge and Lovett develop a modular and low-complexity 
ANoC design methodology, using simple one-to-two and two-to-one switches to 
build regular topology networks. In such structures, arbiters are very simple and so 
efficient for packet routers with few channels to drive. However, assembling these 
switches will heavily increase latency and area costs for large multi-inputs/outputs 
routers.  

Compared to these works, our purpose is to provide a simple and flexible generic 
structure which allows fast design of a large spectrum of ANoC topologies for GALS 
systems requiring efficient communications at a low complexity cost. According to 
this motivation, this paper presents in section 2 a topology-independent structure 
which is strongly modular, scalable and robust and which permits by using accurate-
function building blocks to design ANoCs for high-reliability, low-power and low-
complexity requirements. Section 3 gives some details of the self-timed FIFO 
structure to interface synchronous and asynchronous domains. Section 4 details the 
design flow methodology. A crossbar generator has been developed for fast system 
architecture exploration. As such a flexible ANoC structure is well-suited for rapid 
GALS system prototyping [9], we remind a special methodology [8] to synthesize 
asynchronous modules onto FPGA, with an extension for non-deterministic arbiter 
circuits [9]. In section 5, this methodology is applied to implement an ANoC-centric 
GALS system onto a multi-clock Altera Stratix FPGA. It includes synchronous 
standard IP cores and asynchronous modules connected through an asynchronous 
6x6 crossbar. Results about performances of the Asynchronous NoC are reported as 
well as a peripheral-to-peripheral communication cost (across both the ANoC and 
the synchronous/asynchronous interfaces). 
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2 Asynchronous NoC design  

Our methodology fully exploits the modularity of asynchronous circuits. We provide 
a basic layered structure of ANoC with no predefined topology, by using a building-
block approach. Each block or layer has been accurately defined to efficiently deliver 
one of the major functions of an interconnect network (these functions are detailed in 
section 2.2 with the description of each block):   
- service-level communication protocols, 
- synchronization interfaces at mixed-timing domains,  
- signal-level information transport,  
- packet arbitration and routing in interconnect nodes.  

Moreover, the basic blocks have been designed with an objective of reliability 
improvement (section 2.1) and with respect to low-complexity, “easy-plug” and 
scalability features. The result is a simple and flexible structure having efficient 
latency and throughput and a wide variety of high-level services at low-complexity 
and low-power costs. Such structure allows fast design of any ANoC regular 
distributed topology. 

2.1 Focus on synchronization bolts 

Our methodology for designing ANoCs is focused in part on solving synchronization 
problems. The two major synchronization bolts for a GALS system are: 
synchronization at clock domain boundaries and arbitration between concurrent 
requests [14]. Such circuits have a non-deterministic behavior. We put special invest 
to improve reliability/performance tradeoffs of these synchronizer circuits.  

Clocked synchronization. As discussed in the introduction, using an ANoC is in 
itself a reliability improvement by removing clock-domain crossing synchronizations 
through the interconnect network. However clocked synchronizers are still required 
between Synchronous peripheral Blocks (SB) and the ANoC. Discussion on this 
synchronous/asynchronous interface is developed in section 2.2 and structural details 
are given in section 3. 

Delay-insensitive arbiters.  Arbitration circuits, or simply arbiters, are required 
where a restricted number of resources are allocated to different user or client 
processes. Packet routers are such cases. In the case of an ANoC, delay-insensitive 
arbiters have this main advantage of being hundred-percent reliable (enough time is 
given to resolve metastability). Reliability of on-chip communication systems is 
becoming a major issue since the increase transaction rates are drastically reducing 
the so-called Mean Time Between Failure characterizing clocked synchronizers. In 
[2] we present a class of delay-insensitive arbiters which decouple the sampling of 
incoming requests from the arbitration process in a strong modular and reliable 
structure. Such arbiters use a Parallel-Request-Sampling structure and are used in [3, 
9] and in the following ANoC structure. 
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2.2 Modular ANoC structure  

We cut out the construction of ANoCs in five basic components or layers, as 
illustrated in Fig. 1.  
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Fig. 1. ANoC-centric GALS architecture: a) abstract structure b) layered structure 

1. Wrapper Adaptor (WA). This resource is required to translate between the 
communication protocols used by a synchronous or asynchronous peripheral and the 
interconnect network. The WA component adapts both flit and packet levels of the 
communication protocols. The details of these protocols are beyond the scope of this 
paper [3].  

