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Abstract. Optimization based sizing methods allow automating the synthesis of
analog circuits. Automated analog circuit synthesis techniques depend on fast
and reliable estimation of circuit performance. This paperpresents a highly ac-
curate method of estimating performances by constructing models of the circuit
matrix instead of the traditionally used performance models. Device matching
in analog circuits is utilized to identify identical elements in the circuit matrix
and reduce the number of elements to be modeled. Experimentsconducted on
benchmark circuits demonstrate the effectiveness of the method in achieving cor-
rect performance prediction. Results show that the performances can be predicted
within a mean error of 0.1% compared to a SPICE simulation. Techniques such
as hashing and near neighbor searches are proposed to expedite the matrix model
evaluation procedure. These techniques avoid recomputations by saving previ-
ously visited solutions. The procedure is used for synthesizing analog circuits
from various specifications such as performance parameters, frequency response.
The proposed method gives accurate results for synthesis for various types of
circuit specifications.

1 Introduction

Fast and accurate sizing of analog circuits has been a challenging problem in the EDA
industry. Circuit sizing is the process of determining device dimensions and biasing of a
given topology to achieve the desired performance goals.Automated synthesis methods
are either knowledge based or optimization based. The former rely on expert knowledge
for generating automated design plans or design equations.The latter methods on the
other hand, construct sizing as a weighted cost minimization problem. Design variables
(v1,.., vm) including device lengths and widths, biasing sources are identified for the
circuit being sized. The design variable values that minimize the weighted performance
cost is accepted as the sizing solution. Thus, the sizing problem can be formulated as
follows:

minimize

N
∑

i=1

Weight[i] ∗ (Perf [i] − Perfspec[i]) (1)

where, Perf = F(v1, ...,vm)
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An optimization algorithm such as Simulated Annealing (SA)or Genetic Algorithm
(GA) proposes device sizes and bias from a search range and the evaluator verifies if
the performance goal is met. The evaluator has to be both fastand accurate. Spice simu-
lation, symbolic analysis and regression models have been used by researchers for per-
formance evaluation. Spice simulation is the most accuratebut requires a large runtime.
Using symbolic analysis provides a faster alternative but suffers from term explosion
for larger circuits. With macromodels, the relation between the design variables and
circuit performance is captured by a black box abstraction.These evaluate much faster
than direct simulation and can achieve speedy synthesis. However, the performance pa-
rameters are extremely difficult to model. Macromodels can suffer from inaccuracies
and research efforts are directed at using complex modelingstrategies to achieve good
accuracy.

2 Related Work

This section reviews some of the methods proposed for optimization based sizing of
analog circuits in recent years. Krasnickiet al. [1, 2] propose a sizing flow with a SPICE
level simulator for predicting the circuit performance. Although, using a simulator gives
highly accurate results, it proves expensive in terms of runtime. Symbolic analyzers
used for performance prediction are also highly accurate aswell as faster than spice [3,
4]. However, the limitation of symbolic models is the exponential increase of symbolic
terms with circuit size making them less scalable.

Performance macromodeling has emerged as faster sizing technique compared to
exact spice-like optimization approaches. Here, data for some chosen performance pa-
rameters is gathered at a number of sample points in the circuit design space. Regres-
sion models are then developed for each performance parameter. During sizing, these
fast evaluating regression models are used instead of simulation to speed up the synthe-
sis process. Wolfeet al. [5], Doboli et al. [6] used neural networks for regressing over
performance parameters. Support Vector Machines were usedfor the same by Kielyet
al. [7], Bernanandiniset al. [8] and Dinget al. [9]. Other techniques used for modeling
include adaptive splines [10, 11], boosted regressors [12]. A review of several perfor-
mance modeling methods proposed in recent years can be foundin [13, 14].

