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Abstract. Autonomous mobile robots have been achieving significant
improvement in recent years. Intelligent mobile robots may detect haz-
ardous materials or survivors after a disaster. Mobile robots usually
carry limited energy (mostly rechargeable batteries) so energy conser-
vation is crucial. In a mobile robot, the processor and the motors are
two major energy consumers. While a robot is moving, it has to detect
an obstacle before a collision. This results in a real-time constraint: the
processor has to distinguish an obstacle within the traveled time inter-
val. This constraint requires that the processor run at a high frequency.
Alternatively, the robot’s motors can slow down to enlarge the time
interval. This paper presents a new approach to simultaneously adjust
the processor’s frequency and the motors’ speed to conserve energy and
meet the real-time constraint. We formulate the problem as non-linear
optimization and solve the problem using a genetic algorithm for both
continuous and discrete cost functions. Our experiments demonstrate
that more energy can be saved by adjusting both the frequency and the
speed simultaneously.

1 Introduction

Autonomous mobile robots provide great potential in transportation, entertain-
ment, environment sensing, search, rescue, reconnaissance, hazard detection,
and carpet cleaning [6] [7]. Mobile robots usually carry limited energy, such as
rechargeable batteries, so energy conservation is crucial. Makimoto et al. [12]
predicted that robots would be a major challenge for future low-power designs.
A robot requires many different sensors to detect the environment. Among all
sensing technology, stereovision is widely used for determining the distances of
obstacles [10] [15]. In a mobile robot, the processor and the motors are two
major energy consumers [13]. In this paper, we consider a robot with only one
motor, but the method can be generalized to multiple motors.

Even though dynamic voltage scaling (DVS) and energy conservation for
mobile robots have been studied [1] [3] [9] [11] [13] [20] [23] [25] [26] [27], the
close interaction between computation and motion remains unexplored. This
paper presents a probabilistic approach for energy reduction in a mobile robot.
We consider a mobile robot moving across an environment with static (i.e. not
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moving) obstacles, using stereovision to calculate the distance to each obstacle.
We assume that each obstacle represents a pass/stop signal, and the minimum
distance between signals is a known constant. The robot must recognize the
actual distance to the signal before crossing the minimum distance to avoid
any chance of failure. The computation cycles needed to recognize the distance
to the signals follow a probability distribution. Our method controls both the
robot’s processor frequency (and voltage) and the motor’s speed to reduce the
total energy consumption. Our method can save up to 15% additional energy
when it is compared with existing solutions that adjust the frequencies only
and use constant motor’s speeds.

A robot is a real-time system. The processor has to determine the distance of
an obstacle before the robot collides with the obstacle. The robot can stop dur-
ing the distance calculation. However, to conserve energy the robot should be
moving while performing this calculation. Many studies have been conducted on
energy conservation for real-time systems [9] [18] [25] [27]. Existing studies as-
sume that the deadlines are externally determined. For example, a video player
has to provide 30 frames per second to prevent jitters. This 33 ms deadline for
each frame is given by human’s visual perception and cannot be changed by the
video player. In contrast, in a mobile robot the deadline is not pre-determined
for vision. If the obstacle is static, the robot can slow down or even stop to
postpone the deadline before an impending collision. Hence, the deadline is de-
termined by the interaction between the robot’s processor and its motor. This
paper studies energy conservation in a real-time system in which deadlines can
be internally adjusted. Our earlier work [3] presents the system using only dis-
crete frequencies and discrete motor speeds, and finds the optimal schedule
through an exhaustive search method. We extend this work by generating a
schedule using a genetic algorithm. We show this method can obtain a near
optimal schedule using both discrete and continuous frequencies and speeds.

2 Related Work

2.1 Probability-Based Voltage Scaling

Some studies have been conducted for dynamic voltage scaling (DVS) by con-
sidering the probability distributions of tasks’ cycle demands [9] [11] [25] [27].
When different instances of a task’s execution cycles follow a known probability
distribution, the processor can start at a low frequency (and voltage). If one
instance requires fewer cycles, energy is saved because of the lower voltage. If
the instance requires more cycles, the processor’s frequency gradually rises to
ensure that the instance can finish before the deadline. This approach is called
accelerating frequencies. Lorch et al. [11] use accelerating frequencies for a single
task and treat concurrent tasks as a single joint workload. Accelerating frequen-
cies are also used for multiple tasks based on their worst-case execution cycles



Energy Conservation in Autonomous Mobile Robots 3

(WCEC) [9]. Yuan et al. [27] combine accelerating frequencies with soft real-
time constraints for multimedia applications. Xu et al. [25] study accelerating
scheduling in systems with discrete frequencies.

