System and Processor Design Effort Estimation

Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

University of California Santa Cruz
Dept. of Computer Engineering
http://masc.soe.ucsc.edu

Abstract. Design complexity is rapidly becoming a limiting factor in
the design of modern high-performance digital systems. The increasing
levels of design effort required to improve and implement critical proces-
sor and system structures have led to staggering design costs.

As we design ever larger and more complex systems, it is becoming in-
creasingly difficult to estimate how much time it takes to design and
verify them. Novel quantitative and optimization approaches are needed
to understand and deal with the limiting effects induced by design com-
plexity, which remain for the most part hidden from the architect. To
address part of these shortcomings, this work introduces pComplezity
and uPCBComplezity, a set of methodologies to measure and estimate
design effort for modern processor and PCB (printed circuit board) de-
signs.

1 Introduction

While the ability to fabricate ever larger and denser circuits is still increasing
as predicted by Moore’s Law, the semiconductor industry is facing several seri-
ous challenges. One of them is the cost of new processor development. Current
development costs for top of the line designs are staggering, and are doubling
every 4 years [10]. Another challenge is the growing difficulty to correctly de-
sign and verify the circuits — which has been called the Design and Verification
Gaps [1]. As a result, according to the ITRS 2002 update [1], “the increasing
level of risk that design cost and design quality present to the continuation of
the semiconductor industry” is of serious concern. The design effort of modern
digital systems is further compounded by the need to meet aggressive design
constraints such as rising clock frequencies, thermal and power issues, reduced
area, increasing number of layers, mixed signal devices, and the ever increasing
component count and density.

All of these factors combined have made it increasingly difficult to estimate
how much time would be required to design and verify these modern high-
performance systems. Ironically, for such a resource-intensive endeavor, there
is little systematic work (at least in the public domain) on measuring, under-
standing, and estimating the effort required by each step in the design of high-
performance digital systems. If effort estimates were available early in the design
process, they would help identify the critical paths in the whole design process,

2 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

thus allowing resources to be more effectively allocated and procured. This is
essential to keep design costs down and to increase the competitiveness of a
company, as architects can access new quantitative approaches to make bet-
ter design trade off decisions. This work focuses on two of the main areas of
complexity in modern systems; circuit boards and processors.

Design effort is defined as the time required, in person-hours, to design and
implement a given system. Design effort is equivalent to design time when the
project has a single developer. For a given effort requirement, it is possible
to reduce the design time by increasing the number of workers. However, as
several studies in software metrics and business models have shown, increasing
the number of workers may lead to decreases in overall productivity per worker.
Since the conversion between design effort and design time can be approximated,
the remainder of this work focuses only on design effort.

Different designs have different constraints, leading to specific challenges;
typical design constraints are power, area, frequency, and manufacturing cost.
For example, having area being a primary design constraint, may lead to a
requirement for additional layers, more expensive package types, and/or more
complex placement and routing. A design constrained by cost, on the other hand,
may require a balance between number of layers, area, drill density, types of
packages and possibly the number of different drill sizes. Having clear constraints
is necessary in estimating layout effort as it can drastically affect complexity.

This work describes a set of methodologies for measuring and estimating
the design effort for modern digital systems. These methodologies are based
on the study and analysis of the correlation between multiple design statistics
and the overall design effort required to implement these designs. Metrics or
combinations there of with good correlation characteristics with overall design
time are expected to be good design effort estimators.

This work estimates the design effort for a modern processor as being equiv-
alent to the effort in person-months required to implement and verify the RTL
(register transfer level) description of its design. This processor design estima-
tion is based on the uComplezity methodology [2], which consists of three parts:
a procedure to account for the contributions of the different components of the
design, accurate statistical regression of experimental measures using a nonlinear
mixed-effects model, and a productivity adjustment to account for the differen-
tial in skills and productivity levels across different design teams.

In order to address some of the concerns related to PCB design time estima-
tion, this work follows a similar approach taken in [2] as the principles that are
applicable to microprocessors are also applicable to PCBs. In this work, design
effort corresponds to the number of engineering-hours required for implementa-
tion (layout) of a PCB or microprocessor design.

To isolate good design metrics for PCB design effort, we explore statistics
such as area, component count, pin count and device types and sizes for many
PCBs. We analyze several of these statistics, and propose a metric, obtained
after applying nonlinear regression over the different statistics, which we call

System and Processor Design Effort Estimation 3

uPCBComplexity. In addition, we provide insights on the correlation between
several statistics and the design effort for many systems with known layout times.

The evaluation shows that a simple statistics like PCB area size and number
of components yield some correlation with design effort. With a 90% confidence,
pins has a (0.47, 2.09) confidence interval. This means that roughly by looking at
the number of pins, the typical design time error is half/double with a 90% confi-
dence. Much better results can be achieved with the proposed puPCBComplexity
metric. In that case the confidence interval for a 90% confidence is (0.58, 1.72).
This roughly means that less than 40% estimation error is achieved with a 90%
confidence.

On the processor side, our data shows that any one of number of statements
(Stmts), lines of code (LoC) or the fan in of logic cones (FanInLC) is a good
single-metric estimator of design effort. Interestingly, this shows some similarity
between hardware and software design efforts. On the other hand, it appears that
the hardware estimators used elsewhere such as number of cells and transistor
count used by the STA Roadmap and Sematech are not so effective. Most of
the other synthesis tools metrics such as area, power and frequency are not
well correlated with design effort either. Further evaluation shows that the best
estimator is a combination of the two most accurate, which we call Design Effort
Estimator 1 (DEEL).

2 Overall Design Flow

The goal of this work is to develop a quantitative approach to estimate design
effort based on several easily gathered statistics. This is important because be-
ing able to estimate/measure design effort is advantageous in helping to reduce
design costs. In order to build a design complexity model, we analyze and gather
data from several commercial PCB and processor designs. The layout times for
the PCBs and the design times for the processors were well documented, which
was a requirement for this analysis.

uComplexity and uPCBComplerity are methodologies to measure and es-
timate the design effort required for a processor design or PCB layout. They
comprise three components. The first one is an accounting procedure whereby
the design is partitioned into disjoint modules that can be measured individu-
ally. A quantification for the entire processor/PCB is obtained by aggregating
all the module measurements. The second component is the application of sta-
tistical regression to these design measures to obtain an unscaled estimate of the
design effort. The final component involves the multiplication of the unscaled
effort estimation by a productivity factor, this is done to obtain the estimation
of the design effort for a given design team.

