
 

 

Reconfigurable Accelerator with Binary Compatibility 
for General Purpose Processors 

Antonio Carlos Schneider Beck, Luigi Carro 

Universidade Federal do Rio Grande do Sul – Instituto de Informática 
Av. Bento Gonçalves, 9500 – Campus do Vale – Porto Alegre/Brazil 

{caco,carro}@inf.ufrgs.br 

Abstract. Although transistor scaling keeps following Moore`s law, and more 
area is available for designers, the clock frequency and ILP rate do not present 
the same level of growth anymore. This way, new architectural alternatives are 
necessary. Reconfigurable fabric appears to be one emerging possibility: 
besides exploiting the parallelism among instructions, it can also accelerate 
sequences of data dependent ones. However, reconfiguration wide spread usage 
is still withheld by the need of special tools and compilers, which clearly do not 
sustain the reuse of legacy code without any kind of modification. Based on all 
these facts, this work proposes a new Binary Translation algorithm, 
implemented in hardware and working in parallel to the processor, responsible 
for transforming sequences of instructions at run-time to be executed on a 
dynamic coarse-grain reconfigurable array, tightly coupled to a traditional RISC 
machine. Therefore, we can take advantage of using pure combinational logic to 
optimize even control-flow oriented code in a totally transparent process, 
without any modification in the source code or binary. Using the Simplescalar 
Toolset together with the MIBench embedded benchmark suite, we show 
performance improvements and area evaluation when comparing against a 
traditional superscalar architecture. 

Introduction 

The possibility of increasing the number of transistors inside an integrated circuit with 
the passing years, following Moore´s Law, has been pushing performance at the same 
level of growth. However, high performance architectures as the diffused superscalar 
machines are now challenging well known limits of the ILP [1]: considering the 
Intel’s family of processors, the IPC rate has not increased since the Pentium Pro [2]. 
This way, recent speed-ups in performance occurred mainly thanks to boosts in clock 
frequency through the employment of deeper pipelines. Even this approach, though, is 
reaching a limit. For example, the clock frequency of Intel’s Pentium 4 processor only 
increased from 3.06 to 3.8 GHz between 2002 and 2006 [3].  

Because of these reasons, companies are migrating to chip multiprocessors to take 
advantage of the extra area available, even though there is still a huge potential to 
speed up a single thread software. Hence, new architectural alternatives that can take 



2      Antonio Carlos Schneider Beck, Luigi Carro 

 

advantage of the integration possibilities and that can address the performance issues 
stated before become necessary. 

Reconfigurable fabric appears to be a serious candidate to be one of these 
solutions. By translating a sequence of operations into a combinational circuit 
performing the same computation, one could gain performance and reduce energy 
consumption at the price of extra area [4][5]. Furthermore, at the same time that 
reconfigurable computing can explore the ILP of the applications, it also speeds up 
sequence of data dependent instructions, which is its main advantage when comparing 
to traditional architectures. Dataflow architectures put this concept to the edge, 
achieving huge speed-ups [11]. 

Another advantage of reconfigurable architectures is their regularity: it is common 
sense that as the more the technology shrinks, the more important regularity becomes 
– since this will affect the reliability of printing the geometries employed today in 65 
nanometers and below [6]. Besides being more predictable, regular circuits are also 
low cost, since as more customizable the circuit is, more expensive it becomes. This 
way, reconfigurable architectures based on regular fabric could solve the mask cost 
and many other issues such as printability, power integrity and other aspects of the 
near future technologies. 

However, even with all these positive aspects cited before, reconfigurable 
architectures are still not largely used. The major problem precluding their usage is 
the necessity of special tools and compilers, modifying in somehow the source or 
binary code. As the old X86 ISA has been showing, keeping legacy binary code reuse 
and traditional programming paradigms are key factors to reduce the design cycle, 
allowing one to deploy the product as soon as possible on the market. 

Based on all these facts, our work proposes the use of a technique called Dynamic 
Instruction Merging, which is a new binary translation approach implemented in 
hardware, used to detect and transform sequences of instructions at run time to be 
executed on a reconfigurable array, in a totally transparent process: there is no 
necessity of changing the code before its execution at all.  

The employed array is coarse-grained and tightly coupled to the processor, 
composed of simple functional units and multiplexers. Therefore, it is not limited to 
the complexity of fine-grain configurations, making possible its implementation in 
any future technology, not just in FPGAs. Consequently, we can take all the 
advantages of the reconfigurable systems cited before, maintaining independence of 
technology and binary code reuse. 

In this work we show some results concerning the potential of using such 
technique, demonstrating the binary translation algorithm, the structure of the 
reconfigurable hardware and how they interact with each other. Besides presenting 
the performance improvements and area overhead, we also compare our technique 
against a superscalar processor based on MIPS R10000.  