Suppose a task demands at most W cycles and the distribution of the cycles
is expressed by the cumulative distribution function (CDF ). The probability
that the jth cycle is needed is P (j) = 1 − CDF (j − 1). Note that P is non-
increasing because CDF is non-decreasing. Since a task may demand millions
of cycles, it is impractical to store the distribution in individual cycles. Thus,
we partition [0,W ] into n bins and each bin contains b cycles (b = dW

n
e). The

CDF is then a function of the bins. The probability that the jth bin is needed
is P (j) = 1−CDF (j − 1). The frequency assigned to the jth bin is fj and the
execution time for this bin is b

fj
. The processor’s power is proportional to v2f

and v ∝ f (here v is the voltage). The energy for this bin is (v2
j fj) ×

b
fj

∝ bf2
j .

The expected energy consumption for this bin is proportional to the product
of the energy and the probability: bf 2

j P (j). Suppose the task is released at
time zero and the deadline is t. The goal is to find a schedule {f1, f2, ..., fn} to
minimize the total expected energy. This is formulated as follows.

minimize
∑

1≤j≤n

bf2
j P (j) (1)

subject to
∑

1≤j≤n

b

fj

≤ t (2)

Based on earlier studies [11] [25] [27], the optimal schedules can be obtained by
assigning fj :

fj =

n
∑

i=1

b 3

√

P (i)

t 3

√

P (j)
(3)

2.2 Energy Conservation for Mobile Robots

Batteries are often used to provide power for mobile robots; however, batteries
are heavy and have limited energy capacity. A Honda humanoid robot can walk
for only 30 minutes with a battery pack [1]. Rybski et al. [20] show that power
consumption is one of the major issues in robot design. Sun et al. [23] present
an algorithm for finding the energy-efficient paths on terrains. Yamasaki et al.
[26] present an energy-efficient walk generation algorithm for a humanoid robot.
A case study [13] shows that motor power is less than 50% of the total power in
a mobile robot. Hence, the power for electronic components cannot be ignored.
In recent years, small robots have been studied for sensing [2] [5] [7] [21].

2.3 Image Correspondence for Stereovision

Robots can detect their surroundings, including distances to objects with two
cameras and stereovision. Several advances have made stereovision both precise
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Fig. 1. A simplified view of the GENITOR algorithm.

and accurate [10]. Redert et al. [19] show the advances made for those seeking
high-accuracy, high-resolution 3D scene acquisition. Stereovision has been used
in mobile robots for both navigation, and terrain mapping [15] [16].

2.4 Genetic Algorithm

Genetic algorithms have been used in many practical applications [4] for prob-
lems where optimal schedules take more than polynomial time to find. GENI-
TOR [24] is a steady-state genetic algorithm that has been shown to perform
well for several problem domains [17] [22] such as resource allocation, job shop
scheduling, and neural networks. A simplified view of the GENITOR algorithm
is shown in Figure 1. To generate a better schedule using the GENITOR al-
gorithm, several steps are performed. First, an initial population is generated,
either through simple heuristics or random generations. The population con-
sists of many chromosomes, or schedules in the search space. Next, the algo-
rithm performs evolution until a stopping criterion is reached, such as reaching
a maximum number of iterations or a homogeneous population.

In every iteration, one mutation and one crossover operations are performed.
If the chromosome generated by a mutation or a crossover is better than the
worst chromosome in the population, the new chromosome is inserted into the
sorted population and the worst chromosome is removed. The fitness function
is the criteria which allow a chromosome to be ranked better than another. The
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probability of selecting a chromosome for the mutations and crossovers is given
by the linear bias function defined in [24]. To achieve the linear bias effects, the
chromosomes remain sorted by their evaluation of the fitness function.

2.5 Paper Contributions

This paper makes the following contributions: (a) We consider a real-time sys-
tem in which the deadline is determined by the interaction between two com-
ponents: processor and motor. (b) The overall energy consumption is modeled
as an optimization problem. (c) A probabilistic solution is presented to find
the processor’s frequency and the motor’s speed. (d) We then use a genetic
algorithm to find a sub-optimal schedule quickly. (e) We consider continuous
processor frequencies and continuous motor speeds, and we use the genetic al-
gorithm to obtain an energy-efficient schedule.

