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Abstract. In nanometer scale CMOS parameter variations are a challenge for the
design of high yield integrated circuits. Statistical Timing Analysis techniques re-
quire statistical modeling of logic blocks in the netlist in order to compute mean
and standard deviate for system performance. In this work we propose an accurate
and computer efficient methodology for statistical modeling of circuit blocks. Nu-
merical error propagation techniques are applied to model within-die and die-to-
die process variations at electrical level. The model handles co-variances between
parameters and spatial correlation, and gives as output the statistical parameters
that can be applied at higher level analysis tools, as for instance statistical timing
analysis tools. Moreover, we develop a methodology to compute the quantitative
contribution of each circuit random parameter to the circuit performance vari-
ance. This methodology can be employed by the designer or by an automatic tool
in order to improve circuit yield.
The methodology for yield analysis proposed in this work is shown to be a solid
alternative to traditional Monte Carlo analysis, reducing by orders of magnitude
the number of electrical simulations required to analyze memory cells, logic gates
and small combinational blocks at electrical level. As a case study, we model the
yield loss of a SRAM memory due to variability in access time, considering vari-
ance in threshold voltage, channel width and length, which may present both die-
to-die and within-die variations. We compare results obtained using the proposed
method with statistical results obtained by Monte Carlo simulation. A speedup of
1000× is achieved, with mean error of the standard deviate being 7% compared
to MC.

1 Introduction

Performance and reliability of deep-sub-micron technologies are being increasingly af-
fected by process variations and leakage current [24]. Variability in the manufacturing
process imposes limitations to the design of circuits in recent technologies. Process
variations are related to machinery limited precision and process methodology varia-
tions like temperature and lithography exposure time, and discreteness of the material.
These variations are stochastic and the prediction of the percentage of manufactured
circuits which will achieve a given performance becomes a major problem for the cir-
cuit designer. Therefore, the use of statistical methods in circuit design is of increasing
relevance.



2 Lucas Brusamarello, Roberto da Silva, Gilson I. Wirth, and Ricardo Reis

Electrical parameter variabilitymay be decomposed into die-to-die variations (D2D)
and within-die variations (WD) [27]. Within-die variations may arise from different
sources, for instance the discreteness of matter and energy (dopant atoms, photo resist
molecules, and photons). A well known example of a WD parameter is threshold volt-
age (VtMahmoodi2005Estimation-of-d. Random Dopant Fluctuations (RDF) is mainly
caused by the irregular distribution of doping atoms in the channel, and this effect nowa-
days represents one of the greatest challenges for the industry [10]. Consider σvt0 the
standard deviation in threshold voltage for minimum sized transistors, then the depen-
dence of σvt on transistor size is given by [25]:

σvt = σvt0

√
Lmin×Wmin

L×W (1)

Die-to-die variations may arise from equipment asymmetries (like asymmetries in
chamber gas flows, thermal gradients and so on) or imperfections in equipment oper-
ation and process flow. These asymmetries and imperfections affect the average value
of a parameter from die to die, wafer to wafer, and lot to lot. Variations may also be
originated by the pattern or layout induced deviation of a parameter from its nominal
value [6]. Parameters such as oxide thickness, transistor channel length and channel
width may show systematic variations [12]. In the case of a D2D parameter k, transis-
tors close to each other are affected by the same constant fluctuation δk.

Statistical Static Timing Analysis (SSTA) gives at logic level a quantitative risk
management for the design as a function of the circuit topology, the electrical parame-
ters and the variations [26]. In order to apply a SSTA methodology, the cell libraries are
characterized at electrical level, for which nowadays Monte Carlo simulation is com-
monly employed. Larger designs, composed by many hundreds of transistors, may be
decomposed in functional blocks and treated at different levels of abstraction. A block
may be a simple or complex gate, a sequential block (e.g. flip-flop) or a memory cell. At
the block level the variability may be evaluated using the methodology proposed in this
manuscript. The result provided by this methodology (mean, standard deviation) may
then be used by higher abstraction level techniques, as for instance Statistical Static
Timing Analysis (SSTA), to provide risk management at this higher abstraction levels.

In [12] cell characterization using numerical error propagation is proposed. How-
ever, their cell modeling methodology does not include D2D variation, although their
proposed SSTA algorithm considers spatial correlation at gate level. Furthermore, the
quantitative contribution of each random parameter to the circuit performance variance
is not analyzed. As shown further in our work, this analysis may help to improve yield.
Finally, in that work only first order approximation for numerical derivatives is em-
ployed, and the algorithm complexity and accuracy are not analyzed. In our work we
show that the model accuracy may be very sensitive to numerical derivative approxima-
tion. Higher order approximations may lead to a better accuracy.

Yield analysis of SRAM memories using Monte Carlo has been studied in [2], [3]
and [4]. Error propagation at electrical level for yield analysis of SRAM memory has
been explored in [14] and [15], but Vth is the only random variable analyzed (Monte
Carlo is performed to simulate D2D). Sensitivities are computed using first order nu-
merical approximation. In these works failures in SRAM cell are statistically modeled
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(access time failure, read failure, write failure and hold failure), and yield of SRAM
memory is given as a function of redundant columns employed in the design. Simula-
tions in these works show that the most significant source of failures in SRAM cell is
access time failure. In [9] an electrical-level analysis of SRAM cell static noise margin
is presented, which is based in the extraction of the electric parameters by an atomistic
device simulator. This method is robust because the transistor cards are the most con-
sistent and closely related to the device variations, but still a huge number of device and
electric-level simulations must be run (200 runs in that case).