2. Synchronization & Performance Interface (SPI). This component binds the 
SB clock domain with the ANoC using a FIFO decoupling method. The SPI consists 
of a standard double flip-flop (DFF) synchronizer and of an asynchronous FIFO. 
Such simple synchronization interface facilitates plugging of standard synchronous 
IP cores. 
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The DFF resynchronizes asynchronous signals with the SB clock. The DFF 

offers actually a very sufficient reliability/latency tradeoff (two clock cycles per 
input signal sampling) [15], compared to numerous clocked synchronizer’s 
improvements [16]. 

The asynchronous FIFO transforms the synchronous protocol in the 
corresponding asynchronous protocol, adapting relative speeds between the SB and 
the ANoC. For AB, such a FIFO is optional and can be used for pipeline 
performance optimization. In this case we call it Performance Interface (PI) (Fig. 1). 
Details of the asynchronous FIFO structure are presented in section 3. This 
architecture is based on an existing asynchronous FIFO [17]. The level of parallelism 
between data and control flows is improved and two versions are delivered: a low-
latency version or a low-power consumption version, according to design 
requirements. 

3. Packet Transport (PT). This resource adapts the physical level (or signal-
level) of the communication protocol. The PT component provides successive 
protocol conversions from SPI component to delay-insensitive NoC core for best 
power consumption and robustness. Between SPI and PR layers, bundle data 
protocols are converted in delay-insensitive protocols for better robustness. Between 
the packet routers (PR layer), the four-phase protocols can be converted in 2-phase 
protocols for long interconnect links for lower power consumption and higher speed 
[18].  

4. Parallel-Request-Sampling Priority-Arbiter (PRS-PA). This resource 
provides a self-timed arbiter with a decoupled arbitration process and a 100% 
reliable request sampling structure based on delay-insensitive parallel synchronizers 
[2, 19] (section 2.1). 

5. Packet Routing (PR). This resource offers a modular routing of data items for 
transaction services (packet level services such as burst mode or split transactions). 
PRS-PA and PR resources are parts of ANoC routing nodes, as detailed in section 
2.3.  

2.3 Switches architecture for ANoC routing nodes 

Packet router is the core component of an interconnect network. The packet routers 
are assembled with modular elementary blocks, as shown in Fig. 2, with the same 
objectives of low-complexity, easy “plug-and-play” and scalability as for the 
complete ANoC. 

Emitter module. Fig. 2 illustrates two switch instances. The n-to-1 switch, or 
Emitter, is built around the PR (Packet Router) and PRS-PA (Priority Arbiter) 
components, as previously presented in section 2.2. The PR resource is decomposed 
in three modules: Packet Analyzer (PA), Data Path Controller (DPC) and MUX 
module. The Emitter component delivers two major classes of packet level services: 
arbitration service and transaction service. The PA block decodes Channeli_ctrl 
message in order to extract arbitration and transaction information parts and to drive 
it respectively to the PRS-PA and DPC modules. Arbitration information is 
composed of Request and Priority_level (optional) channels, used by the PRS-PA 
module to arbiter incoming requests. Once a Channeli_data is elected, PRS-PA 
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informs the datapath controller module (DPC) through Selected_Channel. DPC 
exploits it and the Transfert_mode channel to control data flow on the elected 
Channeli_data and to drive the switch output (MUX module). Through 
Transfert_mode channel, transaction information delivers packet status, such as 
single flit packet or for burst mode: start-packet flit, body flit, end-of-packet flit. 
Once the packet transfer is achieved, DPC module informs the sleeping arbiter 
module PRS-PA through Sampling channel that a new transaction can start. 