3 Problem Formulation

This section formulates the problem to conserve the energy of a mobile robot by
adjusting the robot’s processor frequency and the motor’s speed. We first use a
motivating example to illustrate the important concept and then formulate the
problem as a probabilistic non-linear optimization problem. Next, we discuss
the properties of the formulation presented in Section 3.2. We describe how to
solve the optimization problem using discrete frequencies and discrete speeds
with an exhaustive search. Then we use a genetic algorithm to find energy-
efficient schedules for either discrete or continuous frequencies and speeds.

3.1 Motivating Example

Suppose the total power of a robot’s motor is s2 + s + 1 at speed s meters per
second. Here, the constant 1 is used to model the DC loss of the motor. The
processor’s power consumption is f 3 + 1 at frequency f MHz and a constant
leakage power of 1. Suppose the robot has to travel along a road. The road
contains signs indicating whether the robot can pass or has to stop. The signs
do not change (unlike traffic lights) and the minimum distance between two
adjacent signs is 100 meters. Even though the distance between signs may be
larger than 100 meters, the robot must recognize the sign by the time it has
traveled the minimum distance to guarantee success, as shown in Figure 2. If
the robot fails to recognize the sign in time, the robot may collide with the sign
and fail.

We define the optimal speed as the speed to consume the minimum energy
per unit distance. Suppose the minimum distance between signs is D. The time
to cross this distance is D

s
. The total energy consumption is (s2 + s + 1)D

s
and

the energy per unit distance is s2+s+1
s

= s+1+ 1
s
. Thus, the optimal speed is 1
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Fig. 2. Problem formulation showing that a robot must travel a minimum distance
while completing a task (stereovision distance calculation) with uncertain execution
time.

meter per second. If the robot moves at this speed, it takes 100 seconds to cross
the minimum distance. The worst-case execution cycle is 150 million cycles and
the processor has to operate at 1.5 MHz to ensure recognizing every sign before
the robot reaches the sign. The total energy consumed by the motor at s = 1 is
3 × 100 = 300 J. The total energy consumed by the processor at f = 1.5 MHz
is (f3 + 1) cycles

f
= 4.38 × 100 = 438 J. The overall energy is 738 J to cross the

minimum distance between two signs.
If we consider the power of the motor and the processor simultaneously, we

can reformulate the problem as follows. The time to cross the distance is 100
s

at
speed s. The processor has to operate at 1.5s MHz to meet the deadline. The
total energy is 100

s
× {(s2 + s + 1) + [(1.5s)3 + 1]}. The minimum energy value

occurs when s ≈ 0.62 and the overall energy consumption is 614 J, or a 17%
reduction from 738 J. This shows the importance of considering both frequency
and speed simultaneously.

We consider a further extension of this example. The computation cycles
vary due to the scene complexity surrounding the signs: among all signs, 30%
require only 50 million cycles, 40% for 100 million cycles, and the remaining
30% for 150 million cycles. The probability can be expressed in the following
way. The first 50 million cycles are always needed so the probability is 100%.
The second 50 million cycles are needed with probability 70%. Finally, the last
50 million cycles are needed with a probability of only 30%. With this additional
information, we can compute the expected, rather than the worst-case, energy
consumption. We want to lower the expected energy, but still finish detecting
the sign in the worst case. If the motor’s speed is a constant at 1 m/s, the
deadline is 100 seconds. We can adopt the strategy with accelerating frequencies
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Fig. 3. Processor and motor scaling schedule assuming a constant motor speed in (a)
and (b). Processor and motor scaling schedule if the motor speed is allowed to change
in (c) and (d).

explained in Section 2.1 as shown in Figures 3 (a) and (b). The overall system
saves energy in average cases because most tasks need only 50 or 100 million
cycles. Meanwhile, the system still meets the deadline in the worst cases by
using a higher frequency when needed. This, however, results in an energy
consumption of 611 J, less than 1% reduction from 614 J. We can consider
accelerating frequencies for the processor and simultaneously decelerating speeds

for the motor and save more energy, as shown in Figures 3 (c) and (d). By
decreasing the motor’s speed, the processor’s frequency does not have to rise
significantly, and its expected energy is reduced substantially. This approach can
further reduce the expected energy to 529 J in this example, or 14% additional
savings. The following sections will explain how to determine the frequency and
the speed simultaneously to achieve better energy savings.