In the following subsections, we first review a typical design flow and define
the design effort that we are trying to estimate. Next, we discuss the three-
component pComplezity and uPCBComplerity methodologies in detail. Finally,
we examine some concerns about the methodologies.

4 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

2.1 Design Effort Defined

The system development timeline can be broken down into several overlapping
stages as shown in Figure 1. Note that the duration of the different stages is
not drawn to scale. The figure also shows an approximation of the size of the
engineering team working on the processor portion of the project during each
stage. For PCB design it is still fairly typical to have only small teams of 1 or 2
engineers working on the layout stage of the design, which is what we focus on
in our PCB analysis.

- = = RTL Design Phase — = ¥

High-Level Design (-]
RTL Implementation
RTL Verification

Engineering team size

Place and Route
Timing Closure

PCB Implementation

Fig. 1. System development timeline with the size of the IC engineering team.
Note that the timeline is not drawn to scale.

In the High-Level Design stage, architects perform functional simulation and
power estimation of multiple candidate designs. Based on that, they select one
microarchitecture and produce a complete functional and interface description of
each of its components. Examples of such components are the branch predictor,
load-store queue, or floating-point unit. These components are then assigned to
engineering teams for implementation. In the case of an ASIC, or if the processor
is being designed for an embedded system, the PCB is also be planned during
this stage. A Product Requirement Document (PRD) is produced which details
the goals of the processor/ASIC and the system board (PCB).

In the RTL Implementation stage, engineering teams implement their as-
signed components in an HDL such as VHDL or Verilog. They continue refining
the description until they reach an RTL-level implementation, which can be au-
tomatically translated to a gate-level netlist. Functional bugs are fixed as the
verification teams discover them. Synthesis is performed to ensure that the tim-
ing, area, and power goals are being met.

In the RTL Verification stage, engineers create test cases to verify the func-
tionality of individual components and of the whole chip. They perform cycle-
accurate simulations and compare the results with the expected values. At this
point, the verification team is only concerned with the functional correctness of
the design — whether it produces correct answers in a logic-level simulation.

System and Processor Design Effort Estimation 5

Circuit-level verification, in which electrical and timing parameters are verified,
comes later. RTL verification is complete when the number of outstanding bugs
reaches zero and stays there for a pre-agreed amount of time.

In the Place and Route stage, the synthesized netlist is physically placed
within the chip-defined core area based on timing constraints. During the place-
ment phase, gates are resized and some additional logical optimization may be
performed. After the initial placement, the routing phase occurs and, if needed,
minor placement changes are made. Once the design is successfully placed and
routed, clock tree synthesis happens, whereby the clocks in the design have their
buffer trees placed and routed.

In the PCB Implementation stage, engineers design the schematic and start
the layout for the system board onto which the processor/ASIC resides. As chip
interfaces become defined and stabilized the requirements for a system board
design is gathered. This would include traces and foot prints for any IOs such
as PCI, USB, or Ethernet. It would also include the memory system, either a
bridge chip with memories, or possible just the memories if the processor/ASIC
has a memory controller integrated on chip. A schematic is created and a BOM
(bill of materials) is produced. These are then passed on to the layout person or
team for implementation of a PCB design.

Finally, in the Timing Closure stage, engineers perform timing analysis of the
gate-level implementation to determine the maximum clock speed of the design
and to identify critical paths. A redesign may be required which could involve
RTL or placement—and-route changes. A refine—test—refine loop exists between
the Place-and-Route and Timing Closure stages.

As shown in Figure 1, the focus of this part of the work is the period that
includes both the RTL Implementation and the RTL Verification stages. We
define Design Effort as the number of person-months spent implementing the
description of the processor in a hardware design language such as VHDL or
Verilog, refining it to an RTL description, and verifying the latter for functional
correctness. We exclude any additional time required to revise the design later,
during the Timing Closure process. While the period considered excludes some
design time, we believe that it includes the bulk of it.

In the following sections we describe the accounting procedure we use for the
PCB and processor evaluations. In 2.2 we look at the accounting procedure stage
of uComplexity, whereby the design is partitioned into disjoint modules that can
be measured individually. In 2.3 we discuss the critical design parameters of a
PCB and how the accounting for uPCBComplexity is developed from them. A
quantification for the entire processor is obtained by aggregating all the module
measurements. In 2.4 we discuss the use of a productivity adjustment.

2.2 Approach to pComplexity

This assumes a processor design to represented as a collection of hardware de-
scription language (HDL) statements, thus ignoring certain design issues in-
troduced to processor components implemented using custom layout and not

6 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

standard cell designs. As described in Section 1 the design effort for a mod-
ern processor is directly proportional person-months required to implement and
verify the RTL description of its design.

To measure overall design effort, estimates of the effort for each processor
component must be obtained, and then added into a compounded index. How-
ever, components may be instantiated several times through any given design.
Some components may also be parameterized, and different-sized instances could
be generated. Parameters could be the width of the input or output buses, queue
depth, or pipeline depth. To address these cases, we use the following two rules.

Account for a single instance of each component. When a design reuses
a component (e.g., an ALU), we only count the design effort of one instance of
it. The rationale is that, in accordance with the principles of modular design, the
effort required to design and verify the component is a one-time cost. Once the
component is designed and verified, it can be re-used elsewhere with negligible
effort.

Minimize the value of component parameters. To estimate the design
effort of a parameterized component, we set each parameter to the minimal
value that does not result in a degenerate case. We refer to this minimization
of parameters as scaling. The rationale is that, while different parameter values
can drastically change the size of the component instance (in terms of chip area
or number of gates), it is not much harder to write parameterized code than it
is to write code for the smallest nontrivial instance.

More formally, consider a VHDL description where the parameterized com-
ponent is implemented with GENERATE loops. We select for each parameter the
smallest value that does not cause any loops or conditional statements in the
RTL description to be optimized away by traditional program analysis tech-
niques such as constant propagation and dead code elimination. The process for
Verilog is more difficult to formalize because Verilog did not have an equivalent
of the GENERATE construct until Verilog-2001 was introduced. However, the de-
termination of what constitutes the minimal non-degenerate parameterization is
conceptually the same.