This paper is organized as follows. Section 2 shows a review of the existing 
reconfigurable processors, some other approaches regarding dynamic translation of 
instructions and what is our contribution considering the whole context. Section 3 
demonstrates the system, looking at the structure of the reconfigurable array and the 
algorithm itself. Section 4 presents the simulation environment and results. Finally, 
the last section draws conclusions and introduces future work. 



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      3 

 

Related Work 

Reconfigurable Architectures 

The well known ASIP circuits have specialized hardware that accelerates the 
execution of the applications they were designed for. A system with reconfigurable 
capabilities would have almost the same benefit without having to commit the 
hardware into silicon. A reconfigurable processor can be adapted after design, in the 
same way programmable processors can adapt to application changes. That is why 
reconfigurable systems have already shown to be very effective, implementing some 
parts of the software in a hardware reconfigurable logic, as shown in Figure 1. Huge 
software speedups [4] as well as a reduction in system energy have been achieved [5].  
 

 
 
 
 

 
 

Fig. 1. An example of a reconfigurable system 

Reconfigurable systems can be classified in different ways and aspects, 
considering coupling, granularity and instructions type [7]. A large range of systems 
with reconfigurable logic has already been proposed. For instance, processors like 
Chimaera [8], have a tightly coupled reconfigurable array in the processor core. The 
array is, in fact, an additional functional unit in the processor pipeline, sharing the 
same resources of the other units.  

Reconfigurable fabric has also been applied in other levels of the architecture, 
imposing radical changes to the programming paradigm, involving the development 
of new compilers and tools. Putting this concept to the edge, an example of total 
dataflow architecture is the Wavescalar processor [11]. 

Binary Translation 

The concept of binary translation (BT), illustrated in Figure 2, [12] is very ample and 
can be applied in various levels. BT is based on a system, which can be implemented 
in hardware or software, responsible for monitoring the running program. After the 
analysis, some transformation is done in the code, with the purpose of adapt an 
existing binary to be executed in a specific ISA, to provide means to enhance the 
performance or even both. 

 
 
 

 

Running  
program 

Processor 
Reconfigurable logic 



4      Antonio Carlos Schneider Beck, Luigi Carro 

 

 
 
 

Fig. 2. The Binary Translation (BT) process 

Existing optimizations include dynamic recompilation and caching of previous 
binary translation results. For instance, the Daisy architecture is based on a VLIW 
processor that uses binary translation at runtime to better exploit the ILP of the 
application [13]. One of the advantages of using this technique is that this process is 
transparent, since there is no need for any modifications in the binary code. 
Consequently, it requires no extra designer effort and causes no disruption to the 
standard tool flow used during the software development.  

Reuse of Instructions 

The idea of trace reuse is based on the principle of instruction repetition [14]. This 
principle relies on the idea that instructions with the same operands will be repeated a 
large number of times during the execution of a program. Hence, instead of executing 
the instruction again using an ordinary functional unit, the result of this instruction is 
fetched from a special memory.  

Trace reuse is based on an input and an output context. For a given sequence of 
instructions, the context of the first instruction of this sequence is saved. The output 
context, in turn, is the set of results of all last instruction of this sequence. A context is 
composed by the program counter, registers and memory addresses. Each time that an 
instruction with the same input context previously found is executed again, the 
processor state is updated with the output context, avoiding the execution of all 
instructions that compose that trace. A special memory, called Reuse Trace Memory 
(RTM), is used for storing the values. Figure 3 summarizes this process. 

 
 
 
 
 
 
 
 
 
 

Fig. 3. The trace reuse technique 

However, the context and trace sizes usually become huge, limiting the field of 
action of such approach, and increasing the complexity of the reuse detection 
algorithm. Good results are achieved just when using very optimistic assumptions, 
such as one cycle per trace reuse and the use of huge Reuse Trace Memories, not 
feasible even in future technologies because of power issues. The memory size grows 

 

BT 

 

Running  
program 

Processor 
Context Table

PC = 0x50 PC = 0x50 PC = 0x50 PC = 0x50

Execute
and 
save

1st time  Next times 

load

Write
back 



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      5 

 

too fast mainly because identical sequences of instructions, but with different contexts 
(as different input operands), must occupy different slots in this special memory. 

Dynamic Detection and Reconfiguration 

Trying to unify some of these ideas, Stitt et al. [15] presented the first studies about 
the benefits and feasibility of dynamic partitioning using reconfigurable logic, 
producing good results for a number of popular embedded system benchmarks. The 
structure of this approach, called warp processing, is a SOC. It is composed by a 
microprocessor to execute the software, another microprocessor where the CAD 
algorithm runs, a dedicated memory and an FPGA. Firstly, the microprocessor 
executes the binary, and a profiler monitors the instructions in order to detect critical 
regions. After that, the CAD software decompiles it to a control data flow graph, 
make the synthesis and maps the circuit onto a simplified FPGA structure. 