This manuscript presents a general methodology for analysis of circuit blocks at
electrical level which is able to considerWD and D2D variations, as well as co-variances
between electrical parameters. Also, we implement a method to point out the parame-
ters which most contribute to circuit performance variance. The methodology is general
because it is independent of circuit topology (SRAM cell, multiplexer block, complex
gate, etc), and circuit performance parameter of interest (delay, leakage current, power,
etc). It maintains the generality of the traditional Monte Carlo techniques, still largely
employed in commercial electrical simulators [23].

As a case study we discuss yield analysis and optimization of a SRAM memory.
SRAM memory is a good case study because memory yield is directly dependent on
SRAM cell yield, and SSTA is not required to analyze critical paths and signal correla-
tions. For this case study we develop a methodology of yield improvement based on the
analysis of parameter contribution to variability. We resize the transistors that present
the major contribution to the access time variance.

The paper is organized as follows. Section 2 presents a high-level introduction to
the methodology. Sections 3 and 4 formally define the problem of statistical analysis of
integrated circuits at electrical level and describe the mathematical foundations of the
proposed methodology. Section 5 exposes a formulation for the sensitivity of the vari-
ance to the electrical parameters. Section 6 gives formulations for numerical compu-
tation of derivatives using higher order approximations. Section 7 details the proposed
algorithm, and presents a study on its complexity. Section 8 focuses on the methodol-
ogy applied to yield analysis and yield maximization of a SRAM memory, considering
variability in the SRAM cell access time. Finally, last section presents our conclusions.

2 Methodology

This work describes a framework to compute variability in circuit electrical behavior
and its dependency on the design and process parameters. The methodology is based on
the computation of variance using error propagation, where derivatives are numerically
computed using electrical simulations – in this work HSPICE[23] is employed.

Both circuit netlist and the set of circuit parameters which are modeled as random
variables are user inputs. Each random variable has its mean and standard deviation, as
well as its kind (WD or D2D).

A first script generates a set of runs for the electrical simulator – in our the case
HSPICE .DATA command [23]. This library is included in the netlist file, and HSPICE
is run in SWEEP mode.
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Fig. 1. High level flowchart

One value (circuit response) is computed at each run. These values are gathered
in order to compute the partial derivatives for each electrical parameter. Finally, error
propagation is employed to compute the variance. An approximation for the mean is
obtained by simulation using nominal values.

3 Model

Consider an electric circuit denoted byω , composed of n transistors represented as com-
ponents of the vector −→τ = (τ1, . . . ,τn), interconnected according to a topology Γ . By
definition, the circuit response is given by the function F(−→α 1, . . . ,

−→α n,
−→
β 1, . . . ,

−→
β n,ω),

where the vectors−→α i = (α(1)
i , ...,α(p)

i ) and
−→
β i = (β (1)

i , ...,β (q)
i ) represent respectively

the WD and D2D parameters of transistor i, p is the number of WD parameters and q

the number of D2D parameters. For instance, the case−→α 3 = (Vt) and
−→
β 3 = (Tox,L,W )

represents typical input parameters for transistor τ3, including oxide thickness (Tox),
threshold voltage (Vt) and dimensions (L andW ) of the transistor.

In the presence of variability in the fabrication process, electrical characteristics and
physical dimensions of the circuit can be considered random variables and consequently
the output is a random variable. Consider, without loss of generality, that parameters
(as for instance Tox, Vt, L,W ) are Gaussian variables with mean (μ) and variance (σ2),

i.e, αk1
i = N

(
μ(αk1

i ),σ2(αk1)
)
and β k2i = N

(
μ(β k2i ),σ2(β k2)

)
, where i = 1, ...,n,

k1 = 1, ..., p and k2 = 1, ...,q.
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The circuit statistical response S is a function that depends on N = n× (p+ q)
random variables (includingWD and D2D parameters), given by the functional relation

S = F(−→α 1, . . . ,
−→α n,
−→
β 1, . . . ,

−→
β n,ω) (2)

3.1 D2D and WD random variables

In order to model the impact of process variations on the electric circuit response, D2D
and WD are treated differently. In the case of a D2D parameter, the same fluctuation af-
fects transistors close to each other. Still their absolute values may be different because
they may have distinct averages.

Other random variables are modeled as Gaussian random variables, which are de-
noted in this work as WD parameters. A WD variable assumes a random value for each
transistor, although it can be subject to covariance coefficients (σi j).

Notice that both D2D and WD parameters are random variables. The difference
between them is the randomness context: each instance of a WD variable assumes a
different random value, while a D2D parameter has a single random fluctuation that
applies to a set of devices.

D2D parameters Spatial correlation impels the D2D electrical parameter of all tran-
sistors to change in a synchronized way. For instance, if the dimensionW is assumed to
present D2D variations andW1 of transistor τ1 changes by a quantity δW , the dimen-
sionW2 of a transistor τ2 changes by the same quantity δW although their mean (μ(W1)
and μ(W2)) in the standard sampling process can be different. The parameterW is then
defined as a variable that presents

1. exactly the same variation δW inside an single electrical block;
2. but different variation in different electrical blocks, as for instance variation δW1 in
block 1 and variation δW2 in block 2.