Design Effort Estimator There are multiple metrics that may be related to
design effort. Examples include the number of logic gates or the number of HDL
lines in the design description. Consequently, for each component in the design
(subject to the constraints of Section 2.2), we measure these metrics. Then, we
select a single metric or a set of metrics (e.g., the number of gates and the number
of HDL lines) and use statistical regression [11] to find how well they correlate
with the person-months design effort reported by the processor designers. For
each set of metrics my, mao, ... m,, we find the best values for the coefficients
wi, Wa, ... w, in Equation 1. The result is a Design Effort Estimator (eff):

off = 1 X Y (wy, x my) (1)
P k=1

System and Processor Design Effort Estimation 7

The regression model used is described in Section 3. In the equation, p is the
productivity factor for the design team. It allows the same set of coefficients wy,
to be used in different projects. The rationale for p is discussed next.

2.3 Approach to puPCBComplexity

Printed circuit board (PCB) design effort keeps growing due to such constraints
as rising clock frequencies, thermal issues, reduced area, increasing number of lay-
ers, mixed signal devices, and the ever increasing component count and density.
All of these factors combined have led to a steady rate of increase in development
costs for current systems. As we design ever larger, denser and more complex
systems, it is becoming increasingly difficult to estimate how much time would
be required to design and verify them. To compound this problem, PCB design
effort estimation still does not have a quantitative approach.

The lists of critical components of PCB designs is determined by [4]. These
parameters contribute to the complexity of a design, and hence the time re-
quired to do layout. Some design parameters are dependent on other factors.
For example, the size of the board is defined by the number of embedded and
discrete passive components and total wiring requirements. However, the total
wiring requirements are governed by the number of embedded and discrete pas-
sive components in the PCB. And furthermore, the total number of layers in the
PCB depends on the size of the board, the number of embedded and discrete
resistors and bypass capacitors [4].

These critical design parameters are focused towards manufacturability, not
design effort estimation. We used them as a starting point in determining what
parameters or metrics to analyze and include for correlation with design effort.
None of the boards in our study have embedded passive components; instead we
focus on the total number of all components (passive and discrete) and the pin
count for them. These are easily obtainable values.

Since the routing data is not easily obtainable, the number of pins for all
the components in the design is taken into account instead. While this is not
an ideal metric since not all pins are used or have very short traces (VDD or
GND), it is readily obtainable and does not hamper the focus of this paper,
namely effort prediction starting from higher level design descriptions, such as
a bill of materials (BOM) or schematics.

In order to find a metric highly correlated with design effort, several statistics
were gathered from the existing designs. For each isolated board with a known
design effort, we look at several statistics and apply nonlinear regression to find
a highly correlated metric.

We present our design effort model as the aggregate of a set of statistics (.5;).
Each of which has a specific constant (w;), associated with it, which assigns a
weight to the importance of every statistic used as input in the model. The ag-
gregate of the statistics is inversely proportional to the productivity of a specific
design team which is represented by a constant (p). The model is presented in
Equation 2. In order to find suitable values for each of the data weights (w;) we

8 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

perform mixed nonlinear regressions on this equation. The design team produc-
tivity factor (p) is constant per design group, and it needs to be adjusted on a
per company or design team basis. If the p is unknown, then the absolute design
effort is invalid and only the breakdown inside the project is correct. Obtaining
the value of p is simple; all that is needed is to have the design effort for a single
project. Alternatively, it is possible to develop a productivity benchmark suite
that calibrates p for a given company.

1 n
Design Effort = — x Z (wg x Sk) (2)
L

In order to determine the weights that give a generalized solution to Equa-
tion 2, [2] proposes to use a mixed nonlinear regression model. If there are
no productivity adjustments, it is possible to use a simpler nonlinear regression
model. While the sum of a large number of random variables is distributed nor-
mally, the product of a number of random variables is distributed lognormally
— a distribution where the logarithm of the variable is normally distributed [5].
Therefore, since the random variables have a log normal distribution an even
simpler linear regression model can not be used.

To evaluate the accuracy of the model (Section 4.2), we use o as a measure of
error associated with the fit. Consequently, it is important to understand what
different values of o tell us about the quality of the estimate. For a given o, we can
find a confidence interval for the estimated effort. The % confidence interval
for a metric is defined to be the range of efforts (Estimate o, Estimatenign)
such that P(Estimate;o, < metric prediction < Estimatepign) = x/100. For
example, the 90% confidence interval gives us two values a and b such that
there is a 90% chance that the actual effort is between metric prediction x a and
metric prediction x b.

2.4 Productivity Adjustments

In software development projects, it is well known that different development
teams have different productivities. For example, it has been shown that the
productivity difference between teams can be up to an order of magnitude [8]. We
believe that a similar effect occurs between PCB and processor design teams. The
productivity differences may be due to multiple factors, including the average
experience of the designers in the team and the tools used. In our model, p
captures this effect.

The designs under study in this analysis were produced either by a single
manufacturer, or a just one design from a specific manufacturer was provided.
Therefore the use of a productivity factor was not necessary as we did not ob-
tained competing designs from multiple manufacturers of from multiple compet-
ing teams among a single manufacturer.

A Model Without Productivity Adjustments For the processor analysis,
we can eliminate productivity adjustments by setting p; = 1 for all ¢ simplifies the

System and Processor Design Effort Estimation 9

statistical model. Instead of using the nonlinear mixed-effects model described in
Section 3.1 to fit the weights, we can use a simpler multiple regression technique.
Unfortunately, as we show in Section 4.1, the model without productivity factors
fits the data poorly. We present it only for comparison with the recommended
nonlinear mixed-effects model of Section 3.1.

A model without productivity adjustments may be acceptable for industrial
practitioners with a very large single project, perhaps representing thousands
of person-months of effort. In this case, they can set p = 1, since there is only
one project and therefore no need to account for productivity differences across
projects.

2.5 Issues

Ideally, we would like to use design effort estimators as soon as possible in the
system design timeline. The earlier the estimations can be made, the more useful
they are likely to be. After adjusting the coefficients w; shown in Equation 1,
early estimation presents a clear challenge: how to ensure that the values of the
early metrics remain relevant (and valid) at later stages of the design.