However, although the CAD system is very simplified comparing to conventional 
ones, it remains complex: it does decompilation, CFG analysis, place and route etc, 
and, according to the work, 8 MB of memory are necessary for its execution, which is 
still huge for nowadays on-die memories. Another issue is the use of the FPGA itself: 
besides area consuming, it is also power inefficient because of the excessive switches 
and the considerable amount of static power. As a consequence, this technique is just 
limited to critical parts of the software, working well just in very particular programs, 
such as the ones based on filters. 

In [16] it is also presented a very similar reconfigurable structure used in this work: 
a coarse-grain array, composed by very simple functional units, tightly coupled to an 
ARM processor. This array is called CCA. However, in the same way of the 
technique above, it relies on complex graph analysis, which is performed statically 
with compiler help. Moreover, it does not support memory operations or shifts, and 
has a very small number of input and outputs allowed, limiting its field of application. 

Our Approach 

Our work is based on a special hardware (Dynamic Instruction Merging Machine), 
designed in order to detect and transform sequences of instructions to be executed on 
the reconfigurable hardware. This is done concurrently while the main processor 
fetches valid instructions. When this unit realizes that there is a certain number of 
instructions that are worth being executed in the array, a binary translation is applied 
to this sequence. This translation transforms the original sequence of instructions to a 
configuration of the array, which performs exactly the same function. After that, this 
configuration is saved in a special cache, indexed by the PC register. 

The next time the saved sequence is found, the dependence analysis is no longer 
necessary: the processor just needs to load the configuration from the special cache 
and the operands from the register bank, setting the reconfigurable hardware as active 
functional unit. Then, the array executes the configuration with that context and 
writes back the results, instead of executing everything in the normal flow of the 
processor. Finally, the PC is updated, in order to continue the normal operation.  



6      Antonio Carlos Schneider Beck, Luigi Carro 

 

Depending on the size of the special cache used to keep these configurations, the 
increase in performance can be extended to the whole software, not being limited to 
loop centered applications. By transforming any sequence of opcodes into a single 
combinational instruction in the array one can achieve great gains, since less access to 
program memory and less iterations on the datapath are required. 

In a certain way, the approach saves the dependence information of the sequences 
of instructions, avoiding performing the same job for the same sequence of 
instructions as superscalar processors do. It is interesting to point out that almost half 
of the number of pipeline stages of the Pentium IV processor is related to dependence 
analysis [3]; and half of the power consumed by the core of the Alplha 21264 
processor is also related to extraction of dependence information among instructions 
[17]. Moreover, both the DIM machine as the reconfigurable array work in parallel to 
the processor, bringing no delay overhead or increasing the critical path of the 
pipeline structure. 

Comparing to the techniques cited before, our approach also takes advantage of a 
reconfigurable system, but a coarse grain one, so it can be implemented in any 
technology, not just FPGAs. Together with that, we use binary translation to avoid the 
need for code recompilation or the utilization of extra tools, making the optimization 
process totally transparent to the programmer. The algorithm for the detection and 
transformation of binary code is very simple, in the sense that it takes advantage of 
the hierarchal structure of the reconfigurable array. Hence, the use of complex on-
chip CAD software or graph analyzers is not necessary, which usually makes use of 
another processor in the system just to perform this task. 

Moreover, the proposed technique relies on the same basic idea of trace reuse, 
where sequences of instructions are repeated. However, it presents the advantage that 
just one entry in the special memory is needed for the same sequence of instructions, 
even when they have different contexts. This takes the pressure off from the cache 
system, making possible its implementation with a small memory footprint, with 
realistic assumptions concerning execution and accesses times, even for present days 
technologies. Figure 4 summarizes the technique and its similarities with the previous 
ones. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 4. The proposed approach 

 

  1st time

Running program 

Processor 

BT

Save

PC = 0x50 PC = 0x50 PC = 0x50 PC = 0x50

Next times

Rec. Cache 

Load 
configuration

Reconfigurable
Array 

Execute

Load  
operands 

Write  
Back 

 



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      7 

 

 
In the follow subsections we explain the architecture of the array, how it works 

together with the main processor, the detection and translation algorithm process and 
how the loading and execution of instructions inside the reconfigurable array are 
performed. 