The reader should notice that the position (x,y) of a device is not taken into account.
Parameters that present D2D variations can be modeled as

β j
i = μ(β j

i )+ ξ j ·σ(β j)

where ξ j = N(0,1) is a standard normal variable which is independent of the transistor
1 ≤ i ≤ n. It means that the same variable j will have the same shift of magnitude ξ j ·
σ(β j) independent of the transistor to which it is applied. In other words, the variables
β j
1 , ...,β

j
n are the same random variable except by their mean values. Looking at the

contribution of this variables for error estimation, it is important to define the general
variable β j = μ(β j) + ξ j ·σ(β j), where μ(β j) is a transistor-independent constant.
Then it can be written as

β j
i (k) = μ(β j

i )+ ξ j ·σ(β j) = μ(β j
i )+β j− μ(β j) (3)
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Which leads to suitable simplification

F(−→α 1, . . . ,
−→α n,
−→
β 1, . . . ,

−→
β n,ω)=F(−→α 1, . . . ,

−→α n,β 1, . . . ,β q,ω) and using the chain rule
the computation of partial derivatives becomes

∂F
∂β j =

n

∑
i=1

∂F

∂β j
i

∂β j
i

∂β j (4)

=
n

∑
i=1

∂F

∂β j
i

(5)

because according to equation 3 it is true that ∂β j
i /∂β

j = 1, for all i ∈ {1, ...,n}.

4 Error propagation and Monte Carlo

When measuring a quantity denoted by f which depends of n variables, x1, x2, ..., xn,
an important point is to determine the uncertainty in f given the uncertainty in each
variable. A general formula is known if we suppose that {xi}ni=1 are random Gaussian
variables, which is a widely accepted procedure [6]. In this case the uncertainty in f
( this is an error estimate, including systematic and statistical sources) is given by the
classical error propagation formula [21]:

σ2f =
n

∑
i=1

(
∂ f
∂xi

∣∣∣∣
xi=xi

)2
σ2xi +2

n

∑
i=1

n

∑
j=i

(
∂ f
∂xi

∣∣∣∣
xi=xi

∂ f
∂x j

∣∣∣∣
x j=x j

)
σxi,x j (6)

where σ2xi is the variance (error estimate of variable xi) while σxi,x j is the covariance
between variables xi and x j.

For highly non-linear parameters the methodology may lead to significant errors
in the yield estimation. However, for most of the practical situations, the parameter
distributions are expected not to be highly non-linear. The study of the shape of the
actual distribution (and linearity) of the parameters is a topic of intense research, and
general models are not yet available. It is out of the scope of this work to provide such
models.What can be said is that if the parameters are not highly non linear, the proposed
methodology is expected to provide an appropriate yield estimation methodology.

The general error propagation formula (equation 6) applied to the model for WD
and D2D variations in an electric circuit, considering co-variances, is:
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σ2S =
n

∑
i=1

p

∑
j=1

⎛
⎝ ∂F

∂α j
i

∣∣∣∣∣
α j
i =μ(α j

i )

⎞
⎠
2

σ2(α j) +
q

∑
j=1

⎛
⎝ n

∑
i=1

∂F

∂β j
i

∣∣∣∣∣
β j
i =μ(β j

i )

⎞
⎠
2

σ2(β j)

+ 2
n

∑
i=1

p

∑
j=1

p

∑
k= j

⎛
⎝ ∂F

∂α j
i

∣∣∣∣∣
α j
i =μ(α j

i )

∂F

∂αk
i

∣∣∣∣
αki =μ(αki )

⎞
⎠σ(α j,αk)

+ 2
n

∑
i=1

q

∑
j=1

q

∑
k= j

⎛
⎝ ∂F

∂β j
i

∣∣∣∣∣
β j
i =μ(β j

i )

∂F

∂β ki

∣∣∣∣
β ki =μ(β ki )

⎞
⎠σ(β j,β k)

+ 2
n

∑
i=1

p

∑
j=1

q

∑
k=1

⎛
⎝ ∂F

∂α j
i

∣∣∣∣∣
α j
i =μ(α j

i )

∂F

∂β ki

∣∣∣∣
β ki =μ(β ki )

⎞
⎠σ(α j,β k) (7)

The reader should notice that covariances between electrical parameters do not im-
ply in any overhead in the number of simulations.

The non-biased sampling estimator to the standard deviation computed from a sam-
ple of nsample experimental measures of S, denoted as S1, S2, ..., Snsample, is calculated
by the expression

δS =

√√√√ 1
(nsample−1)

nsample

∑
i=0

(Si−〈Si〉) 2

must be numerically equal to σS for a nsample sufficiently large, i.e.,

δS ≈ σS

Monte Carlo simulation [5] is often employed in order to obtain the probability den-
sity function (PDF) of some circuit output (delay, power consumption, leakage current,
...). Usually, a run with a large number of samples nsample is generated, aiming the con-
vergence of the standard deviation. However, the error in a Monte Carlo simulation is
hardly reduced, once it is O(1/√nsample).

The inputs in the error propagation formulation are 1) the partial derivatives of the
circuit response to the random parameters; 2) standard deviation of the random pa-
rameters; and 3) the correlation between random parameters. Standard deviations and
correlation coefficients are technology dependent and are given by the foundry. Accord-
ing to what will be shown in section 6, as F(k1, . . . ,kN) is an arbitrary function that can
be computed by electrical simulation, the numerical estimates for derivatives ∂F

∂ki

∣∣∣
ki=ki

also can be computed by electrical simulation.