3 Introduction to Circuit Matrix Models

To obtain performance parameters of an analog circuit at a given point in the search
space, the system matrix of the circuit is generated. This matrix, also called the cir-
cuit matrix, is derived based on the Modified Nodal Analysis (MNA) formulation. The
circuit matrix can be represented as follows:

(G + sC)x = B;
y = LT x

here,G: conductance submatrix,C: susceptance submatrix,B: input vector,L: out-
put vector,x: unknown state vector,y: output vector



Accurate Performance Estimation using Circuit Matrix Models 3

Pre-defined MNA stamps for all circuit elements allow circuit matrix generation to
be quite straightforward. The MNA stamp of a mosfet is written in terms of its small
signal values such as transconductance (gm), output conductance (gds), capacitance
(cgs, cgd, cgb) etc., whereas for other circuit elements stamps are in terms of the com-
ponent values. The small signal values of mosfets are obtained by linearizing the circuit
around the operating point. The circuit matrix is solved to obtain the frequency re-
sponse of the circuit. Performance parameters such as the low frequency gain, Unity
gain frequency (UGF), Gain Margin (GM), Phase Margin (PM) are calculated from
the frequency response. In simulation based synthesis, thespice engine generates and
solves the circuit matrix. Macromodeling approaches use fast evaluating models and
eliminate the use of spice. As shown in fig. 1 macromodeling ispossible attwo places
in the synthesis flow:

1. Modeling the performance parameters
2. Modeling the circuit matrix
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Fig. 1. (a) Performance Modeling Approach (b) Matrix Modeling Approach

Most of the existing macromodeling techniques use the first approach i.e. they
model the performance parameters directly. Such methods greatly concentrate on the
performance estimation speed, but suffer a tradeoff with accuracy. This paper presents
an alternative method of estimating performance characteristics of linear analog cir-
cuits by constructing a model of the circuit matrix. The advantage, as will be seen, is
that the matrix can be very accurately modeled even with simpler modeling approaches
such as multivariate polynomial regression. Since it is possible to accurately estimate
performance values, true design convergence is obtained bythis method.

Performance is not directly modeled but it is calculated from the matrix model.
Although this requires some extra computation time, the speed loss is not significant
and is offset by the gain in accuracy and advantage of true convergence. The matrix
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model generation time is dependent on the circuit size. We have significantly reduced
the number of models to be built by utilizing device matchingproperties of analog
circuits. When matrix models are used in optimization basedsynthesis, partial model
evaluation is done to speed up the matrix computation in successive iterations.

4 Comparison of Circuit Matrix Models and Performance Models

Performance estimation of analog circuits can use either system level models or perfor-
mance level models. It is known that the relation between performance parameters such
as UGF, PM and device sizes is extremely nonlinear [15, 5]. Sophisticated modeling ap-
proaches such as posynomials, neural networks are needed for modeling these severely
nonlinear responses. However, these approaches too give significant errors [13]. We
have observed that system matrix elements have lesser nonlinearity and can be accu-
rately modeled.
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Fig. 2.Phase Margin vs. Device Width of OTA

Consider the operational Transconductance Amplifier (OTA)in fig. 4(a) as an ex-
ample. We generated plots of performance parameters against device sizes and matrix
elements against device sizes. Figures 2, 3 are representative plots of performance (PM)
and matrix element (gds M4). We can intuitively state from the figures that the matrix
element is less nonlinear. The qualitative observation that matrix elements have less
nonlinearity is now backed with two quantitative measures:

1. entropy of response curves
2. variance of local differentials

Entropy measures the complexity of a response curve [16], higher the entropy more
complex the response. Entropy is calculated by definition from [17]. Variance of local
first order differentials measures smoothness of a response, with lesser variance indicat-
ing greater smoothness. A response that has low entropy and is smooth is less complex
to model. Worst case entropy and local variance values amongall matrix elements is
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Table 1.Entropy and Local Differential Variation of OTA

