

Modular Asynchronous Network-on-Chip:
Application to GALS Systems Rapid

Prototyping

Jérôme Quartana1, Laurent Fesquet², Marc Renaudin²
1CMP-GC Centre Microélectronique de Provence Georges Charpak,
Avenue des Anémones, 13120 Gardanne, France quartana@emse.fr
²TIMA Laboratory, 46 av. Felix Viallet 38031 Grenoble Cedex, France

{laurent.fesquet,marc.renaudin}@imag.fr

Abstract. This paper presents an innovating methodology for fast and easy
design of Asynchronous Network-on-Chips (ANoCs) dedicated to GALS
systems. A topology-independent building-block approach permits to design
modular and scalable ANoCs with low-power and low-complexity
requirements. A crossbar generator is added to the existing design flow for fast
system architecture exploration. A multi-clock FPGA allows a fast prototyping
of complex ANoC-centric GALS systems. A demonstrative platform is
implemented onto an Altera Stratix FPGA. It includes synchronous standard IP
cores and asynchronous modules connected through an asynchronous 6x6
crossbar. Results about communication costs across the Asynchronous NoC
and synchronous/asynchronous interfaces are reported.

1 Introduction

GALS paradigm is to partition a system design in decoupled clock-independent
modules [1]. Design parameters of each block can be adjusted independently
(performance, power consumption or clock-tree management to name but a few).
Another benefit of GALS paradigm is to separate the design of communication from
functionality by using handshake protocol synchronization (amongst other
techniques).

Asynchronous NoCs (ANoCs) strongly benefit to such a globally asynchronous
design methodology. Clockless interconnect networks improve reliability by
removing clock-domain crossing synchronizations and by using delay-insensitive
arbiters for solving routing conflicts [2, 3]. Global design constraints are released.
They also offer robust communications thanks to an automatic data transfer
regulation (elastic pipeline): no data item can be lost or duplicated. Moreover,
regular distributed network topologies (any topology based on point-to-point links,

2 Jérôme Quartana, Laurent Fesquet, Marc Renaudin

such as meshes, tores or crossbars), built of independent routing nodes, fully exploit
modularity and locality design properties of asynchronous circuits. To illustrate these
benefits of using ANoCs for GALS systems, several publications bringing major
research contributions can be cited.

In [4] a stoppable clock methodology, based on asynchronous wrappers around
synchronous blocks, is used to compare topology performances by using ad-hoc
synchronous peripherals adapted to the asynchronous networks. Such techniques
need training sessions and suffer from PVT sensitivity [21] and from penalties in
restarting the clocks.

Beigne et al. present in [3] an asynchronous mesh topology providing a high
Quality-of-Service (QoS), using a multi-level design flow. This very efficient ad-hoc
architecture is dedicated to a specific application and has a high complexity cost.
Bolotin and al. use in [5] a generic architecture to evaluate four classes of packet
services. After a training session on every class, the most appropriate service is
implemented onto a point-to-point link between two components, according to the
communication requirements. This NoC architecture is more modular than [3] but
for a higher complexity cost.

In [6] and [7], Bainbridge and Lovett develop a modular and low-complexity
ANoC design methodology, using simple one-to-two and two-to-one switches to
build regular topology networks. In such structures, arbiters are very simple and so
efficient for packet routers with few channels to drive. However, assembling these
switches will heavily increase latency and area costs for large multi-inputs/outputs
routers.

Compared to these works, our purpose is to provide a simple and flexible generic
structure which allows fast design of a large spectrum of ANoC topologies for GALS
systems requiring efficient communications at a low complexity cost. According to
this motivation, this paper presents in section 2 a topology-independent structure
which is strongly modular, scalable and robust and which permits by using accurate-
function building blocks to design ANoCs for high-reliability, low-power and low-
complexity requirements. Section 3 gives some details of the self-timed FIFO
structure to interface synchronous and asynchronous domains. Section 4 details the
design flow methodology. A crossbar generator has been developed for fast system
architecture exploration. As such a flexible ANoC structure is well-suited for rapid
GALS system prototyping [9], we remind a special methodology [8] to synthesize
asynchronous modules onto FPGA, with an extension for non-deterministic arbiter
circuits [9]. In section 5, this methodology is applied to implement an ANoC-centric
GALS system onto a multi-clock Altera Stratix FPGA. It includes synchronous
standard IP cores and asynchronous modules connected through an asynchronous
6x6 crossbar. Results about performances of the Asynchronous NoC are reported as
well as a peripheral-to-peripheral communication cost (across both the ANoC and
the synchronous/asynchronous interfaces).

Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid
Prototyping

3

2 Asynchronous NoC design

Our methodology fully exploits the modularity of asynchronous circuits. We provide
a basic layered structure of ANoC with no predefined topology, by using a building-
block approach. Each block or layer has been accurately defined to efficiently deliver
one of the major functions of an interconnect network (these functions are detailed in
section 2.2 with the description of each block):
- service-level communication protocols,
- synchronization interfaces at mixed-timing domains,
- signal-level information transport,
- packet arbitration and routing in interconnect nodes.

Moreover, the basic blocks have been designed with an objective of reliability
improvement (section 2.1) and with respect to low-complexity, “easy-plug” and
scalability features. The result is a simple and flexible structure having efficient
latency and throughput and a wide variety of high-level services at low-complexity
and low-power costs. Such structure allows fast design of any ANoC regular
distributed topology.

2.1 Focus on synchronization bolts

Our methodology for designing ANoCs is focused in part on solving synchronization
problems. The two major synchronization bolts for a GALS system are:
synchronization at clock domain boundaries and arbitration between concurrent
requests [14]. Such circuits have a non-deterministic behavior. We put special invest
to improve reliability/performance tradeoffs of these synchronizer circuits.

Clocked synchronization. As discussed in the introduction, using an ANoC is in
itself a reliability improvement by removing clock-domain crossing synchronizations
through the interconnect network. However clocked synchronizers are still required
between Synchronous peripheral Blocks (SB) and the ANoC. Discussion on this
synchronous/asynchronous interface is developed in section 2.2 and structural details
are given in section 3.

Delay-insensitive arbiters. Arbitration circuits, or simply arbiters, are required
where a restricted number of resources are allocated to different user or client
processes. Packet routers are such cases. In the case of an ANoC, delay-insensitive
arbiters have this main advantage of being hundred-percent reliable (enough time is
given to resolve metastability). Reliability of on-chip communication systems is
becoming a major issue since the increase transaction rates are drastically reducing
the so-called Mean Time Between Failure characterizing clocked synchronizers. In
[2] we present a class of delay-insensitive arbiters which decouple the sampling of
incoming requests from the arbitration process in a strong modular and reliable
structure. Such arbiters use a Parallel-Request-Sampling structure and are used in [3,
9] and in the following ANoC structure.

4 Jérôme Quartana, Laurent Fesquet, Marc Renaudin

2.2 Modular ANoC structure

We cut out the construction of ANoCs in five basic components or layers, as
illustrated in Fig. 1.

Packet

Transport

Synchronous

Block

Synchronization

Interface

Interconnect

Network

Synchronous

Block

Wrapper

Adaptator

Routing Nodes :

Packet Routing

& Arbiters

Asynchronous

Block

Wrapper

Adaptator

Performance

Interface

Wrapper

Adaptator

Synchronization

Interface

Packet

Transport

Synchronous

Block

Synchronization

Interface

Interconnect

Network

Synchronous

Block

Wrapper

Adaptator

Routing Nodes :

Packet Routing

& Arbiters

Asynchronous

Block

Wrapper

Adaptator

Performance

Interface

Wrapper

Adaptator

Synchronization

Interface

Packet Transport

Synchronous Emitter

P2P

Interconnect

Links

Wrapper Adaptator Wrapper Adaptator

Synchronous Receiver

Packet Transport

Packet Router

Packet Router

Packet Transport

Packet Router

& Arbiter

Packet Router

& Arbiter

Asynchronous Emitter Asynchronous Receiver

Synchronization Interface Synchronization Interface
Synchonous World

Asynchonous World

Packet Transport

Synchronous Emitter

P2P

Interconnect

Links

P2P

Interconnect

Links

Wrapper Adaptator Wrapper Adaptator

Synchronous Receiver

Packet Transport

Packet Router

Packet Router

Packet Transport

Packet Router

& Arbiter

Packet Router

& Arbiter

Asynchronous Emitter Asynchronous Receiver

Synchronization Interface Synchronization Interface
Synchonous World

Asynchonous World

Fig. 1. ANoC-centric GALS architecture: a) abstract structure b) layered structure

1. Wrapper Adaptor (WA). This resource is required to translate between the
communication protocols used by a synchronous or asynchronous peripheral and the
interconnect network. The WA component adapts both flit and packet levels of the
communication protocols. The details of these protocols are beyond the scope of this
paper [3].