To address this, we use metrics whose value changes little from initial stages
of the design until completion of the RTL implementation and verification in the
case of the processor, or pins and components, in the case of a PCB. Specifically,
the metrics analyzed in this work can be measured once a module has been
designed and before it starts to be verified. This corresponds to the point shown
with an arrow in Figure 1, which is often 1 to 2 years before completing the RTL
verification. The values of the metrics remain largely unchanged until the end
of RTL/PCB verification. The exception is if the verification finds substantial
bugs that require a major re-design.

One potential objection to the accounting procedure described is that count-
ing each component only once regardless of its number of instances may not be
appropriate. For example, at a very low level, we could consider that the entire
processor is made out of logic gates, and that there are only a dozen or so types
of gates. The analysis would clearly be inaccurate. However, at the high level of
the functional components that we are discussing, the count-only-one heuristic
is appropriate. Regardless, any given component is likely to have fewer than ten
instances. At this level, scaling the effort estimate linearly with the number of
instances does not seem appropriate.

In our discussion of parameter scaling in section 2.2, we argued that writing
code for a parameterized component is no more difficult than writing code for
the smallest nontrivial instance of it. In practice, however, the parameter values
chosen for a given instance may affect the number of test vectors required for
verification and, therefore, the verification time. For example, model checking
and automatic theorem-proving tools may require more time to run with larger
parameter values, since the size of the state space may be larger. However, this
issue could be addressed, at least conceptually, by allocating more computational
resources to the verification budget — not more engineer-hours.

10 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

The parameter scaling rule has another undesirable consequence. Specifically,
varying the value of certain parameters may have implications on the difficulty
of timing closure and, therefore, on the number of RTL redesign iterations. An
example is the degree of associativity of a time-critical structure: higher asso-
ciativity may make it hard to perform timing closure and may induce several
redesigns. This issue suggests the need for future design effort estimators that
are aware of back-end physical design and timing concerns.

Finally, our analysis has implicitly assumed that each component in the de-
sign is implemented from scratch. In practice, components are sometimes reused
from older designs, often with little modifications. Integrating a reused compo-
nent incurs some design effort, even if it requires no modification at all. The
software engineering literature has discussed effort estimation for reused com-
ponents [3]. We regard the study of reuse in hardware as a subject for future
work.

Productivity Adjustments The volatility of p may make it difficult to use
the model to make extrapolations across different projects. Once RTL coding is
completed, all of the metrics are available, but it is still difficult to determine the
productivity factor until after at least some of the components are completely
verified. One option is to estimate p using data from a very recent project or to
extrapolate the current value of p given a time series of previous values.

Unfortunately, we have no means of evaluating this approach. A second op-
tion is to assume p = 1 and use the model to make relative estimations only.
Even without knowing p, we can still say that a component with an estimated
design effort of e = x is likely to take half as much effort to design as one with
e = 2z. These relative estimates may be useful when allocating engineers to veri-
fication teams. They may also allow an early determination of which components
are likely to delay project completion.

3 Regression Model

As indicated in Section 2.2, given a set of metrics my, ma, ... m,, the goal of
the regression procedure is to find the wq, wa, ...w, values for Equation 1 that
provide the best fit for the person-months design effort reported by the designers.
Each component in the design for which we know the design effort (e.g., fetch
unit or load-store queue), is a data point consisting of the reported design effort
and the measured metrics. The more data points we have, the more precise the
determination of wy, is.

The data points for this work come from several small projects implemented
by unrelated design teams at different times. Consequently, in addition to the
usual statistical variation across data points, there is variation across teams. In
statistical terms, this forces us to introduce a per-project random effect (rep-
resented by the productivity p). Therefore, we use a nonlinear mized-effects
model [15], which is able to deal with both fized and random effects better than
more conventional linear methods [7, 11].

System and Processor Design Effort Estimation 11

In the following section, we describe the mixed-effects model that we use and
then consider what would happen if we attempted to fit a simpler model without
productivity adjustments.

3.1 A Nonlinear Mixed-Effects Model

When we use Equation 1 with data from multiple projects, we have one data
point for each component j designed in project ¢. The estimated design effort
eff;; is given by Equation 3. Note that for each component j from project 1,
we have a set of n metrics m;j,. There is a productivity factor p; specific to
each project. However, the coefficients wj, are assumed invariant across all data
points. In reality, of course, the fit is not perfect and the actual (reported by
designers) design efforts Eff;; are different from the estimated ones eff;; (Equa-
tion 4). The difference is accommodated by the €;; error term, which we assume
is multiplicative.

1 n

effij =— X Z (wk X mijk) (3)
pi k=1

Eﬁij = effij X €ij (4)

To fit the mixed-effects model and determine the wy, we need to treat p
and ¢ as independent random variables. As such, we must provide a probability
distribution for each. From software engineering, we know that productivity is
determined by the product of a collection of variables (e.g., team cohesiveness,
tool quality or process maturity) [3]. Since the sum of a large number of random
variables is distributed normally, the product of a number of random variables is
distributed lognormally — a distribution where the logarithm of the variable is
normally distributed [5]. Similarly, software engineering studies tell us that the
multiplicative error € is also lognormally distributed [16]. Consequently, we use
a lognormal distribution for both p and e.

The lognormal distribution is described by two parameters: p and o. They
represent, respectively, the mean and standard deviation of the log of the vari-
able. For the p and e distributions, we choose to set © = 0, and then let the
fitting procedure determine the standard deviations o, and o.. The result of
setting p = 0 in both cases is that the median of the distributions is 1. Intu-
itively, this means that half of the projects have p > 1 and half have p < 1.
Similarly, half of the estimations have € > 1 and half have ¢ < 1. Figure 2 shows
a lognormal distribution with u = 0, showing the difference between mean, me-
dian, and mode.