Response Variable Variance of Local Differen-
tial

Entropy

Matrix Element 0.0316 0.8565
(Worst Case)
Gain 0.0369 0.8072

UGF 0.0422 0.7076

Gain Margin 0.2318 1.5674

Phase Margin 0.4248 3.8017

Results are on a dataset of 2000 points

shown in Table 1. The table also shows the entropy and local variance for performance
parameters. Phase and Gain Margins have entropy and local variance an order greater
than the matrix elements. From these qualitative and quantitative measures we can infer
that matrix elements are less nonlinear and can be modeled with greater accuracy than
their performance counterparts.
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Fig. 3. Matrix Element vs. Device Width of OTA

5 Modeling Methodology

The matrix elements show a linear or curvilinear variation with respect to design vari-
ables. We model the response matrix by polynomial regression. The input variables of
the model, usually the transistor widths, are normalized ona [0,1] range using eq.( 2),
since for polynomial regression it is important that higherorder terms do not have high
collinearity with lower order terms [18].

xtransformed =
x − xmin

xmax − xmin

(2)
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The response is modeled using a least squares (LS) polynomial fit given by the
following equation:

Y (x1...xn) = β0 + β1x1 + .. + βnxn + β11x
2

1 + β12x1x2 + .. (3)

(whereβis are coefficients of the polynomial fit.)

It is observed that the capacitance sub-matrix terms are highly collinear with re-
spect to the design variables, and lower order polynomials are sufficient for modeling
them. The conductance sub-matrix containing terms such asgm, gds etc are more non-
linear and are modeled by higher order polynomials. Once theresponse model within
acceptable error limits is obtained by a LS fit, the regression coefficients are saved. The
response at any unknown design point within the model boundscan now be predicted
by simply plugging the input variable values in the model given by eq.( 3). This makes
response prediction extremely fast.

5.1 Circuit Matrix Generation

The first step in matrix macromodeling is generation of the circuit matrix. Subsequently
values for the matrix are obtained in the design space and thematrix is modeled. Since
we want to model the circuit matrix in terms of its elements, we would like to reduce
the number of matrix elements to be modeled to as few as possible. To enable this
reduction, we take advantage of:

– matched element identification
– reverse element identification
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Fig. 4. (i) OTA schematic (ii) Actual vs. Modeled Frequency Response of OTA

In the OTA circuit fig 4, we can see that the transistor pairsM0 − M1, M2 −

M3, M4 − M5 andM6 − M7 are matched. Using the half circuit concept [19] we
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know that the small signal values of the matched pairs will beequal. Thus, if the matrix
elements are linear combinations of small signal values of matched elements, even these
matrix elements will be identical. As a simple example, in the OTA the pairsM0−M1
andM2 − M3 are matched andgm0 = gm1 andgm2 = gm3. If the circuit matrix
has two elements, one beinggm0 + gm2 and the other beinggm1 + gm3, we know
that these two elements will always have the same value. Thusa single model will be
sufficient for both these matrix elements. With the MNA formulation we have seen that
such identical elements occur at many places in the circuit matrix.

It is also observed that in the MNA matrix, some elements appear only with a re-
versal of polarity. For example, one matrix element isgm4 and the other is−gm4. It
is possible to use a single model for elements that occur withopposite signs. Thus, we
observed two properties of the circuit matrix elements which will help us reduce the
number of elements to be modeled.

When the circuit matrix is generated through its MNA formulation, the matrix coef-
ficients are first generated in a symbolic form to identify identical and reverse polarity
elements. For our benchmarks, the number of non-zero coefficients in the original ma-
trix versus the number of coefficients that need modeling after reduction is depicted in
Table 2. The achievable reduction depends on the topology and the number of matched
elements.