THE RECONFIGURABLE SYSTEM 

Architecture of the Array 

The reconfigurable unit is a dynamic coarse-grain array tightly coupled to the 
processor, working as another functional unit in the execution stage, using the same 
approach of Chimaera [8]. This way, no external accesses to the array are necessary 
(which in turn could increase the delay and power consumption). Furthermore, this 
makes the control logic simpler, diminishing the overhead required in the 
communication between the reconfigurable array and the rest of the system. The array 
is two dimensional, composed by rows and columns, where an intersection between 
one row and one column is represented by ordinary functional units (ALU, shifter, 
multiplier, etc), where each instruction is allocated. If two instructions do not have 
data dependence, they can be executed in parallel, in the same row.  

A column is homogeneous, having always the same kind of functional unit. It is 
divided in groups, where each group takes a determined number of cycles to be 
executed, depending on the delay of each functional unit. The delay can vary 
depending on the technology and the way the functional unit was implemented. The 
detection algorithm can be adapted to different delays. For instance, according to the 
critical path of the processor, more sequential ALUs can be put together to be 
executed at the same cycle. 

An overview of the general structure of the array is shown in Figure 5. Basically, 
there is a set of buses that receive the values from the registers. These buses will be 
connected to each functional unit, and a multiplexer is responsible for choosing which 
value will be used (Figure 5a). As can be observed, there are two multiplexers that 
will make the choice of which operand will be issued to the functional unit. We call 
them as input multiplexers. After that, there is a multiplexer for each bus line that will 
choose what result will continue through that line. These are the output multiplexers 
(Figure 5b). As some of the values of the input context or previous results generated 
by previous operations can be used by other functional units after it was already used, 
the first input of each output multiplexer is the previous result of that bus.  

Note that in the simple example used in Figure 5, the first group supports up to two 
loads to be executed in parallel, while in the second group three simple 
logic/arithmetic operations are allowed. The reconfigurable array can not afford any 
kind of floating point operation. 



8      Antonio Carlos Schneider Beck, Luigi Carro 

 

Reconfiguration and Execution 

As the detection for the address that will be used in the reconfiguration is done in the 
first stage of the pipeline, and the reconfigurable array is in the fifth stage, there are 4 
cycles available between the detection and the use of the array. As one cycle is 
necessary to find the cache line that has the array configuration, three cycles are 
available for the reconfiguration, which involves the load of the values of all registers 
that will be used by that configuration, the load of immediate values, the 
configuration for the multiplexers and functional units and so on. 

During the execution of the operations in the array, one issue is the load 
instructions. They stay in a different group in the array as shown in figure 5, and the 
number of columns of this group depends on the number of read ports available in the 
memory (which means the number of loads that can occur simultaneously). 
Operations that depend on the result of a load have already been allocated in the array 
during the detection phase, considering a cache hit as the total load delay. If a miss 
occurs, the whole array stops until it is resolved.  

Finally, the results that need to be written back either in the memory or in the local 
registers are allocated in a buffer. The values will be allowed to be written back just 
when they are not used anymore for that configuration of the array. For instance, if 
there are two writes in the same register in a determined configuration, just the last 
one will be performed, since the first one was already consumed inside the array by 
other instructions. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 5. The structure of the Reconfigurable Array 

The Binary Translation Algorithm 

Data structure 
Some tables are necessary in order to perform the routing of the operands inside the 
reconfigurable array as well as the configuration of the functional units. Other 
intermediate tables are also needed, however, they are just used during the detection 
phase. These tables are: 

Dependence table: Saves information of data dependence of each row. This table is 
in fact a small bitmap of 32 bits. It informs what registers in that row will be written. 

(a) 

(b)



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      9 

 

Note that it is not necessary to store this information for each instruction. 
Summarizing the information in a bitmap for each row one can reduce the hardware 
necessary to check true data dependencies (RAW – read after write). 

Resource Table: Stores what function each functional unit must perform.  
Read Table: Informs what operand from the input context must be read. This table 

has two inputs, since there are two source operands for each functional unit. It is 
important to point out that the input context is basically an indirect table. In other 
words, not necessarily the first slot needs to store the value of the register R1.  

Write table: This table informs what value each context slot will receive. This table 
is different when comparing to the read one. In the previous table the multiplexers 
were responsible for choosing what values from the context slots would be issued to 
each functional unit. This table informs what values from the whole set of the 
functional units that compose each row will continue in each slot of the context bus.  

Context table: This table has two lines, the first one representing the input context, 
and will be used in the reconfiguration phase, and the second one called current table, 
that will be used during the detection phase. Its final state represents what values will 
be written when the execution of the array finishes.  

How it works 
To better explain the algorithm, we will start with its simplest version, considering 
that the array is composed just by adders. The following steps represent pipeline 
stages when considering the implementation in hardware. 

Considering that 
inst op_w, op_r1, op_r2  

where inst is the current instruction and op_w, op_r1 and op_r2 are the 
target and the source operands, respectively, the follow steps are necessary. 