Our choice also means that the resulting estimated effort eff that we obtain
is the median design effort. To determine the estimated mean design effort eff
rather than the estimated median design effort, we would apply Equation 5.

off = off x e(7ct0)/2 (5)

In Section 4.1, we use o, as a measure of goodness of fit. Consequently, it is
important to understand what different values of o, tell us about the quality of

12 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

mode median mean
09 T — T T

0.7

0.5

P(p)

0.3

0.1

PR S S , ,
0.0 05 075 1.0 1.16 1.5 20 25
P

Fig. 2. Example of a lognormal distribution with g = 0.

the estimate. Specifically, we say that o, determines a confidence interval for the
estimated effort. The 2% confidence interval for eff;; is defined to be the range
of efforts (el;;, ehi;) such that P(el;; < Eff;; < eh;;) = x/100. For example, the
90% confidence interval gives us two values a and b such that there is a 90%
chance that the actual effort is between a and b. Figure 3 plots the 68% and 90%
confidence intervals for a range of o.. To compute the confidence interval for a
given o, and eff;;, find the value y;, corresponding to the top of the interval and
the y; corresponding to the bottom of the interval. The confidence interval is
then (y; x effy;, yn x eff;;). For example, if o, = 0.45 then y;, ~ 2.1 and y; ~ 0.5.
Therefore, the 90% confidence interval for Eff;; is (0.5 x eff;;, 2.1 x eff;;).

w
o

Multiplicative Factor
= 2PN
o (5] o (5] o

o
o

Fig. 3. 68% and 90% confidence intervals corresponding to 0 < o, < 0.7. The
figure demonstrates finding the multiplicative factors y, and y; for the 90%
confidence interval corresponding to o. = 0.45.

We perform model fitting computation using the NLMIXED procedure from
SAS [15], although we could also use the nlme package from R [19]. Equation 6
shows an alternative method for approximating rho; given the wy.

2 € _
> EBij

System and Processor Design Effort Estimation 13

gy P (02/4) 32, ks (wi x myj)
’ >, Eij

(6)

4 Evaluation of Processor Designs

The evaluation of this work examines how accurately each of the software and
synthesis metrics correlate with design effort. This section is divided into two
parts, Section 4.1 shows processor design metrics and Section 4.2 shows PCB
design metrics. For both cases, we also examine a few combinations of metrics.

4.1 Processor Designs

In our processor design analysis, we compare against some of the design ef-
fort estimators currently being used. Specifically, Sematech [10] and the STA
Roadmap [1] which use the number of cells and the number of transistors, re-
spectively, to estimate effort. We also analyze other synthesis statistics which
are often used to make effort estimations.

As indicated in Section 3.1, to assess the accuracy of an estimator, we report
the standard deviation of its error (o). Lower values of o, are better, and zero
is the minimum possible value. Given a o., we can compute the interval for,
say, 90% confidence for the true value. For the lognormal distribution used, the
mapping between o, and the 90% confidence interval.

In the following analysis, we first measure the accuracy of the different design
effort estimators using our model. Then, we repeat the process without the
productivity adjustment or without the uComplexity accounting procedure.

Accuracy of Design Effort Estimators Table 1 shows the accuracy of var-
ious design effort estimators. First, Column 2 lists the reported design effort
in person-months for each component of each design. Then, each of remaining
columns shows data for one design effort estimator. Most of the estimators are
simply the individual software or synthesis metrics. The only exception is the
DEEL1 estimator, which is the linear combination of two metrics — we analyze
DEE1 in Section 4.1. For a given estimator, the column shows its value for each
component of each design and, in the penultimate row, its o..

From Table 1, we see that there are a group of estimators that have a rela-
tive high accuracy (i.e., low o). They include Stmts, FanInL.C, and Nets. For
example, Stmts and FanInLL.C have o, equal to 0.50 and 0.55, respectively, which,
correspond to a 90% confidence interval of (0.44,2.28) and (0.40,2.47), respec-
tively. Really, within the margin of error of our study, any one of Stmts or
FanInLL.C has the same accuracy. The other estimators, namely Freq, Power,
Areay,, Areag, Cells, and FFs, have lower accuracy. For example, Area; has
o equal to 1.23, which corresponds to a 90% confidence interval of (0.13,7.56).
None of these metrics is a reasonable estimator.

14 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

Module Effort [[DEE1|Stmts|FanInLLC| Nets | Freq |Arear |[Power|Areag| Cells | FFs
Name (Months) (MHz) | (um?) | (mW) | (um?)
Leon3-Pipeline 24 12.8 | 2070 | 10502 |4299 | 56 |[50199 | 80 |68411 3586 (1062
Leon3-Cache 6 7.3 | 1172 | 6325 |1980| 94 |37456| 57 [12556| 3 |210
Leon3-MMU 6 4.4 | 721 3149 |1130| 84 |[60136| 23 |112765| 246 | 699
Leon3-MemCtrl 6 5.4 | 938 2692 853 | 138 | 7394 5 11938 | 704 | 275
PUMA-Fetch 3 2.2 | 586 5192 |[1292| 68 [147096] 226 [555168| 1809 [1786
PUMA-Decode 4 6.2 | 1998 | 4724 |5662| 65 |78076 11 | 47604 | 5189 | 464
PUMA-ROB 4 2.2 | 503 6965 | 9840 | 41 |[82527 | 733 | 1022 | 9709 | 922
PUMA-Execute 12 12.6 | 3762 | 18260 |10681| 49 |92473 | 44 |119746|10867|1725
PUMA-Memory 1 3.3 | 976 5034 | 1089 | 60 |43418 | 80 |115841|4337 |1549
IVM-Fetch 10 8 1432 | 15726 | 4914 | 71 212663 8 135074 1859 |1661
IVM-Decode 2 1.7 391 1044 504 104 2022 2 73 2 0
IVM-Rename 4 2.7 | 566 3307 |1134| 159 |70146 1 26740 | 121 | 510
IVM-Issue 4 3.6 | 624 8063 |4603| 60 |90388 2 68667 | 3414 |2729
IVM-Execute 3 5.4 | 961 | 11045 |4476 | 91 |619561 5 154655 940 | 0
IVM-Memory 10 11.6 | 2240 | 19021 |23247| 54 |[267753| 73 |625952|12050(2510
IVM-Retire 5 5 1021 | 6635 |3357| 71 |36100 2 50375 | 1923 | 924
RAT-Standard 0.6 0.7 64 3889 [2905| 137 | 34254 4 17603 | 2596 | 288
RAT-Sliding 1 1 78 5586 4936 | 119 |[52210| 10 |60713|4507 | 612

0.53 | 0.60 0.82 1.08 | 1.12 | 1.35 1.82 2.07 | 2.55

H 0.46 ‘ 0.50‘ 0.55 ‘0.67‘ 0.94 ‘ 1.23 ‘ 1.34 ‘ 2.07 ‘2.09 ‘2.14
2.18

R

|

Table 1. Accuracy of various design effort estimators.