3.2 Constrained Optimization Problem

The minimum distance between two signs is a known constant, D. The max-
imum number of cycles needed for recognition is W and is divided into n

bins. Each bin has b = dW
n
e cycles. We use P (i) to represent the probabil-

ity that the ith (1 ≤ i ≤ n) bin of cycles is needed. As defined in Section 2.1,
P (i) = 1−CDF (i−1) and P (i) ≥ P (i+1). The processor operates at frequency
fi for the ith bin. When the processor is computing for the ith bin, the robot
moves at speed si. The execution time for the ith bin is b

fi
. The distance trav-

eled during this time is di = si
b
fi

. The timing constraint is that the processor
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has to finish the computation of all bins before the robot crosses the distance
of D. In other words, the sum of di cannot exceed D:

n
∑

i=1

di ≤ D ⇒

n
∑

i=1

bsi

fi

≤ D (4)

Let α(fi) be the power consumption of the processor at frequency fi when
voltage scaling is also applied. When the processor finishes the task, the pro-
cessor’s frequency can be reduced to zero. In this case, the processor consumes
static power α(0). Let β(si) be the power consumption of the motor at speed
si. The expected energy for crossing the distance is the sum of the processor
energy and the sum of the motor energy over all bins. The energy consumed
can be divided into two parts: (i) when the processor is still computing, and (ii)
when all computation has finished.

When the ith bin is being computed, the processor consumes power α(fi)
and the motor consumes power β(si). The duration of this bin is b

fi
, and this

occurs with probability P (i). Therefore, the expected energy is

n
∑

i=1

P (i)b

fi

(α(fi) + β(si)) (5)

To compute the energy in (ii), we have to first determine the distance the
robot has traveled while the processor is computing. The total expected distance

traveled is
n
∑

i=1

bP (i)si

fi
and the remaining distance is D −

n
∑

i=1

bP (i)si

fi
. When the

robot is traveling through this remaining distance, the processor is turned off
and consumes idle power α(0). Let so be the speed for the remaining distance.

The time to cross the remaining distance is 1
so

(D−
n
∑

i=1

bP (i)si

fi
). Hence, the total

expected energy is

1

so

(D −

n
∑

i=1

bP (i)si

fi

)[α(0) + β(so)] (6)

The optimization problem is to find the values of fi and si (1 ≤ i ≤ n) and
so for minimizing the sum of (5) and (6).

min
n
∑

i=1

P (i)b
fi

(α(fi) + β(si)) + 1
so

(D −
n
∑

i=1

bP (i)si

fi
)[α(0) + β(so)] (7)

with the constraint in (4). This is a problem of constrained optimization.

3.3 Frequency and Speed Scheduling

The above formulation has three sets of variables: the processor’s frequency fi,
the motor’s speed si, and time. The time intervals have been discretized; hence,
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the frequency and the speed can change only at the boundaries of bins. Each bin
takes b clock cycles on the processor. We use P (i) to express the probability that
the ith bin is needed. In our formulation, the time intervals are not divided into
equal durations (measured by seconds). Instead, the duration of the ith interval
is determined by the ratio of b and fi in order to simplify the expression in (7).
It is possible to generalize the formulation and use continuous time so that (a)
The duration of a constant frequency is not determined by the value of this
frequency. (b) The frequency and the speed do not have to change at the same
time. If we use continuous time to model the problem, the frequency and the
speed are expressed as f(t) and s(t) respectively. The search space becomes
substantially larger and it is difficult to find optimal schedules. Hence, in the
rest of this paper, we use discrete time by allowing the frequency and the speed
to change only at the boundaries of bins.

Our solution uses accelerating frequencies (i.e. fi ≤ fi+1, 1 ≤ i ≤ n−1) and
decelerating speeds (i.e. si ≥ si+1, 1 ≤ i ≤ n − 1). To find the initial values for
f1 and s1, we examine the schedulability of the problem using the constraint of
inequality (4). The initial value of f1 is the lowest frequency to satisfy (4) when
all si’s are assigned the lowest speed. Similarly, the initial value of s1 is the
highest speed to satisfy (4) when all fi’s are assigned the highest frequency. If
f1 exceeds the highest available frequency or s1 is below the minimum available
speed, no schedule can be found. After finding the initial values for f1 and
s1, we enumerate all feasible schedules and find the schedule that provides the
minimum expected energy and meets the constraint in (4). For a small value
of n, it takes only several minutes on a modern computer to find the optimal
schedule. This schedule can be computed off-line, and loaded into the robot
so that it can change to the correct speed and frequency while the task is
still executing. As n increases, the time to find this schedule becomes more
important, as there are many more combinations of fi and si. This becomes a
problem of scalability with the number of bins.