2. Synchronization & Performance Interface (SPI). This component binds the
SB clock domain with the ANoC using a FIFO decoupling method. The SPI consists
of a standard double flip-flop (DFF) synchronizer and of an asynchronous FIFO.
Such simple synchronization interface facilitates plugging of standard synchronous
IP cores.

Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid
Prototyping

5

The DFF resynchronizes asynchronous signals with the SB clock. The DFF

offers actually a very sufficient reliability/latency tradeoff (two clock cycles per
input signal sampling) [15], compared to numerous clocked synchronizer’s
improvements [16].

The asynchronous FIFO transforms the synchronous protocol in the
corresponding asynchronous protocol, adapting relative speeds between the SB and
the ANoC. For AB, such a FIFO is optional and can be used for pipeline
performance optimization. In this case we call it Performance Interface (PI) (Fig. 1).
Details of the asynchronous FIFO structure are presented in section 3. This
architecture is based on an existing asynchronous FIFO [17]. The level of parallelism
between data and control flows is improved and two versions are delivered: a low-
latency version or a low-power consumption version, according to design
requirements.

3. Packet Transport (PT). This resource adapts the physical level (or signal-
level) of the communication protocol. The PT component provides successive
protocol conversions from SPI component to delay-insensitive NoC core for best
power consumption and robustness. Between SPI and PR layers, bundle data
protocols are converted in delay-insensitive protocols for better robustness. Between
the packet routers (PR layer), the four-phase protocols can be converted in 2-phase
protocols for long interconnect links for lower power consumption and higher speed
[18].

4. Parallel-Request-Sampling Priority-Arbiter (PRS-PA). This resource
provides a self-timed arbiter with a decoupled arbitration process and a 100%
reliable request sampling structure based on delay-insensitive parallel synchronizers
[2, 19] (section 2.1).

5. Packet Routing (PR). This resource offers a modular routing of data items for
transaction services (packet level services such as burst mode or split transactions).
PRS-PA and PR resources are parts of ANoC routing nodes, as detailed in section
2.3.

2.3 Switches architecture for ANoC routing nodes

Packet router is the core component of an interconnect network. The packet routers
are assembled with modular elementary blocks, as shown in Fig. 2, with the same
objectives of low-complexity, easy “plug-and-play” and scalability as for the
complete ANoC.

Emitter module. Fig. 2 illustrates two switch instances. The n-to-1 switch, or
Emitter, is built around the PR (Packet Router) and PRS-PA (Priority Arbiter)
components, as previously presented in section 2.2. The PR resource is decomposed
in three modules: Packet Analyzer (PA), Data Path Controller (DPC) and MUX
module. The Emitter component delivers two major classes of packet level services:
arbitration service and transaction service. The PA block decodes Channeli_ctrl
message in order to extract arbitration and transaction information parts and to drive
it respectively to the PRS-PA and DPC modules. Arbitration information is
composed of Request and Priority_level (optional) channels, used by the PRS-PA
module to arbiter incoming requests. Once a Channeli_data is elected, PRS-PA

6 Jérôme Quartana, Laurent Fesquet, Marc Renaudin

informs the datapath controller module (DPC) through Selected_Channel. DPC
exploits it and the Transfert_mode channel to control data flow on the elected
Channeli_data and to drive the switch output (MUX module). Through
Transfert_mode channel, transaction information delivers packet status, such as
single flit packet or for burst mode: start-packet flit, body flit, end-of-packet flit.
Once the packet transfer is achieved, DPC module informs the sleeping arbiter
module PRS-PA through Sampling channel that a new transaction can start.