Freq has a 90% confidence interval as large as (0.21,4.69). While increasing
processor frequency requires additional design effort, other metrics like Nets
or FanInLLC have higher correlation with design effort. The reason is that, to
increase frequency, it is necessary to add extra pipeline stages or more complex
logic. This increased effort is better measured by Nets and FanInL.C.

Perhaps unsurprisingly, Areag and FFs are not well correlated with design
effort. Their 90% confidence intervals are (0.03,30.11) and (0.03,33.78), respec-
tively. The reason is that storage structures such as RAM banks are relatively
simple to design. Similarly, Areay, and Cells are not well correlated because sim-
ple to implement structures can occupy a lot of area and have large numbers of
logic cells. Moreover, neither dynamic nor static power is well correlated with
design effort as their confidence intervals are (0.11,9.06) and (0.09,10.68) respec-
tively. Larger designs probably require more power, but are not necessarily more
complicated to design.

Overall, our data shows that any one of Stmts or FanInL.C is a good single-
metric estimator of design effort. Interestingly, this shows some similarity be-
tween hardware and software design efforts. On the other hand, it appears that
the hardware estimators used elsewhere such as Cells and transistors used by
the SIA Roadmap and Sematech are not so effective. Most of the other synthesis
tools metrics such as area, power and frequency are not well correlated with
design effort either.

Design Effort Estimator 1 (DEE1) We have also analyzed the accuracy of esti-
mators generated with the linear combination of groups of two metrics. As usual,
we use Equation 1 from Section 2.2. We find that two-metric combinations that
include Stmts, FanInL.C, and Nets tend to have slightly more accuracy than
those with a single metric. The ones that are the most accurate are Stmts plus

System and Processor Design Effort Estimation 15

Nets, and Stmts plus FanInLC. They have the same accuracy, but we prefer
the Stmts plus FanInL.C estimator because, individually, the metrics are more
accurate. We call the resulting estimator Design Effort Estimator 1 (DEE1).

As shown in Table 1, DEE1 has the lowest o, namely 0.46. This corresponds
to a 90% confidence interval of (0.47,2.13). The slightly higher accuracy of DEE1
comes from the fact that its two component metrics measure slightly different
underlying factors in the design.

To see the correlation between DEE1 and the reported design effort better,
Figure 4 shows a scatter plot of DEE1 estimations versus reported design effort.
The Figure has one data point per component and design. From the figure, we
see that most of the DEE1 estimations are very close to the reported design
effort. The exception is the data point for the Leon3 pipeline, where the DEE1
estimation is 12.8 months, and the reported effort is 24 months. In practice, most
of the estimators in Table 1 underestimate the effort for the Leon3 pipeline. The
reason is that this pipeline is more sophisticated than the other components
and designs. Indeed, while IVM and PUMA only execute a subset of Alpha
and PowerPC, respectively, Leon3 is a full SPARC V8 compliant processor. In
addition, Leon3 is highly configurable, for example the user can select different
processor and cache parameters.

25 T T T T T L~
IVM +
PUMA X
20 [Leon3 x]
£ RAT O
E 15 B
2 10 T
a -
X kT X
5 X+ +- X 7
gt
2
0 B X ! ! 1 1
0 2 4 6 8 10 12 14

Fig. 4. Scatter plot of DEE1 estimations versus reported design effort.

Accuracy without the Productivity Adjustment The last row of Table 1
shows the o, values that would be obtained if no productivity factor was used
— in other words, if p; was 1 for the Leon3, PUMA, IVM, and RAT teams. This
approach was mentioned in Section 2.4.

From the values of o., we can see that practically all the estimators lose
a significant amount of accuracy. For example, the o, for Stmts and FanInL.C
becomes 0.60 and 0.82, respectively, which correspond to 90% confidence inter-

16 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

vals of (0.37,2.68) and (0.26,3.85), respectively. Similarly, DEE1 expands its 90%
confidence interval to (0.41,2.39).

The loss of accuracy for Stmts is due to several factors. Specifically, while
Leon3 uses VHDL, the other designs use Verilog. Moreover, while RAT uses the
more compact Verilog-2001, PUMA and IVM use the more verbose Verilog-95.
Additionally, different coding styles add much noise to any correlation without
productivity adjustment. To compound the problem, it is known from software
projects that productivity across teams can vary by an order or magnitude |[8].

The FanInLLC and Nets estimators lose accuracy because each processor was
designed under a different set of constraints and a different set of tools. For
example, since Leon3 was designed for an area-constrained environment (FP-
GAs), a substantial effort was needed to reduce area and interconnections. On
the other hand, PUMA’s target was a high frequency CGaAs process. All these
effects again add noise to any correlation.

Overall, we conclude that, to have good processor design estimation accuracy
productivity adjustments are required.

4.2 Evaluation of PCB Designs

We analyze 12 different printed circuit boards from two separate companies.
Table 2 shows the main results and characteristics for each of these. The first
column corresponds to each of the statistics or metrics measured. Columns Bl
to B12 correspond to each of the boards. The last column corresponds to the
o between the row and design effort. Since the boards either were designed by
the same team, or we only had one board from a particular company, we do
not evaluate the productivity factor (p). This simplifies the analysis, and we can
use nonlinear regression instead of the mixed-effects nonlinear regression model.
With ¢ we can compute the confidence interval. For the lognormal distribu-
tion used, the mapping between o and the 90% confidence interval is shown in
Figure 3. We use this chart to compare the accuracy of different estimators.

The design effort values were obtained by interviewing the original designers.
Obviously, there is perfect correlation with itself so o = 0. A zero o results in
a perfect (1,1) confidence interval. We now proceed to analyze easily available
statistics like number of components and pin count. These two sets of statistics
are easily available before the PCB design starts. They are part of the PCB
specification.