 
1st) Decode the instruction, returning the target and source registers of the current 

instruction; 
2nd) In the write table, for each row from 0 to N, verify if op_r1 and op_r2 exist. 

If any one of them or both exist in the line S, line O equals to S + 1. Considering a 
bottom-up search, the line s is the last one where op_r1 or op_r2 appears, since 
they may be found in more than one line. If nor op_r1 neither op_r2 exist in any 
line of this table, line O equals to 0.  

3rd) In the resource table, search in the columns of row O, from left to right, if there 
is a resource available for use. If there exists, we call this free column as C, and row R 
equals to O. If there is no resource available in row O, increment the value of O in 1 
and repeat the same operation, until finding the resource. This way, line R equals to O 
+ N, where N was the number of increments necessary until finding an available 
resource. This resource table is also represented by a bitmap. 
4th)   
• Update the bitmap write table in line R with the value of op_w 
• Update column C in row R of the resource table as busy 
• Search in the current context table if there are op_r1, op_r2 and op_w. For 

each one of these, if they exist, point L1, L2 and W to op_r1, op_r2 and op_w 



10      Antonio Carlos Schneider Beck, Luigi Carro 

 

respectively, and disable the correspondent write signals. If one of them does not 
exist in the table, the correspondent signal of write is set and the correspondent 
pointer is set to the next free column available. 

5th)  
• Depending on the step 4c, the current context table is updated. 
• The initial context table is also updated, if one of the write signals concerning 
op_r1 and op_r2 are set. 

• In the write table, write the value of C in the row R, column W.  
• In the read table, write the values of L1 and L2 in line R, column C (it is 

important to remember that each column of this table has two slots, as explained 
earlier) 

 
Summarizing the algorithm, for each incoming instruction, the first task is the 

verification of RAW (read after write) dependences. The source operands are 
compared to a bitmap of target registers of each row. If the current row and all above 
do not have that target register equal to any of the source operands of the current 
instruction, this instruction can be allocated in that row, in a column as left as 
possible, depending on the group, as explained before.  

When this is instruction is allocated in that row, the bitmap of target registers is 
updated. This way, for each instruction just one bitmap per line is necessary to be 
analyzed. Indirectly, such technique increases the size of the window of instructions, 
which is one of major limiting factors of ILP, exactly due to the number of 
comparators that is necessary [19]. For each row there is also the information about 
what registers can be written back or saved to the memory. This way, it is possible to 
write results back that will not be used anymore in the array in parallel to the 
execution of other operations. Figure 6 demonstrates an example of a sequence of 
instructions allocated in the reconfigurable array. 

The complete version of the algorithm supports functional units with different 
delays and functions, and the use of immediate values in the input context; handles 
with false data dependencies among instructions; and performs speculative execution. 
For the speculative execution, each operand that will be written back has a flag 
indicating its depth concerning speculation. When the branch is taken, it triggers the 
writes of these correspondent operands.  

The speculative policy is one of the simplest ones, based on bimodal branch 
predictor. For each level of the tree of basic blocks, the counter must achieve the 
maximum or minimum value (indicating the way of the branch). When the counter 
equals to this value, the instructions corresponding to this basic block are added to 
that configuration of the array. The configuration is always indexed by the first PC of 
the whole tree. If miss speculation occurs a determined number of times, achieving 
the opposite value of the respective counter, that entire configuration is flushed out 
and another one begins, starting everything again. 

 
 
 
 
 



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      11 

 

 
Fig. 6. An example of how a sequence of instructions is allocated inside the array 

RESULTS 

Performance 

The Simplescalar toolset was employed for our experiments. We used the PISA 
instruction set, which is based on the MIPS IV ISA. Although the out-of-order 
simulator has some differences when comparing to the MIPS R10000 processor, we 
configured it to behave as close as possible to this processor. The configuration is 
summarized in Table 1a.  

In Table 1b, we show three different configurations for the array that we used in 
the experiments. The last configuration was used in order to try to figure out what is 
the real potential of our technique. For each array configuration we also vary the size 
of the reconfiguration cache: 2 to 512 slots. Moreover, for each one of these 
configurations we evaluate the impact of doing speculation, up to three basic blocks 
ahead. Furthermore, we increased the cache memory in order to achieve almost no 
cache misses, so we can evaluate our results without the influence of it. 