Receiver module. The 1-to-m Switch, or Receiver, is a PR component which
realizes the dual operation by driving the input (Packet_Ctrl and Packet_Data
channels) to the selected Target_Address. No arbitration is needed here. By
composing these switches we can build in short design time fast and efficient routing
nodes (sections 4.2 & 5.1).

S

PRS-PA

Parallel -Request -Sampler

Priority Arbitrer

Request probe

Sampling

Selected_Channel

PA
1

Packet Analyzer 1

PA
2

Packet Analyzer
2

PA
3

Packet Analyzer 3

PA
4

Packet Analyzer
4

Channel
1
_ctrl

Channel
1
_data

Channel
4
_ctrl

Channel 4_data

Channel 3_ctrl

Channel
3
_data

Channel 2_ctrl

Channel 2_data

Priority_level Request

Transfer_mode

DPC

Data Path Controller

Switch ctrl

CMD_Mux

Switch

(MUX)

Mux_out

(Selected_data)

Transfer_ctrl

S

PRS-PA

Parallel -Request -Sampler

Priority Arbitrer

Request probe

PRS-PA

Parallel -Request -Sampler

Priority Arbitrer

Request probe

Sampling

Selected_Channel

PA
1

Packet Analyzer 1

PA
2

Packet Analyzer
2

PA
3

Packet Analyzer 3

PA
4

Packet Analyzer
4

Channel
1
_ctrl

Channel
1
_data

Channel
4
_ctrl

Channel 4_data

Channel 3_ctrl

Channel
3
_data

Channel 2_ctrl

Channel 2_data

Priority_level Request

Transfer_mode

DPC

Data Path Controller

Switch ctrl

DPC

Data Path Controller

Switch ctrl

CMD_Mux

Switch

(MUX)

Switch

(MUX)

Mux_out

(Selected_data)

Transfer_ctrl

Target_Address

Target_Address

Decoder

DEMUX

Packet _Data

Packet _Ctr l

MR[4][18]

DR[3]

DR[3]

Target_Ctrl
0

Target_Ctrl
1

Target_Ctrl
2

Target_Ctrl 3

Target_Data 0

Target_Data
1

Target_Data
2

Target_Data
3

DEMUX

MR[4][18]

Target_Address
Target_Address

Decoder

DEMUX

Packet _Data

Packet _Ctr l

MR[4][18]

DR[3]

DR[3]

Target_Ctrl
0

Target_Ctrl
1

Target_Ctrl
2

Target_Ctrl 3

Target_Data 0

Target_Data
1

Target_Data
2

Target_Data
3

Target_Data 0

Target_Data
1

Target_Data
2

Target_Data
3

DEMUX

MR[4][18]

Fig. 2. Switch components: a) Emitter (n-to-1 switch) b) Receiver (1-to-m switch)

3 Asynchronous FIFO for mixed domain interfaces

3.1 Reference work

Chelcea and Nowick present in [17] several mixed-timing FIFO designs. The designs
are implemented as a core of micropipeline-style circular arrays of identical cells
connected to common data buses. Data items are not moved around the array once
they are enqueued, preserving power consumption. Control is made with two tokens:
the first one allows enqueuing data whereas the second one allows dequeuing data.
This asynchronous array is scalable and modular and offers very low latency.

The core of these asynchronous FIFO cells are used to design instances of
double-clock FIFOs and in our concern mixed synchronous/asynchronous FIFOs.

But we decide not to use this mixed version of the FIFO. Indeed, our GALS
architectures integrate heterogeneous Synchronous peripheral Blocks (SBs)
communicating across the ANoC. These synchronous and asynchronous domains
will present very different working speeds. In such a situation, the mixed-timing

Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid
Prototyping

7

version of the FIFO (interfacing a SB with an ANoC routing node) can not guarantee
one write or read operation per cycle on its synchronous part (SB side). The FIFO
will often be empty or full and speed performances will be degraded by a global
three clock cycles latency cost, due to complex FIFO-state detector interfaces.
Preliminary result analysis on the FPGA platform confirms large different speeds
between SBs and high-speed ANoC (section Error! Reference source not found.).