Receiver module. The 1-to-m Switch, or Receiver, is a PR component which 
realizes the dual operation by driving the input (Packet_Ctrl and Packet_Data 
channels) to the selected Target_Address. No arbitration is needed here. By 
composing these switches we can build in short design time fast and efficient routing 
nodes (sections 4.2 & 5.1). 

S

PRS-PA

Parallel -Request -Sampler

Priority Arbitrer

Request probe

Sampling

Selected_Channel

PA
1

Packet Analyzer 1

PA
2

Packet Analyzer
2

PA
3

Packet Analyzer 3

PA
4

Packet Analyzer
4

Channel
1
_ctrl

Channel
1
_data

Channel
4
_ctrl

Channel 4_data

Channel 3_ctrl

Channel
3
_data

Channel 2_ctrl

Channel 2_data

Priority_level Request

Transfer_mode

DPC

Data Path Controller

Switch ctrl

CMD_Mux

Switch

(MUX)

Mux_out

(Selected_data )

Transfer_ctrl

S

PRS-PA

Parallel -Request -Sampler

Priority Arbitrer

Request probe

PRS-PA

Parallel -Request -Sampler

Priority Arbitrer

Request probe

Sampling

Selected_Channel

PA
1

Packet Analyzer 1

PA
2

Packet Analyzer
2

PA
3

Packet Analyzer 3

PA
4

Packet Analyzer
4

Channel
1
_ctrl

Channel
1
_data

Channel
4
_ctrl

Channel 4_data

Channel 3_ctrl

Channel
3
_data

Channel 2_ctrl

Channel 2_data

Priority_level Request

Transfer_mode

DPC

Data Path Controller

Switch ctrl

DPC

Data Path Controller

Switch ctrl

CMD_Mux

Switch

(MUX)

Switch

(MUX)

Mux_out

(Selected_data )

Transfer_ctrl

  
Target_Address

Target_Address

Decoder

DEMUX

Packet _Data

Packet _Ctr l

MR[4][18]

DR[3]

DR[3]

Target_Ctrl
0

Target_Ctrl
1

Target_Ctrl
2

Target_Ctrl 3

Target_Data 0

Target_Data
1

Target_Data
2

Target_Data
3

DEMUX

MR[4][18]

Target_Address
Target_Address

Decoder

DEMUX

Packet _Data

Packet _Ctr l

MR[4][18]

DR[3]

DR[3]

Target_Ctrl
0

Target_Ctrl
1

Target_Ctrl
2

Target_Ctrl 3

Target_Data 0

Target_Data
1

Target_Data
2

Target_Data
3

Target_Data 0

Target_Data
1

Target_Data
2

Target_Data
3

DEMUX

MR[4][18]

 
Fig. 2. Switch components: a) Emitter (n-to-1 switch) b) Receiver (1-to-m switch) 

3 Asynchronous FIFO for mixed domain interfaces 

3.1 Reference work 

Chelcea and Nowick present in [17] several mixed-timing FIFO designs. The designs 
are implemented as a core of micropipeline-style circular arrays of identical cells 
connected to common data buses. Data items are not moved around the array once 
they are enqueued, preserving power consumption. Control is made with two tokens: 
the first one allows enqueuing data whereas the second one allows dequeuing data. 
This asynchronous array is scalable and modular and offers very low latency.  

The core of these asynchronous FIFO cells are used to design instances of 
double-clock FIFOs and in our concern mixed synchronous/asynchronous FIFOs.  