5 Sensitivity of the circuit variability to the electrical parameters

When dealing with the challenges imposed by design for manufacturability, it is essen-
tial to have a methodology capable of identifying which parameters contribute most to
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the circuit variability. Once error propagation decomposes the circuit response variance
into its components, it can be used to point out which devices of the circuit could be
re-designed in order to optimize yield.

Error propagation uncovers the quantitative contribution of each transistor to the
variability in circuit performance. Revisiting equation 7, the sensitivity of the circuit
response variance to a within-die parameter αk is given by

K(αk) =
( ∂F
∂αk

)2σ2αk . (8)

For D2D components, a re-weighted function can be defined as

pik =

( ∣∣∂F/∂β ki
∣∣

∑m
j=1
∣∣∂F/∂β kj

∣∣
)

(9)

where ∑m
i=1 pik = 1 form synchronized variables. For a parameter β ki that presents D2D

variation the sensitivity is given by

K(β ki ) = pik×
(

∂F
∂β k

2

σ2β k

)
(10)

6 Numerical estimate of partial derivatives

Numerical approximations of derivatives is applied in order to present a genericmethod-
ology independent of circuit topology. Linear approximations using 1, 2 and 4 points
around the nominal values are exploited, aiming to obtain the sensitivity of circuit re-
sponse for the random variables. The difference between these formulas is the accuracy
in the numerical estimates and the number of electric simulations needed: higher order
approximations require more simulations, but are more accurate.
ProblemFormulation:Consider a general function of n variables f = f (x1,x2, . . . ,xn),

such that numerical values for the variables are x1 = x1, . . . ,xn = xn. By error propa-
gation we have σ2f = (∂ f/∂x1)2x1=x1σ

2
x1 + ...+ (∂ f/∂xn)2xn=xnσ

2
xn . Find a numerical

approximation for ∂ f/∂xi (i= 1, . . . ,n).

6.1 1st Order Approximation

Expanding the n-dimensional Taylor series around point f (x1, . . . ,xi, . . . ,xn) up to order
2 we obtain:

f (x1, . . . ,xi+ ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+ ε
∂ f (x1, . . . ,xi, . . . ,xn)

∂xi
+O(ε2) (11)

The numerical value of f (x1, . . . ,xn) is computed by electrical simulation. Thus, one
can calculate the sensitivity at point f (x1, . . . ,xi+ε, . . . ,xn), rewriting 11 and assuming
ε 	 1 as follows
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∂ f
∂xi

(x1, . . . ,xi, . . . ,xn) =
f (x1, . . . ,xi+ ε, . . . ,xn)− f (x1, . . . ,xi, . . . ,xn)

ε
+O(ε)

(12)

Complexity of 1st order approximation: For this case 2 electrical simulations are
required to compute each partial derivative: one is required to compute f (x1, ..,xi +
ε, ...,xn) and another one for f (x1, ..,xi, ...xn). However, as f (x1, ..,xi, ...xn) is the same
for all partial derivatives, it needs to be computed only once. Thus, computation of all
partial derivatives using first order approximation requires n+1 runs.

6.2 2nd Order Approximation

In order to obtain a more precise approximation, algebraic manipulations over Taylor
expansion results in a formula with accuracyO(ε2). Consider Taylor expansions around
the points f (x1, . . . ,xi + ε, . . . ,xn) and f (x1, . . . ,xi− ε, . . . ,xn), and a better approxima-
tion for ∂

∂xi
f (x1, . . . ,xi, . . . ,xn) can be computed according to:

∂
∂xi

f (x1, . . . ,xi, . . . ,xn) =
f (x1, . . . ,xi+ ε, . . . ,xn)− f (x1, . . . ,xi− ε, . . . ,xn)

2ε
+O(ε2)

(13)

Complexity of 2nd order approximation: this formulation requires 2 electrical
simulations for each variable of interest: one to evaluate f (x1, . . . ,xi + ε, . . . ,xn) and
another one to evaluate f (x1, . . . ,xi− ε, . . . ,xn). Therefore, to calculate n partial deriva-
tives over all the variables – 2nd order approximation requires 2n runs.

6.3 4th Order Approximation

An O(ε4) approximation can be obtained for the numerical estimate of the derivative,
as in (please refer to Appendix A for detailed algebraic manipulations) :

∂ f
∂xi

(x1, ...,xn) =
1
3
· [− f (x1, ...,xi+2ε, ...,xn)+ f (x1, ..,xi−2ε, ...,xn)]

4ε

+
4
3
· f (x1, ..,xi+ ε, ...,xn)− f (x1, ..,xi− ε, ...,xn)

2ε
+O(ε4)

(14)

Complexity of 4th order approximation: for each variable 4 electrical simulations
must be run. Hence, an O(ε4) approximation requires 4n electrical simulations.
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7 Algorithm

Algorithm 1 presents the general methodology developed along the last section. The
numerical method for derivatives is the one which gives and error of O(ε2). Notice
that algorithm for other approximations are very similar – in fact the unique difference
would be the formula for derivative computation (l. 5-6 and 12-13).

Consider a circuit net-list ω which has a vector of transistors −→τ connected accord-
ing to the specified topology. The circuit response F is specified in the net-list of ω ,
for instance it can be a DC or a transient analysis. The vector of random variations −→α
and vector of systematic variations

−→
β are related to the model of variability that will

be implemented. The vector of mean values −→μ is in accordance to nominal transis-
tors parameters in ω . The vector of standard deviations−→σ depends on the foundry and
technology node, and the vector of steps ε(β ) are as small as possible (in this work the
steps are assumed to be equal to the standard deviations). Finally, C is the matrix of
co-variances between the electrical parameters.