To avoid the use of such latency-penalizing interfaces, an improved version
(section 3.2) of the fully asynchronous FIFO is provided to interface synchronous
and asynchronous working domains. The FIFO is connected to a standard DFF
synchronizer which reduces the latency to two cycles. This solution is robust (section
2.1) and efficient to adapt domains with large difference in working speeds. The next
section briefly describes how we improved the self-timed FIFO architecture.

3.2 Improved asynchronous FIFO

The architecture of the fully asynchronous FIFO is transformed in two ways to
improve its performances.

1. Improved level of parallelism. This architecture has a limited degree of
parallelism between control and data paths (token passing and data
enqueuing/dequeuing operations). We use the TAST tool suite (see section 4)
features to improve it, and consequently to improve the speed of the FIFO. A FSM
modeling of the FIFO in CHP language allows a decoupling of token passing and
data enqueuing/dequeuing operations. TAST synthesizer options allow to parameter
the synchronization point between these operations and therefore ensure the
correctness of the FIFO. Both delay-insensitive and micropipeline versions of a
FIFO can be synthesized.

2. Low-power and fast architecture exploration. The common data buses give
increasing power consumption penalties for deep FIFOs. Moreover, the bus buffers
have to be re-designed for each new FIFO size. We replace these high-loaded buses
with two components called One-to-Two Sequential switch (OTS) and Two-to-One
Sequential switch (TOS). These components are bonded in a vertical binary tree of
switches as shown in Fig. 3.

Fig. 3 shows the horizontal array of FIFO cells (FC) with the distributed right-to-
left token passing control path [17]. Data items move vertically across a path of OTS,
FC and TOS components. Each OTS component is a 1-to-2 demultiplexer with
automatic toggle. Each data item is alternatively driven to one of both output paths,
starting on the right path. The TOS components are the reciprocal 2-to-1
multiplexers, receiving the first data item on the right input path and then
automatically switching from one input to the other. A version with one-to-three and
three-to-one switches can be provided to extend the available size of the FIFO.

8 Jérôme Quartana, Laurent Fesquet, Marc Renaudin

FC
4

StarterFC
2

FC
3

FC
1

TOS
1

FIFO_OUT

TOS
3

OTS
3

OTS
2

TOS
2

OTS
1

FIFO_IN

FC
4

StarterFC
2

FC
3

FC
1

TOS
1

FIFO_OUT

TOS
3

OTS
3

OTS
2

TOS
2

OTS
1

FIFO_IN

Fig. 3. FIFO structure with mux/demux trees

This architecture ensures the correctness deadlock-free operations of the FIFO.
OTS and TOS components work as supplementary data memorization cells.
Moreover, the cell structure for data paths is identical for FC, OTS and TOS
components, i.e. a data latch added to a Muller gate which controls channel request
signal. Consequently, the input and output loads of each cell are balanced. Compared
to the common bus solution, the mux/demux binary trees solution provide the
following features: design of the FIFO is simplified, scalability and power
consumption are improved and latency is degraded (but throughput is identical).

3. Conclusion. A high-throughput self-timed (either QDI or µP style) FIFO with
a high degree of parallelism is delivered to robustly interface SB and ANoC modules
in an ANoC-centric GALS system. Two versions are available: a mux/demux binary-
tree version for fast system architecture exploration (especially for optimal FIFO
size) and low-power; and a common-bus version for low-latency requirements.

4 Design flow

4.1 Design methodology

We specify and model asynchronous circuits in CHP (for Communicating Hardware
Processes), a high-level description language based on communicating processes [10,
11]. The processes are synthesized using TAST, a suite tool [12] dedicated to
asynchronous circuit synthesis. The TAST tool enables to map the CHP specification
onto a standard-cell library and/or a specific cell library [13] when targeting ASICs,
or to map onto FPGA for rapid system prototyping [8, 9].

Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid
Prototyping

9

4.2 Automatic crossbar generation

We use an automatic crossbar topology generation tool to implement the 6x6
crossbar ANoC. The tool controls adjustable design parameters for some of the five
ANoC modular blocks/layers. It supports fully-interconnect or Octagon [20]
topology generation and modular routing node cores generation, which can be hand-
adapted and assembled in more complex regular interconnect topologies, such as
meshes. The choice of crossbar or fully-interconnect topologies ensures a fast,
flexible and low-complexity system architecture exploration. It allows implementing
efficient Emitter and Receiver components in terms of routing complexity, latency
and throughput and in terms of control cost. The Receiver component supports high
packet service extensions thanks to its high modularity.