But we decide not to use this mixed version of the FIFO. Indeed, our GALS 
architectures integrate heterogeneous Synchronous peripheral Blocks (SBs) 
communicating across the ANoC. These synchronous and asynchronous domains 
will present very different working speeds. In such a situation, the mixed-timing 
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version of the FIFO (interfacing a SB with an ANoC routing node) can not guarantee 
one write or read operation per cycle on its synchronous part (SB side). The FIFO 
will often be empty or full and speed performances will be degraded by a global 
three clock cycles latency cost, due to complex FIFO-state detector interfaces. 
Preliminary result analysis on the FPGA platform confirms large different speeds 
between SBs and high-speed ANoC (section Error! Reference source not found.). 

To avoid the use of such latency-penalizing interfaces, an improved version 
(section 3.2) of the fully asynchronous FIFO is provided to interface synchronous 
and asynchronous working domains. The FIFO is connected to a standard DFF 
synchronizer which reduces the latency to two cycles. This solution is robust (section 
2.1) and efficient to adapt domains with large difference in working speeds. The next 
section briefly describes how we improved the self-timed FIFO architecture. 

3.2 Improved asynchronous FIFO 

The architecture of the fully asynchronous FIFO is transformed in two ways to 
improve its performances.  

1. Improved level of parallelism. This architecture has a limited degree of 
parallelism between control and data paths (token passing and data 
enqueuing/dequeuing operations). We use the TAST tool suite (see section 4) 
features to improve it, and consequently to improve the speed of the FIFO. A FSM 
modeling of the FIFO in CHP language allows a decoupling of token passing and 
data enqueuing/dequeuing operations. TAST synthesizer options allow to parameter 
the synchronization point between these operations and therefore ensure the 
correctness of the FIFO. Both delay-insensitive and micropipeline versions of a 
FIFO can be synthesized. 

2. Low-power and fast architecture exploration. The common data buses give 
increasing power consumption penalties for deep FIFOs. Moreover, the bus buffers 
have to be re-designed for each new FIFO size. We replace these high-loaded buses 
with two components called One-to-Two Sequential switch (OTS) and Two-to-One 
Sequential switch (TOS). These components are bonded in a vertical binary tree of 
switches as shown in Fig. 3. 

Fig. 3 shows the horizontal array of FIFO cells (FC) with the distributed right-to-
left token passing control path [17]. Data items move vertically across a path of OTS, 
FC and TOS components. Each OTS component is a 1-to-2 demultiplexer with 
automatic toggle. Each data item is alternatively driven to one of both output paths, 
starting on the right path. The TOS components are the reciprocal 2-to-1 
multiplexers, receiving the first data item on the right input path and then 
automatically switching from one input to the other. A version with one-to-three and 
three-to-one switches can be provided to extend the available size of the FIFO. 
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Fig. 3. FIFO structure with mux/demux trees 

This architecture ensures the correctness deadlock-free operations of the FIFO. 
OTS and TOS components work as supplementary data memorization cells. 
Moreover, the cell structure for data paths is identical for FC, OTS and TOS 
components, i.e. a data latch added to a Muller gate which controls channel request 
signal. Consequently, the input and output loads of each cell are balanced. Compared 
to the common bus solution, the mux/demux binary trees solution provide the 
following features: design of the FIFO is simplified, scalability and power 
consumption are improved and latency is degraded (but throughput is identical). 

3. Conclusion. A high-throughput self-timed (either QDI or µP style) FIFO with 
a high degree of parallelism is delivered to robustly interface SB and ANoC modules 
in an ANoC-centric GALS system. Two versions are available: a mux/demux binary-
tree version for fast system architecture exploration (especially for optimal FIFO 
size) and low-power; and a common-bus version for low-latency requirements. 