Table 1. Configurations 

 

 

 

Out of Order 

Fetch, decode and commit = up to 4 instructions 
Register Update Unit = 16 Entries 
Load/Store Queue = 16 entries 
Functional Units = 2 Integer ALU, 1 multiplier, 2 memory ports 
Branch Predictor = Bimodal/512 entries 

 

 Reconfigurable Array 
C #1 C #2 C #3 

#Lines 27 54 99 
#Columns 11 16 30 
#ALU /  line 8 8 11 
#Multipliers / line 1 2 3 
#Ld/st / line 2 6 8 

(a) (b)



12      Antonio Carlos Schneider Beck, Luigi Carro 

 

 
Table 2a shows the IPC of the out-of-order processor cited before. This table can 

be used to compare the IPC of this processor against the IPC of the instructions that 
are executed inside the array, in different configurations. For each configuration, we 
vary the speculation: no speculation, 1 and 2 basic blocks ahead. We also change the 
number of slots available in the reconfigurable cache (4, 16, 64, 128 and 512). We are 
using a subset of the MIBENCH set [10].  

Table 2. IPC in the Out-of-Order and average Basic Block size 

 

 

 

 

 

 

As it is shown in Figure 7, we can achieve a higher IPC when executing 
instructions in the reconfigurable array in comparison to the out-of-order superscalar 
processor in almost all variations. However, the overall optimization when using our 
technique depends on how many instructions are executed in the reconfigurable logic 
instead of using the normal flow of the processor. Table 3 shows the overall speedup 
obtained when coupling the reconfigurable array to the out-of-order processor against 
the out-of-order without it. 

The four benchmarks were chosen because they represent a very control-oriented 
algorithm, a dataflow one and a midterm between both, plus the CRC, which is the 
biggest benchmark in the set. In Table 2b the benchmarks are classified according to 
the average number of branches per instructions. It is important to notice that 
reconfigurable systems in general can just show improvements when the programs are 
very dataflow oriented. The proposed technique, on the other hand, can optimize 
control and data oriented programs, as it can be observed by the results. 

 
 
 
 
 
 
 
 
 
 

Algorithm IPC - Out-of-Order  BB size 
Basicmath 1.43  5.8751 
CRC 2.13  7.9954 
dijkstra 1.76  5.6011 
Jpeg decode 1.86  6.2554 
patricia 1.40  4.4255 
qsort 1.79  4.6243 
sha 1.94  7.9381 
stringsearch 1.60  4.8709 
Susan Smoothing 1.64  15.8098 
Susan Corners 1.83  13.4952 
tiff2bw 1.90  22.5567 
tiff2rgba 1.92  13.4952 
tiffdither 1.56  18.9188 
tiffmedian 1.91  30.686 

 
(a) (b)



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      13 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. IPC rate in the reconfigurable array considering different configurations and cache sizes. 

Table 3. Speedups using the reconfigurable array coupled to the out-of-order processor 

 

 

 

 
 
 
 
 
 
 
 
 
 

Algorithm #Cycles in the 
Out-Of-Order  

% of Speed Up - Out-of-Order coupled to array with configuration 1 
No Speculation Speculation 2 Speculation 3 

4 64 256 4 64 256 4 64 256 
Basicmath 111169924 5.03 13.75 17.85 3.52 14.49 21.79 3.40 15.22 23.31 
CRC 399531928 -16.01 -16.03 -16.03 -5.20 -5.21 -5.21 9.03 9.03 9.03 
dijkstra 31094638 -22.29 -24.31 -24.33 1.30 1.25 1.25 8.45 8.46 8.46 
Jpeg decode 3942226 -9.15 -9.72 -9.77 4.63 3.24 3.29 7.11 7.45 7.61 
patricia 95927575 4.41 13.30 13.72 3.99 14.42 21.52 3.26 14.22 21.96 
qsort 23435690 -8.76 -11.69 -11.69 -0.58 4.18 4.18 0.37 -30.41 -30.21 
sha 6800950 11.56 13.07 13.07 27.22 33.45 33.45 26.30 31.29 31.29 
stringsearch 115917 16.32 20.16 21.23 28.95 35.20 35.24 28.50 35.39 35.38 
S. Smoothing 15628090 -0.94 -3.22 -3.22 0.31 -0.99 -1.00 2.13 1.59 1.59 
S. Corners 533870 2.16 1.79 1.79 4.40 4.29 4.28 1.13 4.29 4.28 
tiff2bw 27391803 -4.24 -4.38 -4.42 0.88 0.82 0.82 -0.20 -0.20 -0.20 
tiff2rgba 23796384 -10.94 -11.39 -11.40 -1.53 -1.75 -1.75 -1.19 -1.39 -1.40 
tiffdither 188757828 1.48 8.88 8.92 6.65 9.34 9.41 4.47 -21.46 -23.52 
tiffmedian 93254386 3.95 3.74 3.73 12.91 12.82 12.82 7.42 7.38 7.38 

 

Algorithm #Cycles in the 
Out-Of-Order  

% of Speed Up - Out-of-Order coupled to array with configuration 3 
No Speculation Speculation 2 Speculation 3 