So far, the adjustable parameters are:
1. Crossbar size. It depends of the number of the system’s components.
2. Point-to-point (p2p) interconnects width. The width of each interconnect path is

defined according to the required bandwidth of each p2p linked SB or AB.
3. Priority algorithm. The priority solving function can be programmed. Available

policies are round-robin, FIFG and non-interruptible two-level priority policies.
The FIFG policy can be programmed independently for each routing node.

4. Transaction services. DPC module can be programmed to support data transaction
services. For the time being, only the burst mode is available. All routing nodes
must support the same transaction services.

4.3 Synthesis of QDI circuits onto FPGAs

This section presents an ANoC-centric GALS architecture implemented onto a
multiclock Stratix Altera FPGA. We give in [8] a generic synthesis methodology to
properly place and route asynchronous elements or mixed
synchronous/asynchronous circuits onto a FPGA, respecting the specific timing
assumptions of either QDI or micropipeline (µP) asynchronous design techniques.
This methodology is extended in [9] to synthesize arbiter circuits with non-
deterministic behavior, due to their synchronizer elements. A special circuit mapping
is presented for delay-insensitive synchronizers devoted to asynchronous arbiters.

This FPGA-prototyping methodology is applied to the clock-less modules of the
following architecture (ANoC and DES). The ANoC is designed according to the
modular building method of sections 2 and 3.

5 Validation platform

5.1 PACMAN platform

We demonstrate our network-centric GALS building methodology with a case-study
implemented on a Stratix Altera FPGA. This system is a first prototype version of a
generic GALS platform called PACMAN, for Programmable And Configurable
Multiprocessor Asynchronous Network.

10 Jérôme Quartana, Laurent Fesquet, Marc Renaudin

The PACMAN first-version architecture is shown in Fig. 4. It includes an ANoC
interconnecting four processing elements.

The asynchronous NoC is a 6x6 crossbar, but it is used in fact as a 5x5 crossbar,
with for processing elements and a direct output parallel communication link. There
is no pipelining in this version of the ANoC even though higher throughput could be
easily obtained by applying asynchronous pipelining techniques. The ANoC delivers
both arbitration and transaction services (section 2.4). The arbitration policy is a non-
interruptible two-level priority policy. When concurrent incoming requests need
arbitration, a request with the high-priority level is selected and low-priority level
requests are suspended. For equal priority-level concurrent requests, a First-In First-
Granted (FIFG) policy is used. A former selected channel can not be interrupted by
an incoming higher priority-level request during a burst mode data transfer. The
high-priority level is assigned to the MIPS processors. The transaction service
delivers burst mode or simple on-flit packet transfer modes, plus a special service
called Indirect-Response (IR). In IR mode, a peripheral A, initiator of a
communication, notify the receiver B not to answer to A, but to a third peripheral C.

The four processing elements are:
- Two independently clocked MIPS with local RAM banks and serial
communication links. One MIPS is running at 45MHz for interfacing purposes
whereas the other MIPS is running at 50MHz for number crunching applications.
- A self-timed DES module (Data Encryption Standard).
- A shared RAM bank.

Asynchronous 5x5 Crossbar

RAM Asynchronous

DES

ANoC

Interface

MIPS2

45MHz

RAMMIPS1

50MHz

RAM

ROM ROM

RS232RS232

RS232 Interfaces

Asynchronous 5x5 Crossbar

RAM Asynchronous

DES

ANoC

Interface

MIPS2

45MHz

RAMMIPS1

50MHz

RAM

ROM ROM

RS232RS232

RS232 Interfaces

Fig. 4. Structure of PACMAN case-study version for FPGA implementation

5.2 Performance of the communications

The Stratix Altera FPGA platform we have been using successfully supports the
PACMAN architecture implementation. Characteristics of the FPGA are the
following:
- device EP1S40F780C5 (40k gates),
- pin count 780,
- speed grade 5

Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid
Prototyping

11

Implementing a 6x6 crossbar (used in fact as a 5x5) Asynchronous NoC onto the

FPGA involves:
- 13458 LUTs and 0 registers for packet router modules (see section 2.3)
- for communication between peripherals, interfaces including WA, SPI and PT
modules are involved (see section 2.2). Each interface involves 218 LUTs and 90
registers.