4 Design flow 

4.1 Design methodology 

We specify and model asynchronous circuits in CHP (for Communicating Hardware 
Processes), a high-level description language based on communicating processes [10, 
11]. The processes are synthesized using TAST, a suite tool [12] dedicated to 
asynchronous circuit synthesis. The TAST tool enables to map the CHP specification 
onto a standard-cell library and/or a specific cell library [13] when targeting ASICs, 
or to map onto FPGA for rapid system prototyping [8, 9].  
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4.2 Automatic crossbar generation 

We use an automatic crossbar topology generation tool to implement the 6x6 
crossbar ANoC. The tool controls adjustable design parameters for some of the five 
ANoC modular blocks/layers. It supports fully-interconnect or Octagon [20] 
topology generation and modular routing node cores generation, which can be hand-
adapted and assembled in more complex regular interconnect topologies, such as 
meshes. The choice of crossbar or fully-interconnect topologies ensures a fast, 
flexible and low-complexity system architecture exploration. It allows implementing 
efficient Emitter and Receiver components in terms of routing complexity, latency 
and throughput and in terms of control cost. The Receiver component supports high 
packet service extensions thanks to its high modularity. 

So far, the adjustable parameters are: 
1. Crossbar size. It depends of the number of the system’s components. 
2. Point-to-point (p2p) interconnects width. The width of each interconnect path is 

defined according to the required bandwidth of each p2p linked SB or AB. 
3. Priority algorithm. The priority solving function can be programmed. Available 

policies are round-robin, FIFG and non-interruptible two-level priority policies. 
The FIFG policy can be programmed independently for each routing node. 

4. Transaction services. DPC module can be programmed to support data transaction 
services. For the time being, only the burst mode is available. All routing nodes 
must support the same transaction services. 

4.3 Synthesis of QDI circuits onto FPGAs 

This section presents an ANoC-centric GALS architecture implemented onto a 
multiclock Stratix Altera FPGA. We give in [8] a generic synthesis methodology to 
properly place and route asynchronous elements or mixed 
synchronous/asynchronous circuits onto a FPGA, respecting the specific timing 
assumptions of either QDI or micropipeline (µP) asynchronous design techniques. 
This methodology is extended in [9] to synthesize arbiter circuits with non-
deterministic behavior, due to their synchronizer elements. A special circuit mapping 
is presented for delay-insensitive synchronizers devoted to asynchronous arbiters. 

This FPGA-prototyping methodology is applied to the clock-less modules of the 
following architecture (ANoC and DES). The ANoC is designed according to the 
modular building method of sections 2 and 3. 

5 Validation platform 

5.1 PACMAN platform 

We demonstrate our network-centric GALS building methodology with a case-study 
implemented on a Stratix Altera FPGA. This system is a first prototype version of a 
generic GALS platform called PACMAN, for Programmable And Configurable 
Multiprocessor Asynchronous Network. 
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The PACMAN first-version architecture is shown in Fig. 4. It includes an ANoC 
interconnecting four processing elements.  

The asynchronous NoC is a 6x6 crossbar, but it is used in fact as a 5x5 crossbar, 
with for processing elements and a direct output parallel communication link. There 
is no pipelining in this version of the ANoC even though higher throughput could be 
easily obtained by applying asynchronous pipelining techniques. The ANoC delivers 
both arbitration and transaction services (section 2.4). The arbitration policy is a non-
interruptible two-level priority policy. When concurrent incoming requests need 
arbitration, a request with the high-priority level is selected and low-priority level 
requests are suspended. For equal priority-level concurrent requests, a First-In First-
Granted (FIFG) policy is used. A former selected channel can not be interrupted by 
an incoming higher priority-level request during a burst mode data transfer. The 
high-priority level is assigned to the MIPS processors. The transaction service 
delivers burst mode or simple on-flit packet transfer modes, plus a special service 
called Indirect-Response (IR). In IR mode, a peripheral A, initiator of a 
communication, notify the receiver B not to answer to A, but to a third peripheral C. 

The four processing elements are: 
- Two independently clocked MIPS with local RAM banks and serial 
communication links. One MIPS is running at 45MHz for interfacing purposes 
whereas the other MIPS is running at 50MHz for number crunching applications. 
- A self-timed DES module (Data Encryption Standard). 
- A shared RAM bank. 