Table 2.Reduction of Matrix Elements

Benchmark Original Matrix
Elements

Elements after Re-
duction

Percentage Reduc-
tion

TSO 43 24 44

OTA 39 14 64

Differential Ampli-
fier

145 61 58

5.2 Data Generation and Modeling

As with any modeling approach, we first need to generate raw data on which the model
will be built. The data is obtained by performing a spice operating point analysis at a
number of design points and storing values of circuit matrixelements. We have used
random numbers drawn on a uniform distribution of the deviceranges to sample the en-
tire design space. About 2000 random data points are sampledfor circuits with smaller
design space such as the two stage amplifier, OTA and about 4000 points for circuits
such as the differential amplifier with a larger design space. We have used high or-
der polynomial response surface models for the circuit matrix as these give adequate
accuracy.

For polynomial models it is important to choose the order appropriately since choos-
ing a lower order than necessary will give an erroneous model, whereas choosing a
higher order will cause overfitting. In our benchmark circuits we find that polynomials
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Table 3.Modeling Accuracy for OTA

Matrix Ele-
ment

Polynomial
Model Order

Max Error
(%)

Mean Error
(%)

Std Dev (%)

C11 2 0.0667 0.0129 0.0094

C13 2 0.0439 0.0107 0.0085

C16 3 0.0467 0.0122 0.0089

C33 3 0.0908 0.0153 0.0155

C35 1 0.0409 0.0102 0.0085

C55 1 0.0430 0.0104 0.0081

C66 3 0.0488 0.0115 0.0087

G11 2 0.0641 0.0179 0.0119

G13 6 0.2016 0.0207 0.0266

G15 6 0.1879 0.0198 0.0252

G51 7 0.3574 0.0602 0.0508

G55 6 0.1888 0.0196 0.0254

G61 4 0.1423 0.0202 0.0192

G66 4 0.1256 0.0268 0.0206

with order 8 and beyond tend to overfit. We predefine the maximum order as 7 for our
models. The model error is calculated using eq.( 4). We definean error of 0.5% as the
allowable model error.

Starting with a linear model, if the model error is less than the allowable error, that
order is chosen, else we fit a polynomial with one higher order. This is done till the
maximum order of 7 is reached. In some cases, increasing the order, gives very little
return in terms of error reduction (the adjustedR2 regression criterion), in which we
use a lower order model to avoid complexity. Algorithm 1 shows the entire modeling
procedure. Table 3 shows the modeling accuracy for each matrix element of the OTA
matrix. The frequency response of the OTA with the original system matrix versus the
modeled matrix at a random design point is shown in fig. 4. It isseen that the two
frequency responses match extremely well.

ModelError =

∣

∣

∣

∣

ActualV alue − PredictedV alue

ActualV alue

∣

∣

∣

∣

∗ 100% (4)

After the model has been generated using sample data, the next step is model vali-
dation. Validation is necessary to ensure that the regression model obtained holds good
for the entire design space and not just the sample data used to build the model. Valida-
tion of the model involves assessing the effectiveness of the model against an indepen-
dent set of data and is essential if confidence in the model is to be expected [20]. For
the purpose of validation we generate an independent set of random data points, 1000
data points for smaller circuits and 2000 points for larger circuits. The validated matrix
model is used for estimating the performance of the analog circuit.



Accurate Performance Estimation using Circuit Matrix Models 9

Algorithm 1 Generate MatrixModel
Input: circuit.spice
Output: regression coefficients for all matrix elements
Generate System Matrix();
Identify Unique Elements();
Generate Data();
∀ Unique Elements do:
order = 1;
done = false;
while (!done)do

polyfit(response, variables, order);
Error(order)= Calc Model Error(order);
if (error(order)<= max allowed err)then

SaveRegCoeffs(element);
done = true; break;

end if
if ((error(order)-error(order-1))<= 1%) then

SaveRegCoeffs(element);
done = true; break;

end if
if (order<= max allowed ord)then

Increment(order,1);
else

SaveRegCoeffs(element);
done= true;

end if
end while
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6 Experiments and Results