From the boards analyzed, we observe that it is best to use the total number
of components to estimate design effort (o = 0.53). Although traces for analog
components and digital components are more difficult than traces for passive
components, the low amount of digital and/or analog components on several of
the boards make it difficult to use them as a method to estimate effort. Using
Figure 3 and a ¢ = 0.53, the intersection between the components line and
the confidence interval line is (0.41,2.39). This means that using the number of
components on the specification, we have a 90% confidence that the design effort
would be between 0.41 and 2.39 times the prediction.

System and Processor Design Effort Estimation 17

I [B1[B2[B3[B4[B5[B6 [B7] B8 [B9 [BI10[B11][Bi2 [o ||

[[Design Effort [[68 35] 43 [21 [48 [48 [24 [40 | 32 [24[12] 400 [—]
Components
Passive 213165101 | 80 | 108222116 | 86 | 83 | 19 | 47 | 2643 [0.56
Digital 1500170 |8 | 2|0 |11 8 | 4] 4 | 94 [179
Analog 35 |24 | 8 | 10|24 |53 |28 | 4 16 | 1|11 | 91 [1.18
Total # 263 | 189 | 126 | 90 | 140 | 277 | 144 | 101 | 107 | 24 | 62 | 2828 |0.53
Total Area 6214/9053|6964|2719|9144|6579|8104|12193|12296| 777 |5430|38611|0.75
Pins
Passive 563 [429 [365 | 182|414 [578 [414 [194 | 188 | 39 | 109 | 5843 [0.62
Digital 154 | 0 |518| 0 |[107| 32 | O | 175 | 173 | 88 | 32 | 6889 |1.88
Analog 360|208 [216 | 98 | 72 | 448 | 150 | 25 | 53 |14 | 65 | 924 [1.10
Total 1077| 637 |1099] 280 | 593 |1058| 564 | 394 | 414 |141| 206 |13647/0.45
PCB Size 221[221[221[162[387[204[221[109 [109 [12 [254 [726 [0.93
of Sides 11|11 |1|1]1 2 2 | 2|1 2 [0.81
of R. Layers 2 |23]2 |2|2]3 2 2 [4] 2 6 [0.66
of Layers 4 | 4] 6|4]4]4]|4 2 2 | 4] 2 8]0.67
Comp. Density 70 [50 | 33 [33 [21 | 80 [38 | 27 | 29 |55 14 | 115 [0.60
Pin Density 54 | 32 | 55 | 19 | 17 | 57 | 28 | 40 | 42 [122| 9 | 207 |0.64
pPCBComplezity|| 60 | 38 | 37 | 18 | 30 | 61 | 25 | 36 | 37 |25 | 12 | 543 |0.24

Table 2. Statistics, design effort, and correlation results of study boards.

Statistics about the pins are as easily available as components even before
the design starts. The number of pins is a better predictor (o = 0.45) than the
number of components. The resulting 90% confidence interval for the number
of pins is (0.47,2.09). This means that just by using the pins, we have a 90%
confidence that the prediction is around half or double the expected design effort.
Not shown in the table is the result of combining the number of pins and the
components to predict design effort. The results did not improve because there
is a high correlation between pins and components.

Area is not such an effective metric. Even assuming a perfect knowledge if the
final dimension of the board, we can just estimate design effort with a (0.21,4.61)
confidence interval. Table 2 also shows other statistics such as number of sides
used, routing layers, and number of layers. Those statistics are not so useful by
themselves because they are highly quantized, and this makes them difficult to
use to predict effort.

To obtain the proposed puPCBComplexity metric shown in Table 2, we ana-
lyzed multiple combinations of parameters and followed suggestions from expe-
rienced board designers. The best results were achieved when using the following
equation:

Effort = wl * # Components + w2 * Comp. Density + w3 * Pin Density (7)

To capture component and pin density, we define them with equation 8 and
equation 9 respectively.

Components
PCB Area x # Sides w/ components

Pins
(PCB Area) ©)

Component Density =

(®)

Pin Density =

18 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

To obtain the factors on equation 7, we perform nonlinear regression as ex-
plained in Section 2.3. Although neither pin nor component density can achieve
better predictions than the number of pins, when integrated together in the
1w PCBComplezity metric we achieve a 0.24 0. As Figure 3 shows, this represents
a (0.58,1.72) confidence interval. This roughly means that by using the proposed
uwPCBComplexity metrics, with a 90% confidence designers can predict design
effort with less than 40% error.

Design Effort
60 80 100
Il Il 1

40

20
1

0 20 40 60 80 100

uPCBComplexity

Fig. 5. Scatter-gather plot of design effort vs. PCB metric

Figure 5 shows a scatter-gather plot between design effort and uPCBComplexity.
Each point corresponds to a different board. The plot does not include the B12
board to zoom on the area where most of the boards are located. This plot is
an intuitive way to see that there is a high correlation between design effort and
the metric proposed.

uPCBComplexity works well because PCB design complexity increases as
the component and pin density increases. Designers can increase the number of
layers on the PCB to decrease the pin density or increase the area to reduce
both densities. The problem is that both approaches require more costly boards.
As a result, designers tradeoff between time to market and density.

5 Related Work

The work most related to ours in processor analysis is done by Numetrics, a com-
pany specializing in enterprise software and services product development [18].

System and Processor Design Effort Estimation 19

They propose a “complexity unit” to measure the level of project difficulty and
to quantify the development team’s output. Patent 6,823,294 describes a method
to estimate design effort. If we apply the method to our data, the result is consid-
erably less accurate than DEE1. After discussions with Numetrics, they informed
us that the patent represented preliminary work, and that their current mod-
els are more advanced. Unfortunately, little detail is available on these models
because it is considered a technological advantage for their company.

Kahng [12] identifies the need for standards or infrastructures for measuring
and recording the semiconductor design process. The author proposes improv-
ing design technology, time-to-market, and quality-of-result by addressing the
Design Productivity Gap and the Design " Technology” Productivity Gap. How-
ever, this previous work focused mostly on the problems associated with the
infrastructure and design tools related to the physical implementation of semi-
conductor designs, while the focus of this work is layout effort associated with
PCB designs and design effort for processor flows.

In [17] introduces a weighting approach similar to the productivity factor
described in our work. They use the “process productivity parameter” to tune the
estimating process for software projects. They contend that if you know the size,
time, and the process productivity parameter you can use it to make estimates
for a new project. So long as the environment, tools, methods, practices, and
skills of the people have not changed dramatically from one project to the next.