Asynchronous 5x5 Crossbar

RAM Asynchronous

DES

ANoC

Interface

MIPS2

45MHz

RAMMIPS1

50MHz

RAM

ROM ROM

RS232RS232

RS232 Interfaces

Asynchronous 5x5 Crossbar

RAM Asynchronous

DES

ANoC

Interface

MIPS2

45MHz

RAMMIPS1

50MHz

RAM

ROM ROM

RS232RS232

RS232 Interfaces

 
Fig. 4. Structure of PACMAN case-study version for FPGA implementation 

5.2 Performance of the communications 

The Stratix Altera FPGA platform we have been using successfully supports the 
PACMAN architecture implementation. Characteristics of the FPGA are the 
following: 
- device EP1S40F780C5 (40k gates), 
- pin count 780, 
- speed grade 5 



Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid 
Prototyping 

11 

 
Implementing a 6x6 crossbar (used in fact as a 5x5) Asynchronous NoC onto the 

FPGA involves: 
- 13458 LUTs and 0 registers for packet router modules (see section 2.3) 
- for communication between peripherals, interfaces including WA, SPI and PT 
modules are involved (see section 2.2). Each interface involves 218 LUTs and 90 
registers. 

Table 1 shows latencies and throughput of the ANoC without interfaces. Cycle 
time is the direct flit latency from one packet router (Emitter module) to another 
packet router (Receiver module) plus the backward acknowledge propagation time. 
Table 2 shows latencies and throughput between MIPS1 (50MHz) and MIPS2 
(45MHz) across ANoC and interfaces. 

As mentioned before, these data transmission rates can easily be improved with 
pipelining. 

Table 1.  Latencies and throughput from packet router to packet router in the ANoC 

 Direct latency 
(ns) 

Cycle time (ns) 
(delay between 
flits) 

Throughput 
(Mflit/s) 

Throughput 
(MBps) 

Burst Mode 43,3 57,2 17,5 630 
Simple Mode 45,9 61,7 16,2 583,2 

Table 2.  Latencies and throughput between MIPS1 and MIPS2 across ANoC and interfaces 

Direct latency (ns) Interface 
clock 
frequency 
(MHz) 

Data 
transfer 
mode and 
packet 

start-
paquet flit 

body or 
end-of-
packet flit 

Cycle time 
(ns) (delay 
between 
flits) 

Throughput 
(Mflit /s) 

Throughput 
(MBps) 

50 Burst 50 31 120 8,3 266,6 
50 Single 76 57 141 7,1 226,9 
66 Burst 60 53 105 9,5 304,7 
66 Single 72 64 121 8,2 264,5 

90,9 Burst 43 31 77 12,9 415,6 
90,9 Single 68 62 100,4 9,9 318,7 
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Conclusion 
In this paper we provide a simple and flexible structure of Asynchronous NoC for 
GALS systems requiring efficient communications at low-complexity and low-
power costs. Such a structure is modular, robust and scalable. The interconnect 
topology generator delivers several configurable interconnect topologies which 
facilitate the system architecture exploration, helped by a scalable and easy-to-plug 
(flexible?) self-timed FIFO. Then a low-latency FIFO version can be instantiated in 
the final architecture. Using a multi-clock FPGA allows a fast prototyping of a 
complex ANoC-centric GALS system with mixed synchronous and asynchronous 
components. First result analysis gives promising ANoC abilities to deliver fast and 
robust communications. Another PACMAN version has been successfully 
prototyped onto the Altera Stratix FPGA. This is a distributed architecture 
implementing four independently clocked MIPS interconnected by the AnoC. 
Closely analyses of the FPGA platform are currently performed to extract complete 
results from these two PACMAN implementations, in order to improve both ANoC 
and GALS system design. 

 Prospective works will be to extend the topology generator to the other regular 
distributed topologies, with a large variety of arbitration policies and transaction 
services. Another work will be to integrate formal verification methods into the 
design flow. The aim is to deliver a dedicated synthesis tool for asynchronous 
interconnect networks generation. 
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