4 64 256 4 64 256 4 64 256 
Basicmath 111169924 5.76 19.27 26.40 4.63 19.83 30.33 4.86 20.52 32.14 
CRC 399531928 3.97 3.97 3.97 8.12 8.14 8.14 20.75 20.77 20.77 
dijkstra 31094638 -21.96 -20.08 -20.04 1.00 4.34 4.36 4.13 7.65 7.67 
Jpeg decode 3942226 9.76 11.92 12.05 16.55 18.94 19.06 16.77 19.51 19.68 
patricia 95927575 5.06 17.97 18.89 5.25 18.80 29.07 4.57 18.58 29.80 
qsort 23435690 24.29 38.95 38.95 16.79 43.74 43.74 16.44 40.72 40.72 
sha 6800950 22.57 25.48 25.48 39.91 48.66 48.66 41.27 50.28 50.28 
stringsearch 115917 21.02 27.05 30.57 31.25 41.02 41.17 31.04 42.61 42.63 
S. Smoothing 15628090 25.35 35.66 35.69 26.87 37.95 37.96 23.73 32.05 32.04 
S. Corners 533870 32.69 41.44 41.44 37.53 41.44 41.45 33.89 37.13 37.12 
tiff2bw 27391803 -5.65 -5.42 -5.39 19.08 19.60 19.60 24.41 25.22 25.22 
tiff2rgba 23796384 57.19 57.83 57.83 58.29 59.69 59.69 47.30 48.87 48.87 
tiffdither 188757828 4.33 18.15 18.30 10.73 19.33 19.57 7.95 14.31 14.60 
tiffmedian 93254386 14.13 14.11 14.13 27.23 27.43 27.43 27.36 27.72 27.72 

 

6 
5 
4 
3 
2 
1 

IPC 

6 
5 
4 
3 
2 
1 

IPC 

6 
5 
4 
3 
2 
1 

IPC 

 

Speculation 2 Speculation 3 No Speculation
Co

nf
ig

ur
at

io
n.

 #1
 

Co
nf

ig
ur

at
io

n.
 #2

 
Co

nf
ig

ur
at

io
n.

 #3
 



14      Antonio Carlos Schneider Beck, Luigi Carro 

 

Area Evaluation 

In order to give an idea of the area overhead, we implemented the hardware detection 
and the reconfigurable array in VHDL. The tool used was the Mentor Leonardo 
Spectrum [9], with the library TSMC 0.18u. As we do not have available any 
implementation of a superscalar processor in any Hardware Description Language, we 
took the data about its number of transistors from [18] and other measurements from 
[19]. Although this comparison will not give us exactly values, it will present realistic 
measurements about the implementation of our approach. 

Table 4a shows how many functional units and multiplexers would be necessary to 
implement the configuration #1 of table 1, and what are the number of gates they take. 
In this same table one can also observe the number of gates taken by the Dynamic 
Instruction Merging hardware. In table 4b it is shown the number of bits necessary to 
keep one configuration in the reconfigurable cache. Note that, although 256 bits are 
necessary for the Write Bitmap Table, they are not counted in the final total. This 
table is temporary and is used just during detection. This way, there is no need to save 
its values in the special cache. Finally, in table 4c, the number of Bytes needed for 
different cache sizes is presented, depending on how much configurations they can 
store. 

Table 4. Area evaluation 

 
 
 
 
 
 
 
 
 
Finally, Figure 8a represents the MIPS layout with the reconfigurable array. 

According to [18], the total number of transistors of core in the MIPS R10000 is 2.4 
million. As presented in table 4a, the array together with the hardware detection 
occupies 735,223 gates. We are considering that one gate (result given by the 
synthesis tool) is equivalent to 4 transistors, which would be the amount necessary to 
implement a NAND or NOR gates. This way, the reconfigurable array and DIM 
hardware would take 2,940,892 transistors. The area overhead is represented in Figure 
6b. In this figure is also presented the area overhead concerning the reconfigurable 
cache, in number of different configurations supported. 

 
 
 
 
 
 
 
 
 

(c) (b)(a) 

Unit # Gates 
ALU 216 337,824 
LD/ST 36 5,904 
Multiplier 6 20,067 
Input  510 327,420 
Output  216 66,096 
DIM Hardware 1,024 
Total 735,223 

Table #bits 
Write Bitmap Table 256 
Resource Table 903 
Reads Table 1,896 
Writes Table 648 
Context Start 40 
Context Current 40 
Immediate Table 128 
Total 3655 

#Slots #Bytes 
2 7,566 
4 14,620 
8 30,143 
16 58,480 
32 118,856 
64 233,920 

128 468,488 
256 935,680 



Reconfigurable Accelerator with Binary Compatibility for General Purpose 
Processors      15 

 

 
 
 
 
 
 
 

Fig. 8. Area overhead presented by the reconfigurable array and its special cache 

CONCLUSIONS AND FUTURE WORK 

Although there are some improvements concerning the algorithm and the structure of 
the reconfigurable array, this work demonstrated that it is possible to keep advantage 
of a reconfigurable architecture to speed up the system, in a totally transparent 
process and with a feasible area overhead. Using speculation in the array, we have 
obtained a mean speedup of up to 30% in the IPC using configuration 3, when 
comparing against a MIPS R10000 based superscalar processor. Now, we are working 
on finding the best shape for the reconfigurable array.  