In most cases, it is impractical to wait hours to generate a schedule for
different values of D. This is especially true for dynamic environments and
unknown operating environment. Therefore, it is preferable to find a schedule
quickly even though it may not be optimal.

3.4 Optimization using Genetic Algorithm

To determine a schedule in a reasonable amount of time, a genetic algorithm
is used. Even though the genetic algorithm does not guarantee to reach the
optimal schedule, we will show that the schedule produced still saves energy
and approaches the optimal schedule. The technique is one adopted from [24].

A chromosome contains all the frequency and speed assignments for the
mobile robot for each bin. Each chromosome contains a value for fi and si

(1 ≤ i ≤ n) and has 2n parameters, where n is the number of bins in the
problem. In the discrete case, fi and si are restricted to a limited set of discrete
frequencies and discrete speeds, predetermined before the algorithm is run. We
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are minimizing the expected energy, therefore the fitness function is Equation
7.

The initial population is composed of arbitrary chromosomes. We select the
first chromosome to have all frequencies set to the maximum available frequency,
and all speeds set to their minimum speeds. If this schedule is not feasible, i.e.,
the processor still cannot finish executing the task before the robot arrives at its
destination, then no schedule can be found. The remainder of the chromosomes
are randomly generated.

For mutation, either one or two parameters are selected at random to change.
A parameter is one of any fi or si. Allowing two randomly selected parame-
ters to change produces better schedules than changing only one parameter.
In our algorithm, half of the multations change two parameters in a schedule
simultaneously. Changing only one parameter in a schedule may result in being
trapped in a local minimum because the mutated chromosomes are either infea-
sible (robot no longer meets its deadline) or increase the power consumption. To
perform the crossover operation, each parameter is ordered, and a cutoff point
is determined at random. This is shown in Figure 4. Any parameters before
the cutoff remain the same as their parents and any chromosomes parameters
after the cutoff are swapped from one parent to the other. This creates two
potentially better child chromosomes.

4 Simulations

4.1 Overview

We consider both discrete and continuous frequency and speed settings for our
experiments. The experiments were conducted over several workloads, using
both an exhaustive search method and a genetic algorithm. Our simulations
show up to 15% energy savings over those methods that scale processor fre-
quencies only.

4.2 Hardware Models

Table 1. XScale’s frequency/voltage and power.

Frequency(MHz) 150 400 600 800 1000

Voltage(V) 0.75 1.0 1.3 1.6 1.8

Power(mW) 80 170 400 900 1600

We use the voltage and frequency settings of the Intel XScale processor
[25]. For the discrete experiments, we use five discrete frequency settings. Their
associated power consumption is shown in Table 1. For the continuous frequency
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Fig. 4. Crossover operation of a sample chromosome with 4 bins and 8 parameters.

settings, we use a third-order polynomial power model based on the discrete
values in Table 1 and allow the frequency to vary anywhere between 150MHz
and 1GHz. The motor power is from the measurements performed by Mei et al.
[14] shown in Figure 5. We limit the motor’s speed between 0.5 m/s and 5 m/s
with 0.5 m/s as the step size, for the discrete case. For the continuous motor
speeds, we limit the motor speeds to a range of 0.5 m/s and 5 m/s. All of our
calculations assume the minimum distance to travel is 500 meters for D’s value.

All experiments were performed using Matlab 7.1 running on Windows XP
SP2. The hardware consisted of an Intel Pentium 4 CPU running at 3.4 GHz
with 1 GB of RAM. These values are important for the execution time of the
genetic algorithm and the exhaustive search, as seen later in Figure 12.