At line 2 of the algorithm the nominal value is computed, which will be an approx-
imation for the average.

First, for all the transistors (lines 3-24), numerical derivatives for WD parameters
(lines 4-10) and D2D parameters (lines 11-23) are computed. Notice that the approach
for derivative computation requires 2 HSpice runs for each parameter, since the algo-
rithm being studied employs a O(ε2) approximation for the computation of derivatives.

For WD parameters, electrical simulations are computed (l. 5 and 6) and in the next
step the derivative is calculated using these values (l. 7). Then the sensibility of variance
to the parameter is computed in l. 8, and added to the circuit variance.

For D2D parameters, electrical simulations are run (l. 12 and 13) and next the
derivative is computed (l. 14). As the contribution of D2D parameters is given in func-
tion of the sum of these parameters (ζ (β j) at line 16) to all transistors (eq. 10), the
actual contribution is computed at line 22 (at l. 15 K is employed as a temporary vari-
able).

Correlations are added to the circuit variance in lines 25-41. For all transistors, add
correlation betweenWD toWD parameters (l. 26 - 30), D2D to D2D (l. 31-35), andWD
and D2D (36-40). The reader should notice that the number of correlation coefficients
given as input does not affect the number of HSpice simulations needed. Thus, the
covariances do not affect the running time of the method.

The algorithm computes the following outputs:

1. matrix of contributions K, which represents the contribution of the parameter 1≤
j ≤ (p+q) of the transistor 1≤ i≤ n;

2. variance of circuit response σ2F and
3. approximation for the average value of the response μF .

7.1 Complexity

The proposed tool runs as a front-end for HSpice and computational complexity of each
electrical simulation depends on the kind of analysis – DC, AC, transient, ... – and the
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Algorithm 1 Error propagation using numerical derivatives

Require: ω,−→τ = (τ1, ...,τn),
−→α = (α11 , ...,α

p
n ),
−→
β = (β 11 , ...,β qn ),−→μ = (μ(α11 ), ...,μ(α p

n ),μ(β 11 ), ...,μ(β qn )),−→σ = (σ(α11 ), ...,σ(α p
n ),

σ(β 11 ), ...,σ(β qn )),−→ε = (ε(α1), ...,ε(α p),ε(β 1), ...,ε(β q)),Cp+q
p+q

1: σ2F ← 0;ζ (
−→
β )← 0

2: μF ← F(α11 = μ(α11 ), . . . ,α
p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β qn = μ(β qn ),ω)
3: for all i such that 1≤ i≤ n do
4: for all j such that 1≤ j ≤ p do
5: s↓ ← F(α11 = μ(α11 ), . . . ,α

j
i = μ(α j

i )− ε(α j), . . . ,α p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β q
n = μ(β q

n ),ω)

6: s↑ ← F(α11 = μ(α11 ), . . . ,α
j
i = μ(α j

i )+ ε(α j), . . . ,α p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β q
n = μ(β q

n ),ω)

7: s ji ← s↑ − s↓
8: K j

i ←
(

s ji
2ε(α j

i )

)2
σ2(α j)

9: σ2F ← σ2F +K j
i

10: end for
11: for all j such that 1≤ j ≤ q do
12: s↓ ← F(α11 = μ(α11 ), . . . ,α

p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β j
i = μ(β j

i )− ε(β j), . . . ,β q
n = μ(β q

n ),ω)
13: s↑ ← F(α11 = μ(α11 ), . . . ,α

p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β j
i = μ(β j

i )+ ε(β j), . . . ,β q
n = μ(β q

n ),ω)

14: sp+ j
i ← s↑ − s↓

15: Kp+ j
i ←

(
sp+ j
i

2ε(β j)

)
16: ζ (β j)← ζ (β j)+Kp+ j

i
17: end for
18: end for
19: for all j such that 1≤ j ≤ q do
20: σ2F ← σ2F +ζ (β j)2σ2(β j)
21: for all i such that 1≤ i≤ n do
22: Kp+ j

i ← ( K
p+ j
i

ε(β j)
)(ζ (β j)2σ2(β

j
i ))

23: end for
24: end for
25: for all i such that 1≤ i≤ n do
26: for all j such that 1≤ j ≤ p do
27: for all k such that j ≤ k ≤ p do
28: σ2F ← 2× sp+ j

i × sp+ki ×Ckj
29: end for
30: end for
31: for all j such that 1≤ j ≤ q do
32: for all k such that j ≤ k ≤ q do
33: σ2F ← 2× s ji × ski ×Cp+k

p+ j
34: end for
35: end for
36: for all j such that 1≤ j ≤ p do
37: for all k such that j ≤ k ≤ p do
38: σ2F ← 2× s ji × sp+ki ×Cp+k

j
39: end for
40: end for
41: end for
Ensure: K,μF ,σ2F
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algorithms implemented by the simulator. For a suitable study about transient and DC
analysis performed by spice refer to [17] and its references.