Another future work will be the measurement of the energy consumption of the 
system. Similar techniques applied to an embedded processor have already shown that 
such structures bring a huge energy saving [20] since, besides the fact that this 
technique trades sequential logic for combinational one to execute instructions, less 
accesses to the instruction memory are required, as well as less dependence analysis 
between instructions are necessary. 

REFERENCES 

[1] David W. Wall, “Limits of instruction-level parallelism”, In Proceedings of the fourth 
international conference on Architectural support for programming languages and 
operating systems, p.176-188, April 08-11, 1991 

[2] Sima, D., “Decisive aspects in the evolution of microprocessors”. In Proceedings of the 
IEEE, vol. 92, pp.1896-1926, 2004 

[3] Intel Pentium 4 Homepage – 
http://www.intel.com/products/processor/pentium4/index.htm 

[4] Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm W., “A Compiler 
Framework for Mapping Applications to a Coarse-grained Reconfigurable Computer 
Architecture. Conf. on Compiler”. In Architecture and Synthesis for Embedded Systems 
(CASES), 2001 

[5] Stitt, G., Vahid F., “The Energy Advantages of Microprocessor Platforms with On-Chip 
Configurable Logic”. In IEEE Design and Test of Computers, 2002 

[6] Or-Bach, Z., Panel: “(when) will FPGAs kill ASICs?”, 38th Design Automation 
Conference, 2001. 

[7] Compton, K., Hauck, S. “Reconfigurable computing: A survey of systems and software,” 
ACM Computing Surveys, vol. 34, no. 2, pp. 171-210, June 2002.  



16      Antonio Carlos Schneider Beck, Luigi Carro 

 

[8] Hauck, S., Fry, T., Hosler, M., Kao, J.: “The Chimaera reconfigurable functional unit”. In 
Proc. IEEE Symp. FPGAs for Custom Computing Machines, pp. 87–96, Napa Valley, CA, 
1997 

[9] Leonardo Spectrum, available at homepage: http://www.mentor.com 
[10] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge T., Brown, R.B., 

“MiBench: A Free, Commercially Representative Embedded Benchmark Suite. 4th 
Workshop on Workload Characterization”, Austin, TX, Dec. 2001 

[11] Swanson, S., Michelson, K., Schwerin, A., Oskin. M., “WaveScalar”. In MICRO-36, Dec. 
2003 

[12] Gschwind, M., Altman, E., Sathaye, P., Ledak, Appenzeller, D.: “Dynamic and 
Transparent Binary Translation”. In IEEE Computer, pp. 54-59, vol. 3 n. 33, 2000 

[13] Ebcioglu, E. A., “DAISY: Dynamic compilation for 100% architectural compatibility”. In 
IBM T. J. Watson Research Center - Technical Report, Yorktown Heights, NY, 1996 

[14] González, A., Tubella, J., Molina, C., “Trace-Level Reuse”. In Int’l Conf. on Parallel 
Processing, Sep. 1999  

[15] Stitt, G., Lysecky, R., Vahid, F., “Dynamic Hardware/Software Partitioning: A First 
Approach”. In Design Automation Conference, 2003 

[16] N. Clark, W. Tang, and S. Mahlke, "Automatically Generating Custom Instruction Set 
Extensions".  In Workshop on Application Specific Processors (WASP). Turkey, 2002. 

[17] K.Wilcox and S.Manne, “Alpha processors: A history of power issues and a look to the 
future”. In CoolChips Tutorial An Industrial Perspective on Low Power Processor Design 
in conjunction with Micro-33(1999).  

[18] Yeager, K.C. “The Mips R10000 Superscalar Microprocessor,”; IEEE Micro, Apr. 1996, 
pp. 28-40. 

[19] Burns, J.; Gaudiot, J.-L., “SMT layout overhead and scalability”.  In Parallel and 
Distributed Systems, IEEE Transactions on Parallel and Distributed Systems, pp. 142-
155, Volume: 13, Issue: 2, Feb 2002 

[20] Beck, A. C. S., Carro, L., “Dynamic Reconfiguration with Binary Translation: Breaking 
the ILP barrier with Software Compatibility”, In Design Automation Conference, 2005 

 

 

 

 