We compare our approach with three other methods. The first uses a con-
stant frequency and a constant speed. The frequency and the speed are selected
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Fig. 5. Power efficiency of a robot at different speeds.

from the discrete settings such that they minimize the total energy consumption
and satisfy the constraint. In the synthetic distributions, a search finds the op-
timal energy consumption schedule that meets the constraint to be a frequency
of 400 MHz and a speed of 1.5 m/s. The second uses a constant speed and
accelerating frequencies. The third uses a constant frequency and decelerating
motor speeds. The processor frequency is set to the middle frequency 600 MHz.
The fourth uses both accelerating frequencies and decelerating speeds; this is
the method proposed in this paper.

4.3 Workloads

We use two types of workloads: synthesized workloads with different distribution
functions, and a distribution function generated from captured stereo images.

The synthetic benchmarks have distributions of uniform, Gaussian, and ex-
ponential functions. These synthetic workloads have worst-case execution cycles
(WCEC) of 100 billion cycles. For the uniform distribution, the actual number
of needed cycles is between 0 and WCEC. For the Gaussian distribution, the
mean is half WCEC and the standard deviation is a quarter WCEC. For the
exponential distribution, the mean is a quarter WCEC. The distributions are
normalized after removing the negative cycles and the cycles above WCEC. We
varied the mean and the standard deviation (STD) of the synthetic workloads
to show how different values affect the energy savings of our schedule. The
energy savings calculations are done using the genetic algorithm with continu-
ous frequencies and continuous speeds. Each run is performed over a range of
means, where each mean is calculated as a percentage of the original WCEC.
To find average energy savings, three calculations are performed for each work-
load. The uniform and Gaussian workloads are generated by selecting a value
of the standard deviation. The exponential workload is generated only over
variable means.
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We generated the image workload from pairs of stereovision images taken
from the image database of the city of West Lafayette and Indianapolis in the
state of Indiana [8]. Pairs of stereo images are compared, and distances for
several objects are returned.

4.4 Experimental Results

The experiments compare our method with several workloads. We analyze an
image processing algorithm to obtain the distribution of execution cycles, and
how our method performs on the workload. The genetic algorithm experiments
show how a schedule can be obtained in a reasonable time, even if it is not
optimal. We then show how altering synthetic workloads affects the energy
savings.

Figure 6 shows the distribution of the needed cycles for running the corre-
spondence programs on 700 pairs of images. Note that there is great potential
for energy savings as the probability of the WCEC (85.7 billion cycles) is only
0.14%. We can see that the majority of tasks execute in around 62 billion cycles.

Figure 7 shows the relative energy consumption of the four methods for
the four benchmarks, using the exhaustive search method. All numbers are
normalized related to the first method with a constant frequency and a constant
speed. As can be seen in this figure, our method can save 20% to 50% energy
compared with the first method in the four benchmarks. Compared with the
second and the third methods, our method can save an additional 7% to 15%
energy. These results are generated using 10 bins.

An exponential distribution shows the greatest potential for savings as com-
pared with the constant frequency and the constant motor speed schedule. In
an exponential distribution, the task finishes quickly more often, and has a low
probability of finishing near the WCEC. We can see the potential for reduc-
ing the expected energy as opposed to WCEC scheduling. In the stereovision
distribution, the energy savings is not as high as the exponential distribution
because no task finishes before 2

3 × WCEC cycles, but our method still saves
20% energy over the constant frequency and constant motor speed scheduling.
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One advantage of using our method over a constant frequency and constant
speed schedule is that our method will not necessarily increase the worst case
travel time of the robot to the minimum distance D. For this analysis, we
assume that the task takes the maximum number of cycles to execute, namely,
its WCEC. Figure 8 shows the time required to travel the minimum distance.
We see that in all cases, dividing the frequency and speed schedule into 10
bins allows the robot to tune its speed better, so that the robot takes less time
traveling the minimum distance than the constant frequency and constant speed
schedule allows.

Figure 9 shows the energy consumption for a growing number of bins, using
discrete parameters. This figure indicates that energy consumption decreases
as the number of bins grows because more frequencies and speeds can be used.
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Fig. 9. Energy consumption of the optimal schedule of each benchmark over a different
number of bins using discrete parameters and the exhaustive search method.