We have used three benchmark circuits: the two stage amplifier (TSO), the operational
transconductance amplifier (OTA) and the high gain differential amplifier (DA) for test-
ing the accuracy of our models. The TSO [5] is a 8 transistor circuit with five design
variables (fig. 5), the OTA is a 9 transistor circuit with fourvariables (fig. 4)and the
differential amplifier [21] is a 33 transistor circuit with five variables (fig. 6). Design
space reduction was done as explained in [5] to obtain the design variables. The design
variables and their ranges used for the experiments (Table 4) are selected similar to
earlier published performance macromodeling work of [5] toenable a comparison of
results for the two methods. The design variable ranges are such that all design points
lie in a valid pocket i.e. all transistors are in saturation in the given range.
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Fig. 5. (i) TSO schematic (ii) Actual vs. Modeled Frequency Response of TSO

Operating point analysis is done using SynopsysR©Hspice and values for the ele-
ments of the matrix are obtained. For generating and evaluating the polynomial regres-
sion models the MatlabR©Statistics Toolbox running on a 1.7GHz PentiumR©M with
512 MB RAM is used.

Table 5 shows the time required to build the models and the time to estimate per-
formance values for a given size. Table 6 shows the maximum matrix modeling errors
for the benchmarks. It is seen that the elements are modeled very accurately with the
maximum error about 0.5-4%. Figures 5, 7 compare the ac frequency response obtained
from actual circuit matrix and the modeled circuit matrix for the TSO and Differential
amplifier for a randomly chosen circuit size. The modeled response matches the actual
response extremely well. We compare our model building and estimation time with a
performance macromodeling approach [9] that uses support vector machines. As per-
formance is directly modeled in the second case the estimation time is lower, but the
maximum error is 10.1%.
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Table 4.Design variable ranges for Benchmarks

Benchmark Mosfet Count Number of
Variables

Ranges

TSO 8 5 M1-M5,M7:20-80um, Cc:2-
10pF, l:2um

OTA 9 4 M2-M5:20-200um
M0,M1,M6,M7:20-35um,
l:2um

DA 33 5 M1-M10, 4*M25, 4*M26,
2*M23, 2*M27, 2*M28,
2*M32: 40-200um, Cc:
10-50pF, l: 4um

Table 5.Modeling and Estimation Time

Benchmark Modeling Time Performance (All) Estima-
tion Time

Matrix Modeling Approach
TSO 3.7min 0.033sec

OTA 16sec 0.021sec

DA 31.7min 0.104sec

Competing Approach [9]
TSO 131.15min 0.01sec

OTA 50.085min 0.001sec

The performance parameters are calculated from the generated matrix models and
results are compared with a spice simulation. Table 7 shows the maximum, mean and
standard deviation of the performance estimation error forall benchmarks. The maxi-
mum error with matrix models is about 3% and the highest mean error is about 0.1%.
To enable a comparison with performance macromodeling, polynomial regression mod-
els were built on the performance parameters directly. Table 8 comprises the results of
directly modeling the performance. As would be expected, the errors are higher. The
TSO and Differential Amplifier circuits are identical to thework of [5] which uses neu-
ral networks for performance estimation. The maximum performance estimation error
in [5] is 45% and highest mean error is about 5%.

As the circuit matrix is modeled, the time for an operating point analysis is saved
which can be upto 70% of the total analysis time [3]. Althoughthe performance is not

Table 6.Worst Case Validation Error

Benchmark Validation Dataset Size Worst case Error (%)
TSO 1000 1.8

OTA 1000 0.51

DA 2000 4.37
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Table 7.Performance Estimation Accuracy with Proposed Approach