In [4] the issue of embedded passive components is discussed as a necessity
to the smaller electronic devices requiring ever smaller PCBs. They note that
board area is becoming so critical that to keep pace with the size constraints
new techniques are required. Our goal would be to eventually develop a set of
metrics and a model that estimates design effort by also taking into account
manufacturing times.

Recently, some research has focused on reducing the number of RTL redesigns
during the timing closure process. To streamline timing closure, new methods
have been developed to predict logic criticality [13] and wire congestion [14] early
in the RTL design phase. With these predictors, logic designers can focus their
attention on the critical logic during the initial implementation, reducing the
number of redesign cycles.

As process technology has improved, the major source of signal propagation
delay has shifted from gates to wires. In [6] a new metric for evaluating intercon-
nect architectures is proposed. The metric is computed by looking for an optimal
assignment of wires from a given wire length distribution. This information is
used to generate an interconnect architecture. That metric compares impacts of
geometric parameters as well as process and material technology advances on
designs.

Fornaciary et al. [9] propose a methodology to predict the final size of a
VHDL project on the basis of a high-level description. With this, they seek some
indication of development effort by estimating the number of lines of code from
starting specifications. While their method is shown to be accurate in predicting

20 Cyrus Bazeghi Francisco J. Mesa-Martinez Jose Renau

lines of code, it dies not address design effort aspects, such as the number of
engineering person-months required for the project.

6 Conclusions

Design complexity is rapidly becoming a limiting factor in the design of modern,
high-performance microprocessors and systems. This work addresses the lack of
quantitative approaches to estimate the design effort for modern systems and
processors by making three major contributions:

First, we use the uComplezity methodology to measure and estimate proces-
sor design effort. pComplexity consists of three main parts, namely a procedure
to account for the contributions of the different components, accurate statistical
regression using a nonlinear mixed-effects model, and a productivity adjustment
to account for the productivities of different teams.

Second, we apply pComplezity to four designs and evaluating a series of
estimators based on synthesis and software metrics. The evaluation uncovered a
few simple, good design effort estimators, namely the number of lines of HDL
code (or HDL statements) and the sum of the fan-ins of all the logic cones.
A slightly more accurate estimator is DEE1, which is the linear combination of
HDL statements and fan-ins of all the logic cones. We recommend this estimator,
but using estimators that combine a larger number of metrics may make sense
for a practitioner that has access to more data.

Third, we introduce a procedure, uPCBComplexity, to estimate PCB design
effort. PCB design effort is estimated by correlating some easily obtained metrics
from the design of a PCB, and the design time required during the layout stage
of development.

The evaluation section reveals how multiple metrics, traditionally used by the
design community to estimate design effort, are fairly uncorrelated with actual
design time. These include dynamic or static power, logic or storage area, fre-
quency, number of flip-flops and, somewhat surprisingly, the number of standard
cells. The number of cells and transistors are two popular design effort estima-
tors used by Sematech and the SIA roadmap. Finally, the evaluation shows that
both the productivity adjustment and the uComplexity accounting procedure
are necessary to produce accurate estimators.

The PCB evaluation shows how simple statistics like the area size and number
of components yield some correlation with design effort. With a 90% confidence,
pins has a (0.47, 2.09) confidence interval. This means that roughly by looking at
the number of pins, the typical design time error is half/double with a 90% confi-
dence. Much better results can be achieved with the proposed pPCBComplexity
metric. In that case the confidence interval for a 90% confidence is (0.58, 1.72).
This roughly means that less than 40% estimation error is done with a 90%
confidence.

System and Processor Design Effort Estimation 21

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Semiconductor Industry Association. International Technology Roadmap for Semi-

conductors (ITRS), 2002.

C. Bazeghi, F. Mesa-Martinez, and J. Renau. pComplexity: Estimating Processor
Design Effort. In International Symposium on Microarchitecture, Nov 2005.

B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

M. Chincholkar and J. Herrmann. Modeling the impact of embedding passives on
manufacturing system performance. September 2002.

E.L. Crow and K. Shimizu. Lognormal Distributions: Theory and Application.
Dekker, 1988.

. P. Dasgupta, A. B. Kahng, and S. Muddu. A Novel Metric for Interconnect Archi-

tecture Performance. In Design, Automation and Test in Europe Conference and
Ezhibition, March 2003.

M. Davidian and M.D. Giltinan. Nonlinear Models for Repeated Measurement
Data. Chapman & Hall, 1995.

T. DeMarco and T. Lister. Peopleware Productive Projects and Teams. Dorset
House Publishing, 1999.

W. Fornaciari, F. Salice, and D.P. Scarpazza. Early Estimation of the Size of
VHDL Projects. In International Conference on Hardware/Software Codesign and
System Synthesis, pages 207-212, Oct 2003.

R. Goodall, D. Fandel, A. Allan, P. Landler, and H. R. Huff. Long Term Produc-
tivity Mechanisms of the Semiconductor Industry. www.sematech.org, 2002.

J.P. Hoffmann. Generalized Linear Models. Pearson, 2004.

A. B. Kahng. Design technology productivity in the dsm era (invited talk). In
Conference on Asia South Pacific Design Automation, pages 443-448. ACM Press,
2001.

P. Kudva, B. Curran, S.K. Karandikar, M. Mayo, S. Carey, and S.S. Sapatnekar.
Early Performance Prediction. In Workshop on Complezity-Effective Design, Jun
2005.

P. Kudva, A. Sullivan, and W. Dougherty. Metrics for Structural Logic Synthesis.
In International Conference on Computer-Aided Design, pages 551-556, Nov 2002.
R.C. Littell, G.A. Milliken, W.W. Stroup, and R.D. Wolfinger. SAS System for
Mized Models. SAS Publishing, 1996.

T. Little. Value Creation and Capture: A Model of the Software Development
Process. IEEE Software, 21(3):48-53, 2004.

L. H. Putnam and W. Myers. Five Core Metrics: The Intelligence Behind Successful
Software Management. Dorset House Publishing, May 2003.

Numetrics Management Systems. Key Performance Indicators of IC Development
Capability-A Framework. Technical report, Numetrics Management Systems, Inc.,
2005. http://www.numetrics.com.

The R Development Core Team. The R Reference Manual - Base Package. Network
Theory Limited, 2005.