It should be noted that with the stereovision distribution, the energy actually
increases in some cases. This is due to the division of the PDF into a relatively
small number of bins. Some of the areas with high probability are divided in
some sizes of n, resulting in an increased expected energy. However, energy is
still reduced from the extreme case of one bin. Because of the small number
of bins used to compute the frequency and the speed schedule, our method
can be applied to practical systems, even though the method has exponential
computation time.
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Fig. 10. GENITOR improvement versus the number of iterations compared with
the optimal energy consumption for the exponential workload with discrete (a) and
continuous (b) frequencies and speeds.
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Fig. 11. Energy consumption of each benchmark over different number of bins using
continuous parameters and a genetic algorithm to find a schedule.

Genetic Algorithm The genetic algorithm had a population of 50 chromo-
somes, starting with 50 random schedules. We can see from Figure 10 (a) that
the energy consumed approaches the exhaustive search optimal schedule after
only a few thousand iterations. For the exponential distribution, the energy
consumed by the schedule generated by the GENITOR algorithm was within
0.24% of the energy consumed by the optimal schedule. Other distributions’
simulations perform in a similar manner, and all schedules were computed in
about 4 minutes.

We can see in Figure 10 (b) the results of running the genetic algorithm
using continuous parameters compared with the optimal schedule using discrete
parameters. The result is 14% more energy-efficient than the discrete optimal
schedule. This figure shows the advantage of using continuous parameters over
discrete parameters.

We show the effects of increasing the number of bins in Figure 11. Increasing
the number of bins increases the number of parameters that can be adjusted.
These schedules were calculated using continuous parameters, as these were
shown to provide better schedules than discrete parameters. This figure can be
compared to Figure 9, where each graph is calculated using discrete parameters
and normalized with the original one bin discrete parameter schedule. The figure
also indicates that the energy consumption begins to approach diminishing
returns as the number of bins exceeds 15. In other words, a large number of
bins cannot provide a significant amount of additional savings.

We use a genetic algorithm over an exhaustive search to reduce the time
for finding energy-efficient schedules. In Figure 12, we show the execution time
of the exhaustive search compared with the execution time of GENITOR. No
times were recorded for 1 or 2 bins exhaustive search because the execution
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Fig. 12. Execution time of the exhaustive search method and GENITOR algorithm
as the number of bins increases over a linear scale (a) and a log scale (b), using discrete
processor frequencies and motor speeds.

time was negligible. We can see that using a genetic algorithm will begin to
save hours as the number of bins increases.

Variable Synthetic Workloads The uniform distribution results are shown
in Figure 13 (a). The figure shows the increased energy consumption as the mean
increases. For a small STD value, the task executing almost always executes its
worst case execution cycles, while the workloads with a large STD have constant
energy consumption over the selected ranges of the mean. This occurs when
probabilities that are assigned to bins below 0% or above 100% get clipped, and
are normalized so they sum to one. The result is the appearance of constant
energy savings.

Figure 13 (b) shows the Gaussian distribution results. For each STD, we
see that the energy consumption increases as the mean increases. This increase
becomes more significant as the STD increases. With a large STD, the dis-
tributions approach a uniform distribution for each mean, therefore the energy
savings remains constant. We also see the crossing point in the middle because
a distribution with a large STD performs as well as a schedule with a small
STD with a mean of 50% WCEC.

The exponential distribution results are shown in Figure 13 (c). The figure
indicates the increasing energy consumption as the mean increases, but takes
on a different shape than the other workloads. This is because even with the
increased mean, the majority of tasks will complete early. The rate of increase
with mean is small, and our method still saves energy in the worst case.

5 Conclusions

This paper presents a method to simultaneously scale processor frequencies and
motor speeds for autonomous robots with hard deadlines. However, each dead-
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Fig. 13. Energy consumption over a range of means of uniform (a), Gaussian (b),
and exponential (c) synthetic workloads.

line is not a time deadline, rather it is a distance deadline. This problem is
formulated as an optimization problem. An exhaustive search method is pre-
sented to find the optimal solution among discrete processor frequencies and
motor speeds. A genetic algorithm is used to find a near-optimal solution in
less time than the exhaustive search. The genetic algorithm is modified so that
it can handle continuous processor frequencies and motor speeds.

A probability distribution of the number of cycles required for stereovision
distance calculation is used for our simulations, along with three synthetic dis-
tributions. Our experimental results show that we achieve energy savings from
7% to 15% more than only scaling the processor frequency. These results can
be achieved through the calculation of an optimal schedule off-line. We can save
more energy if continuous processor frequencies and motor speeds are available
using the genetic algorithm. We also show that the genetic algorithm can be
used for greater energy savings with increasing numbers of bins.
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