Benchmark Max Error (%) Mean Error (%) Std Dev
Two Stage Op-Amp

Gain 0.3231 0.0301 0.0370

UGF 0.6234 0.0544 0.0623

GM 1.2944 0.0900 0.1220

PM 0.7848 0.0521 0.0833

CMRR 0.7372 0.0668 0.0818

Operational Transconductance Amplifier
Gain 0.1555 0.0134 0.0168

UGF 0.3111 0.0232 0.0320

GM 0.3199 0.0363 0.0367

PM 1.2864 0.0597 0.1068

Differential Amplifier
Gain 3.2670 0.1214 0.1490

UGF 2.2863 0.1473 0.1820

PM 0.7970 0.0648 0.0666

available directly and needs an extra step for its computation, the performance calcula-
tion time is much smaller than a spice evaluation. The added advantage with our method
is that since the entire ac behavior is modeled, any related performance can be evalu-
ated. Thus, if a performance parameter is required, it simply needs to be evaluated from
the matrix model and a new model need not be generated for thatparameter.

7 Synthesis Using Circuit Matrix Models

This section describes circuit sizing using the developed circuit matrix models. An op-
timization algorithm such as Simulated Annealing (SA) usedfor sizing works by per-
turbing the current solution to propose a new solution. Withincremental perturbation a
single parameter of the current solution is varied in every iteration. An important obser-
vation is that a design parameter affects only some elementsof the circuit matrix. Thus
during an SA move only the affected matrix elements are re-evaluated.

Synthesis is explained using the Differential Amplifier as an example. The Differ-
ential Amplifier has61 matrix elements and5 design variables. The design variables are
four mosfet widths(w1 − w4) and capacitanceCc. The correlation coefficient between
matrix elements and design variables is calculated. If the pvalue of the correlation is
less than0.1, the correlation is considered significant. Based on the p values it is seen
thatw1 affects8 matrix elements,w2 affects30, w3 andw4 affect30 and36 elements
respectively whereas11 elements are dependent onCc. Thus, with a maximum of36
elements are evaluated whenw4 changes and only8 elements need to be evaluated if
w1 changes.

During synthesis, new solutions are proposed by incrementally updating the current
solution. Based on the design variable that is perturbed, the affected matrix elements
are calculated from their models. The circuit matrix is thensolved for various values
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Table 8.Estimation Accuracy by Direct Performance Modeling

Benchmark Polynomial
Order

Max Error
(%)

Mean Error
(%)

Std Dev

Two Stage Op-Amp
Gain 4 0.2523 0.0285 0.0272

UGF 7 14.06 1.4307 1.2449

GM 5 3.4894 0.6363 0.4933

PM 6 2.6748 0.3855 0.3463

CMRR 5 0.4704 0.0512 0.0555

Operational Transconductance Amplifier
Gain 5 0.7582 0.0784 0.0878

UGF 6 8.4583 1.3731 1.0731

GM 7 7.1955 0.6016 0.7836

PM 7 3.3e3 186.31 411.50

Differential Amplifier
Gain 4 6.2527 1.2365 1.1651

UGF 2 35.8732 9.9997 9.3995

PM 4 0.5234 0.0490 0.0567

of the frequency variable ’s’. This gives the frequency response for the circuit. Values
such as gain, bandwidth are calculated from the frequency response and compared with
the given specification. The sizing algorithm terminates when a solution satisfying the
required specifications is found or if no solution can be found in reasonable amount
of time. Circuit sizing results for the Differential Amplifier by Simulated Annealing
are given in Table 9. The target specifications are given in column 1. Column 2 gives
the predicted values for performance at the sizing solution, and column 3 is the actual
spice verified values for the sizing solution. It can be seen that the predicted and actual
performance values match very well. Thus circuit matrix models are very accurate and
can be used for performance prediction during synthesis.