Table 1 shows latencies and throughput of the ANoC without interfaces. Cycle
time is the direct flit latency from one packet router (Emitter module) to another
packet router (Receiver module) plus the backward acknowledge propagation time.
Table 2 shows latencies and throughput between MIPS1 (50MHz) and MIPS2
(45MHz) across ANoC and interfaces.

As mentioned before, these data transmission rates can easily be improved with
pipelining.

Table 1. Latencies and throughput from packet router to packet router in the ANoC

 Direct latency
(ns)

Cycle time (ns)
(delay between
flits)

Throughput
(Mflit/s)

Throughput
(MBps)

Burst Mode 43,3 57,2 17,5 630
Simple Mode 45,9 61,7 16,2 583,2

Table 2. Latencies and throughput between MIPS1 and MIPS2 across ANoC and interfaces

Direct latency (ns) Interface
clock
frequency
(MHz)

Data
transfer
mode and
packet

start-
paquet flit

body or
end-of-
packet flit

Cycle time
(ns) (delay
between
flits)

Throughput
(Mflit /s)

Throughput
(MBps)

50 Burst 50 31 120 8,3 266,6
50 Single 76 57 141 7,1 226,9
66 Burst 60 53 105 9,5 304,7
66 Single 72 64 121 8,2 264,5

90,9 Burst 43 31 77 12,9 415,6
90,9 Single 68 62 100,4 9,9 318,7

12 Jérôme Quartana, Laurent Fesquet, Marc Renaudin

Conclusion
In this paper we provide a simple and flexible structure of Asynchronous NoC for
GALS systems requiring efficient communications at low-complexity and low-
power costs. Such a structure is modular, robust and scalable. The interconnect
topology generator delivers several configurable interconnect topologies which
facilitate the system architecture exploration, helped by a scalable and easy-to-plug
(flexible?) self-timed FIFO. Then a low-latency FIFO version can be instantiated in
the final architecture. Using a multi-clock FPGA allows a fast prototyping of a
complex ANoC-centric GALS system with mixed synchronous and asynchronous
components. First result analysis gives promising ANoC abilities to deliver fast and
robust communications. Another PACMAN version has been successfully
prototyped onto the Altera Stratix FPGA. This is a distributed architecture
implementing four independently clocked MIPS interconnected by the AnoC.
Closely analyses of the FPGA platform are currently performed to extract complete
results from these two PACMAN implementations, in order to improve both ANoC
and GALS system design.

 Prospective works will be to extend the topology generator to the other regular
distributed topologies, with a large variety of arbitration policies and transaction
services. Another work will be to integrate formal verification methods into the
design flow. The aim is to deliver a dedicated synthesis tool for asynchronous
interconnect networks generation.

References

[1] F. K. Gürkaynak, S. Oetiker, N. Felber, H. Kaeslin et W. Fichtner, Is there
hope for GALS in the future ?, proceedings of the 4th Asynchronous Circuit Design
Workshop (ACID 2004), Turku, Finland, June 28-29, 2004.
[2] J. B. Rigaud, J. Quartana, L. Fesquet et M. Renaudin, Modeling and design of
asynchronous priority arbiters for on-chip communication systems, proceedings of
the VLSI-SOC'01 Conference on Very Large Scale Integration Systems.
[3] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, An Asynchronous
NOC Architecture Providing Low Latency Service and its Multi-Level Design Flow,
11th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), March 14-16, New York, USA, 2005.
 [4] T. Villiger, H. Kaeslin, F. Gurkaynak, S. Oetiker et W. Fichtner, Self-timed
Ring for Globally-Asynchronous Locally-Synchronous Systems, Ninth International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
ASYNC'03, Vancouver, Canada, May 12-16 , 2003.
[5] E. Bolotin, E. Cidon, R. Ginosar et A. Kolodny, QNoC : QoS architecture and
design process for network on chip, Journal of Systems Architecture, no. June 2003.
[6] W. J. Bainbridge et S. Furber, CHAIN: A Delay Insensitive CHip Area
INterconnect, IEEE Micro, vol. 22, no. 5, pp. 16-23, September/October 2002.
[7] W. O. Lovett, CHip Area Network Simulation, Master of Science, University of
Manchester, 2002.