The number of electrical simulations required to compute the circuit variance is a
function of the following inputs:

n: number of transistors
p: number of parameters that present WD variations
q: number of parameters that present D2D variations
d: numerical method employed to compute the derivatives
ω: spice netlist

Section 6 introduced 3 linear approximations for the computation of partial deriva-
tives. Each one has a different accuracy order and each requires a given number of
electrical simulations to compute partial derivative for a variable. Let d be the num-
ber of electrical simulations required to compute the derivative using each numerical
method. Therefore, d is related to the desired accuracy as follows:

Accuracy d Equation
0(ε) 1 12
0(ε2) 2 13
0(ε4) 4 14

One electrical simulation is run using nominal values in order to compute the nom-
inal response, which is an approximation for the average.

The complexity required to compute variance using numerical error propagation is
exactly

C(n,d, p,q,ω) = [d×n× (p+q)+1]Cspice(n, p,q,ω)

where Cspice(n, p,q,ω) is the computational complexity of one spice run for the given
netlist and the parameters n, p,q.

8 Case Study: Yield Analysis of a SRAMMemory

In the last sections the mathematical foundations of the proposed parametric yield anal-
ysis methodology were exposed. This section presents a case study, describing the ap-
plication of the method to yield analysis and yield improvement of a SRAM memory
based on cell access time failure [7]. The transistors nomenclature employed in this
work is as shown in picture 2. Electric simulations were run in HSpice, using the 70nm
node Berkeley Predictive Technology Model [8].

Variations in threshold voltage, channel width and channel length are modeled. The
electrical parameters which are assumed to show variability are as follows:

Parameter Type nominal 3σ
Length WD 70 nm 3.5 nm
Length D2D 70 nm 3.5 nm
Width WD 100 nm 7.5 nm
Width D2D 100 nm 7.5 nm
Vt(PMOS) WD -0.22 V 40 mV
Vt(NMOS) WD 0.2 V 40 mV
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vdd

gnd
bit bit

wl

M1

M2

M3

M4

M5

M6

Fig. 2. 6-transistors SRAM cell

This data is in accordance to the ITRS [11] and [19]. In our case study, we assume
that there is no correlation between parameters, but we consider the functional depen-
dence given by equation 1.

Access time is the time needed to read the data stored in a cell, computed as the
time needed to discharge the bit line (bit) or the negated bit line (bit) to 0.5VDD, if a
zero or an one is stored in the cell, respectively. Access time failure is assumed to occur
if the access time of a given cell is greater than the maximum value allowed for the
design. For the results presented in this section, both bit line (bit) and negated bit line
(bit) are assumed to be pre-charged to VDD. After pre-charge, signal wl is set to VDD
and transistors M1 and M4 are switched to on. Bit is maintained at VDD if an one is
stored in the cell, or is discharged to gnd if the cell stores a zero.

The access time may be written as a function of the random variables, where con-
sidering the cell symmetry we have:

TAC = TAC(LM1, . . . ,LM3,WM1, . . . ,WM3,VtM1, . . . ,VtM3,)

Channel width and channel length will be considered to present WD and D2D vari-
ations. Thus, according to equation 4 access time can be written as
TAC = TAC(LwdM1, . . . ,L

wd
M3,L

d2d ,Wwd
M1 , . . . ,W

wd
M3 ,W

d2d,VtM1, . . . ,VtM3).

Rewriting equation 7 we have:
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σ2TAC =
3

∑
i=1

⎛
⎝ ∂TAC
∂Wwd

Mi

∣∣∣∣∣
2

Wwd
Mi=W

wd
Mi

⎞
⎠σ2Wwd +

⎛
⎜⎝ 3

∑
i=1

∂TAC
∂Wd2d

Mi

∣∣∣∣∣
Wd2d
Mi =Wd2d

Mi

⎞
⎟⎠
2

σ2Wd2d

+
3

∑
i=1

⎛
⎝ ∂TAC
∂LwdMi

∣∣∣∣∣
2

LwdMi=L
wd
Mi

⎞
⎠σ2Lwd +

⎛
⎜⎝ 3

∑
i=1

∂TAC
∂Ld2dMi

∣∣∣∣∣
Ld2dMi =Ld2dMi

⎞
⎟⎠
2

σ2Ld2d

+
3

∑
i=1

⎛
⎝ ∂TAC
∂VtMi

∣∣∣∣∣
2

VtMi=VtMi

⎞
⎠σ2Vt (15)

Considering TMAX a design constraint related to target circuit clock, then the proba-
bility p of a SRAM cell do not present access time violation failure is given by

p= P(TAC ≤ TMAX) =
1

σTAC
√
2π

∫ TMAX

−∞
e
− (x−μTAC )2

2σ2TAC dx (16)

Next sections expose the algorithm 7 applied to a SRAMmemory, using the specific
formulations in order to provide a comprehensive explanation. Circuit partial deriva-
tives are computed using electric simulations. Derivatives and variances are inputs for
equation 15, which gives SRAM cell access time variance. The PDF is plotted by using
the standard deviate obtained applying error propagation and mean value approximated
by simulation using nominal values for input parameters. After, the yield of the entire
memory chip is computed. In the last section of this case study, we analyze the con-
tribution of each parameter to the circuit variability, and improve yield resizing critical
transistors.

8.1 Yield of the SRAM cell

The access time variance is computed by error propagation, which has as input the nu-
merical estimates of derivatives and the standard deviates. The derivatives can be com-
puted using equation 12, 13 or 14, according to the desired trade-of between accuracy
and run-time. Higher number of points implies in higher order accuracy and running
time increases. Figure 3 shows a comparison between PDF obtained using values com-
puted using error propagation (using 1, 2 and 4 points around mean) and histogram
given by Monte Carlo. The yield of the SRAM cell considering access time failure as a
function of the design constraint TMAX is shown by figure 4.