Table 9.Differential Amplifier Synthesis with Partial Model Evaluation

Performance Specification Estimated Actual
Gain≥ 78 dB 78.86 79.04

UGF≥ 25 MHz 25.38 24.95

Phase Margin≥ 88 Deg 88.43 88.72

8 Techniques for Faster Synthesis

This section describes two techniques to speed up the synthesis of analog circuits us-
ing circuit matrix models. Both techniques are based on reducing the time required to
evaluate matrix elements from their models during each iteration of the synthesis run.
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8.1 Speedup by Hashing

Here we store computed matrix elements in hash tables which are fetched when re-
quired to reduce model evaluation time. The SA algorithm used for synthesis starts
with an initial random sizing solution and continuously makes incremental changes to
the solution till the target specifications are satisfied. Although exactly same solutions
are rarely encountered during the synthesis run, sub-solutions often get repeated. For
example, for a circuit with 4 design variables two solutionsproposed at different SA
iterations arev1 = 10,v2 = 20,v3 = 30,v4 = 40 andv1 = 10,v2 = 40,v3 = 60,v4 = 40.
Although, the solutions proposed are different, the sub-solution v1 = 10,v4 = 40 is the
same in both cases. Thus, if we save matrix elements dependent on v1, v4 computed at
the earlier iteration, they can be simply fetched and model evaluation time is saved.

Each matrix element is a function of a subset of design variables. We group all ma-
trix elements that depend on the same design variable subsetinto a class calledhash
class. One hash table is constructed for each hash class. The sub-solution and the corre-
sponding matrix element values for each hash class are stored in the hash table. During
synthesis, the hash table is queried to check if the sub-solution was encountered previ-
ously. If the sub-solution was visited earlier, all the hashclass elements can be obtained
at once from the hash table, otherwise they are evaluated from theirmodels and stored.

Thus, the steps involved in using hash tables for faster model evaluation are:

– group matrix elements into hash classes
– initiate one hash table for each hash class
– retrieve matrix elements from the hash table when possible

For example, the 61 matrix elements of Differential Amplifier circuit are divided
into 9 different hash classes. The largest hash class has 16 matrix elements while the
smallest has 1 element. Hash tables are constructed using a R-B tree data structure [22].
Both insertion and querying is performed in O( log n ) time. Using hash tables to avoid
matrix element recomputation gives an average synthesis speedup of 2.8x measured
over a set of 35 synthesis experiments of the DA. Details of the procedure of using
hashing for expedited synthesis and further experimental results can be found in [23].

8.2 Speedup by Near Neighbor Searches

Hash tables store and reuse matrix element values, thus reducing the time required to
evaluate the matrix from its element models. Hashing is useful only when a newly pro-
posed sub-solutionexactly matches a previously visited one. However, during a synthe-
sis run there may be many sub-solutions close to previously visited solutions without
matching exactly. In such cases, computing values of matrixelements incrementally
from a close (neighboring) previously visited design pointhelps in saving matrix model
evaluation time.

For example, consider a matrix element M dependent on variablesv1, v2, v3, there-
fore M = f(v1, v2, v3). A first order Taylor series expansion for M is given by:

dM =
∂M

∂v1

· dv1 +
∂M

∂v2

· dv2 +
∂M

∂v3

· dv3 (5)



16 Almitra Pradhan and Ranga Vemuri

If the value of M is already calculated at some design point (v1 = x,v2 = y,v3 = z), its
value can be quickly obtained at the neighboring design point (v1 = x + ∆x, v2 = y + ∆y,
v3 = z +∆z) using eq.( 5). Thus instead of evaluating a higher order polynomial model,
the element evaluation is done using the linear equation above making the computation
faster. For all design points visited during synthesis, thevalue of the computer matrix
element M and its associated differentials∂M/∂v are stored and reused to compute
matrix value at many neighboring points. Thus, computing matrix element values using
the above method require the following steps:

– find a previously evaluated neighbor of the currently proposed sub-solution
– obtain the matrix element value and the value of differentials at the neighboring

point
– calculate the matrix element value at the new point using eq.( 5)

A good neighbor searching algorithm is essential for the success of this method.
An optimal (near) neighbor search algorithm proposed by Arya et al. [24] can be suc-
cessfully applied for this purpose. Since only few of the matrix elements require actual
evaluation from their models the speedup by this method is much more than hashing
alone. For the Differential Amplifier synthesis, computingmatrix elements incremen-
tally from its neighbors results in a speedup of about 13x over simple matrix element
evaluation whereas with hashing it was only 2.8x. Further details of this method and
experimental results can be found in [25].