Modular Asynchronous Network-on-Chip: Application to GALS Systems Rapid
Prototyping

13

[8] T. Q. Ho, J. B. Rigaud, M. Renaudin, L. Fesquet et R. Rolland, Implementing
Asynchronous Circuits on LUT Based FPGAs, Proceedings of the Field-
Programmable Logic and Applications, Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable Logic and
Applications Conference, FPL 2002, Montpellier, France, September 2-4, 2002.
[9] J. Quartana, S. Renane, A. Baixas, L. Fesquet, M. Renaudin, GALS Systems
Prototyping using Multiclock FPGAs and Asynchronous Network-on-Chips, 15th
Field-Programmable Logic and Applications Conference (FPL’05), August 24-26,
Tampere, Finland.
[10] A.J. Martin, Programming in VLSI: from communicating processes to delay-
insensitive circuits, in C.A.R. Hoare, editor, Developments in Concurrency and
Communication, UT Year of Programming Series, 1990, Addison-Wesley, p. 1-64.
[11] Anh Vu Dinh Duc, Laurent Fesquet, Marc Renaudin, Synthesis of QDI
Asynchronous Circuits from DTL-style Petri-Net IWLS-02, 11th IEEE/ACM
International Workshop on Logic & Synthesis, New Orleans, Louisiana, 2002.
[12] A.V. Dinh Duc, J.B. Rigaud, A. Rezzag, A. Sirianni, J. Fragoso, L. Fesquet,
M. Renaudin, TAST CAD Tools: Tutorial, tutorial given at the International
Symposium on Advanced Research in Asynchronous Circuits and Systems
ASYNC'02, Manchester, UK, April 8-11, 2002, and at the ACiD Summer School on
“Asynchronous circuits design”, Grenoble, France, July 15-19, 2002. TIMA internal
report ISRN:TIMA-RR-02/07/01—FR, http://tima.imag.fr/cis.
[13] Ph. Maurine, J.B. Rigaud, F. Bouesse, G. Sicard, M. Renaudin, Static
Implementation of QDI asynchronous primitives, PATMOS'03 - 13th International
Workshop on Power and Timing Modeling, Optimization and Simulation. Torino,
Italy, September 10-12, 2003.
[14] R. Ginosar, Synchronization and Arbitration, Proceedings of the ACiD
Summer School on Asynchronous Circuit Design, Grenoble, France, July 15-19
2002.
[15] Y. Semiat et R. Ginosar, Timing Measurements of Synchronization Circuits,
Ninth International Symposium on Advanced Research in Asynchronous Circuits
and Systems, ASYNC'03, Vancouver, Canada, May 12-16 , 2003.
[16] R. Ginosar, Fourteen ways to fool your Synchronizer, Proceedings of the Ninth
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, ASYNC'03, Vancouver, Canada, May 12-16 , 2003.
[17] T. Chelcea et S. M. Nowick, Robust Interfaces for Mixed-Timing Systems,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 8,
2004.
[18] R. Ho, J. Gainsley et R. Drost, Long wires and asynchronous control,
Proceedings of the Asynch'04, 2004.
[19] A. Bystrov, D. J. Kinniment, A. Yakovlev, Priority Arbiters, in International
Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC),
Eilat, Israel, April 2000, pp. 128-137.
 [20] F. Karim, A. Nguyen et S. Dey, An Interconnect Architecture for Networking
Systems on Chips, IEEE Micro, vol. 22, no. 5, pp. 36-45, September/October 2002.
Integration, Montpellier, France, 3-5 Dec. 2001.
 [21] C. Piguet, M. Renaudin, T. Omnés Low-power systems on chips (SOCs),
Proceedings of the DATE Conference, Munich, Germany, 2001.