Numerical error propagation using 1, 2 or 4 points requires respectively 10, 19 or
37 electrical simulations, while we run Monte Carlo using 104 runs. Monte Carlo sim-
ulation with 104 runs has a running time of 3̃4000 seconds, while the running time for
error propagation with numerical derivatives using 2 points is less than 80 seconds in a
dual processor Sun Fire V240 (UltraSPARC IIIi 1 GHz).
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Fig. 3.Monte Carlo histogram (104 Spice simulations) compared to PDF obtained by error prop-
agation using 1 point (10 Spice simulations), 2 points (19 Spice simulations) and 4 points (37
Spice simulations)

Fig. 4. Yield of the SRAM cell as a function of TMAX computed using Monte Carlo (104 runs)
compared to error propagation using 1 point (10 runs), 2 points (19 runs) and 4 points (37 runs)
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Fig. 5. Influence of Transistors Width in Access Time Variability

8.2 Resizing of the critical transistors

Once the sensitivity and contribution of each electric parameter are computed, the de-
sign can be optimized in order to diminish the effect of these parameters, decreasing
the variance. Although this work presents an yield optimization based in the access
time failure only, there are of other issues which need to be taken into account during
yield optimization (for instance read margin, write margin and hold margin in the case
of SRAM cells).

By resizing the transistors, three components of access time variance are affected.
While Wwd andWd2d are directly affected, Vt variance decreases because of the func-
tional relation given by equation 1.

Figure 5 presents the access time PDFs for several transistor channel widths varying
from 100nm to 160nm (in these experiments we assumeWM1 = . . . =WM6 =W ). The
PDFs were computed using MC (104 runs) and EP (9 runs for 1 point, 19 runs for 2
points and 37 runs for 4 points). SRAM cell access time variance and average are in-
versely proportional to transistors channel width. Thus, memory yield can be increased
by properly sizing the transistors which more contribute to access time variance.

Figure 6 reports the sensitivity of the access time variance to each parameter (in
percentage). The transistors are shown in pairs because of the symmetry of the SRAM
cell. The transistor which contributes most to the variance is M1-M4(6̃5%), and the
second most preponderant is M3-M6 (3̃5%). The most significant parameter is Vt of
transistor M1-M4: 27% of the access time variance is caused by this parameter.
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Fig. 6. Sensitivity of the access time variance to each parameter

Fig. 7. Impact of transistors M1 and M4 in access time variability by Monte Carlo (104 runs)
compared to error propagation using derivatives with 1 (10 runs), 2 (19 runs) and 4 points (37
runs)
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Fig. 8. Impact of transistors M2 and M5 in access time variability by Monte Carlo (104 runs)
compared to error propagation using derivatives with 1 (10 runs), 2 (19 runs) and 4 points (37
runs)

Fig. 9. Impact of transistors M3 and M6 in access time variability by Monte Carlo (104 runs)
compared to error propagation using derivatives with 1 (10 runs), 2 (19 runs) and 4 points (37
runs)
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Figure 7 reveals the access time PDFs obtained from experiments whereW2 =W3 =
W5 =W6 = 100nm andW1 =W4 varies from 100nm to 160nm in increments of 10nm.
By sizing these transistors the standard deviate decreases 35% (comparingW1 =W4 =
160nm againstW1 =W4 = 100nm) while average decreases 7%. Skewness and average
decrease as W increases.

Figure 8 points out the impact of resizing transistors M2 and M5. As the previous
analysis of the contribution of these parameters indicated, they do not impact in the
access time variance. Thus, the skewness is not correlated to W. Figure 9 presents the
impact of resizing transistors M3 and M6. The standard deviate decreases by 20% and
average decreases by 7% increasing these transistors by 60%.

The above simulations indicate that Monte Carlo and error propagation both present
similar results which corroborate the hypothesis that the skewness can be decreased
by optimizing the parameters pointed out by the methodology. The average difference
between standard deviate computed by error propagation using 1 point and the one
computed by Monte Carlo is 7%. For the simulations using 1 point around mean for
derivatives, a total of 10 electrical simulations must be computed. Thus, this approach
means to improve running time 1000× compared to MC using 104 runs. Computation
of partial derivatives for access time using 2 points gives and adjustment of O(ε2),
and in this case 17 electrical simulations are required. Using this approach the average
difference between standard deviate computed usingMC and EP is 6%, and the speedup
is up to 580×. Derivatives using 4 points requires 37 simulations, but for our case
study the precision O(ε4) does not significantly improve solution accuracy (average
difference is 6%, which is similar to approach using 2 points). In this case, approach
using 2 points for numerical derivatives conciliates running time and solution quality,
but for some application a higher order approach may be necessary.

8.3 Yield Analysis of the SRAM memory

SRAM memories present a regular architecture in which most of the chip area is dedi-
cated to regularly disposed SRAM cells. Consider a memory grid designed with NCOL
columns,NROW rows of SRAM cells and NR redundant columns, as figure 10 illustrates.
If process fabrication variability causes at least one memory cell to fail in a column, that
column must be discarded and replaced by a redundant column – this can be done dur-
ing circuit test phase, setting a set of fuses. If process variability causes more thanNR (at
least NR+1) columns to fail, than the circuit is considered faulty and must be discarded,
reducing yield and increasing product cost.