9 Synthesizing circuit with different specifications

In the case of performance macromodels, performance data isgathered for certain pa-
rameters. Models are developed for these parameters and areused for synthesis. Using
models makes performance evaluation faster than simulation and expedites the synthe-
sis process. However, only the parameters for which performance models have been de-
veloped can be included in the synthesis. On the other hand, with circuit matrix models
the target specifications need not be known beforehand. Performance parameter values
required are calculated from the frequency response obtained from solving the circuit
matrix. This is demonstrated with a band pass filter circuit.

9.1 Additional specifications for synthesis

Fig. 8 shows a 2nd order band pass filter with a Sallen Key implementation. Design
variables identified for the filter synthesis are widths of mosfets M9, M7, resistor R3,
capacitors C1, C2. The filter is to be synthesized with targetspecifications for gain,
bandwidth and center frequency. The synthesis engine proposes sizes for design vari-
ables. For each set of sizes, the circuit matrix is obtained from evaluating the element
models. Substituting the ’s’ variable with frequency values gives the frequency response
of the circuit. The values of gain, bandwidth and center frequency are calculated from
the frequency response till a sizing solution meeting the specifications is obtained. The
synthesis results are shown in table 10.
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Fig. 8. (i) Amplifier used in bpf (ii) Active band pass filter schematic

Suppose, the filter has to be synthesized for another application where target spec-
ification include FP1 (frequency at the edge of the start of the pass band), FP2 (fre-
quency at the edge of the end of the pass band) in addition to gain, bandwidth and
center frequency. With circuit matrix models, synthesizing circuit with these additional
specifications is simple. The cost function is changed to include the additional specifi-
cations. Both FP1 and FP2 are calculated from the frequency response along with the
other specifications and synthesis procedure is the same as before. Table 10 shows the
synthesis results.

Table 10.Synthesis results for the band pass filter

Performance Specification Estimated Actual
Gain≥ 14 dB 15.18 15.44

Bandwidth≥ 2000 Hz 2409 2417

Center Frequency≥ 2500 Hz 2590 2592

FP1≥ 200 Hz 273 273

FP2≤ 15000 Hz 12109 12103

9.2 Alternate forms of target specifications

With circuit matrix models, circuits can be synthesized with alternate forms of target
specifications and not necessarily performance parametersalone. In the next experi-
ment, we synthesize the filter circuit with the specifications given in the form of a fre-
quency response instead of parameters such as gain, bandwidth. The input specifications
are in terms of the magnitude response at different frequencies (phase response spec-
ifications can be added similarly). The cost function is changed to include frequency
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response parameters instead of performance parameters. The rest of the synthesis pro-
cess remains the same. Figure 9 shows the synthesis results.The blue line shows the
specified response. The red dots show the frequency responseachieved by the target
circuit and the green dots are the SPICE frequency response for the sized circuit. Thus
synthesis is possible with alternate specifications only bychanging the cost function.

10
1

10
2

10
3

10
4

10
5

−10

−5

0

5

10

15

20
Magnitude Response for the filter

 M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

Specified Response
Achieved
Spice Verified

Fig. 9.Synthesizing filter from Frequency Response

10 Conclusion

Two methods for performance estimation of analog circuits,performance modeling and
circuit modeling, are compared. It is demonstrated that thecircuit matrix can be accu-
rately modeled using polynomial regression. The number of coefficients that need to
be modeled are significantly reduced by taking advantage of transistor matching. The
accuracy of the proposed method is validated through experiments on three operational
amplifier benchmarks. Techniques such as hashing and near neighbor searches can sig-
nificantly speed up the synthesis process. Using circuit matrix models, synthesis can
be performed for different types of specification such as performance parameters or
frequency response.
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