Denoting p as the probability of the SRAM cell to work properly in the presence of
process variability, PCOL = (p)NROW is the probability that none cell fails in the column.
We are interested in the probability to manufacture NCOL working columns in a total
of NCOL +NR designed columns. Thus, the yield (percentage of working chips) of a
SRAM memory design is given by a binomial distribution, [13]:

PMEM =
NCOL+NR

∑
i=NCOL

(
NCOL +NR

i

)
(PCOL)i(1−PCOL)NCOL+NR−i (17)
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Fig. 10. Scheme of a SRAM memory

Consider a 2 Kbytes SRAM memory for which the architectural parameters are
NCOL = 512 and NROW = 32 (rows of 4 bytes without redundancy in the row). Also
assumeNR = 24 (4% of total number of columns). Figure 11 shows the memory yield as
a function of TMAX for the design where all transistors haveW = 100 and for the design
which transistors M1-M4 are re-sized toW = 160. The figure presents points computed
using equation 17 (squares) as well as the fit of its points to a logistic function (line)
given by

yield(Tmax) = a2+
(a1−a2)

1+(Tmax/T0)p
(18)

where a1 , a2 , T0 and p are parameters.
The logistic function fit to the design with W=100 for all transistors has T0 = 6.28×

10−10 and p= 1702.7,while the design where transistorsM1-M4 are re-sized toW=160
presents T0 = 5.810−10 and p = 2151.1. Thus, the re-sized circuit presents a smaller
mean for the access time and a yield that grows faster as function of TMAX , if compared
to the original design.

9 Conclusions

In this work we present a computer-efficient method for electrical yield simulation of
combinational and sequential circuit blocks. The method is based on error propagation.
The numerical methods employed for the computation of derivatives assures the in-
dependence of topology and parameters to be analyzed. The main contributions of this
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Fig. 11. SRAM memory yield. Increasing W of transistor M1-M4, the memory yield increases
for the same TMAX

work are (1) support forWD and D2D variations, as well as co-variances; (2) yield anal-
ysis based solely on numerical formulations (no analytical formulations are needed),
including the study of accuracy, numerical complexity and higher order numerical ap-
proximations; (3) analysis of the sensitivity of the variance to the electrical parameters;
and (4) development of a general method (algorithm) which can be employed for yield
analysis of combinational or sequential blocks.

We studied the three numerical formulations for the computation of derivatives.
They differ in the upper bound of the numerical error as well as the number of electrical
simulations required to compute the derivatives. We verify an accuracy increase of 1%
in the formulation which hasO(ε2) in comparison toO(ε). No significant improvement
is observed when using the O(ε4) formulation. This is due to the limited precision of
the electrical simulations, since the function being modeled is not smooth.

Based on an error propagation formulation, we derived the sensitivity of the circuit
response variance as a function of each electrical parameter. This analysis plays a fun-
damental role when dealing with any kind of electrical block – memories, library cells,
sequential and combinational blocks –, because it can guide the designer to figure out
what parameters are the most preponderant to the variance in circuit behavior. During
the yield optimization phase, this data can lead to a better understanding of how to im-
prove circuit yield. This is an advantage of using error propagation instead of sampling
techniques.

The proposed methodology keeps the generality of electrical (Spice) level simula-
tions, and can thus be applied to yield analysis in many CMOS circuits. The method
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shows results that are statistically equivalent to the usual sampling techniques, like
Monte Carlo simulation, while increasing simulation speed by orders of magnitude.
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A 4th Order Derivative

By expansion in Taylor Series we have:

f (x1, . . . ,xi+2ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+2ε f ′(x1, . . . ,xi, . . . ,xn)

+
4ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)+

8ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
16ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (19)

f (x1, . . . ,xi+ ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+ ε f ′(x1, . . . ,xi, . . . ,xn)

+
ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)+

ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (20)

f (x1, . . . ,xi− ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)− ε f ′(x1, . . . ,xi, . . . ,xn)

+
ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)− ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (21)
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f (x1, . . . ,xi−2ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)−2ε f ′(x1, . . . ,xi, . . . ,xn)

+
4ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)− 8ε

3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
16ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (22)

Combining the equations 19 and 22 we obtain:

f (x1, . . . ,xi+2ε, . . . ,xn) − f (x1, . . . ,xi−2ε, . . . ,xn) = 4ε f ′(x1, . . . ,xi, . . . ,xn)

+
16ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)+O(ε5) (23)

Similarly, from equations 20 and 21 we can write:

f (x1, . . . ,xi+ ε, . . . ,xn) − f (x1, . . . ,xi− ε, . . . ,xn) = 2ε f ′(x1, . . . ,xi, . . . ,xn)

+
2ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)+O(ε5) (24)

Multiplying equation 24 for (−8) we have:

16ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn) = −16ε f ′(x1, . . . ,xi, . . . ,xn)+8 f (x1, . . . ,xi+ ε, . . . ,xn)

− 8 f (x1, . . . ,xi− ε, . . . ,xn)+O(ε5) (25)

and substituting 16ε
3

3! f ′′′(x1, . . . ,xi, . . . ,xn) given by equation 25 on equation 23, then
an O(ε4) approximation can be derived as follows:

∂ f
∂xi

(x1, ...,xn) =
1
3
· [− f (x1, ...,xi+2ε, ...,xn)+ f (x1, ..,xi−2ε, ...,xn)]

4ε

+
4
3
· f (x1, ..,xi+ ε, ...,xn)− f (x1, ..,xi− ε, ...,xn)

2ε
+O(ε4)

(26)


