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Abstract. Optimization based sizing methods allow automating theh®sis of
analog circuits. Automated analog circuit synthesis tepies depend on fast
and reliable estimation of circuit performance. This pgm@&sents a highly ac-
curate method of estimating performances by constructiodets of the circuit
matrix instead of the traditionally used performance medBlevice matching
in analog circuits is utilized to identify identical elemsrin the circuit matrix
and reduce the number of elements to be modeled. Experimenthicted on
benchmark circuits demonstrate the effectiveness of thieadeén achieving cor-
rect performance prediction. Results show that the pedoges can be predicted
within a mean error of 0.1% compared to a SPICE simulatioohfigjues such
as hashing and near neighbor searches are proposed totexpednatrix model
evaluation procedure. These techniques avoid recompuogaby saving previ-
ously visited solutions. The procedure is used for syniiegianalog circuits
from various specifications such as performance paramétegsiency response.
The proposed method gives accurate results for synthesigafmus types of
circuit specifications.

1 Introduction

Fast and accurate sizing of analog circuits has been a nfalig problem in the EDA
industry. Circuit sizing is the process of determining dewlimensions and biasing of a
given topology to achieve the desired performance goaterAated synthesis methods
are either knowledge based or optimization based. The fareheon expert knowledge
for generating automated design plans or design equafidrweslatter methods on the
other hand, construct sizing as a weighted cost minimimgtioblem. Design variables
(v1,.., vm) including device lengths and widths, biasing sources deatified for the
circuit being sized. The design variable values that minétihe weighted performance
cost is accepted as the sizing solution. Thus, the sizingleno can be formulated as
follows:

N
minimize Z Weight[i] « (Perf[i] — Per fspecli]) 1)

=1

where, Perf = R, ...,v,,)
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An optimization algorithm such as Simulated Annealing (8AJenetic Algorithm
(GA) proposes device sizes and bias from a search range areV#tuator verifies if
the performance goal is met. The evaluator has to be bothrfiasaccurate. Spice simu-
lation, symbolic analysis and regression models have beedh oy researchers for per-
formance evaluation. Spice simulation is the most accimatteequires a large runtime.
Using symbolic analysis provides a faster alternative biffess from term explosion
for larger circuits. With macromodels, the relation betwdlee design variables and
circuit performance is captured by a black box abstraclitrese evaluate much faster
than direct simulation and can achieve speedy synthesigettr, the performance pa-
rameters are extremely difficult to model. Macromodels a#fes from inaccuracies
and research efforts are directed at using complex modstrategies to achieve good
accuracy.

2 Related Work

This section reviews some of the methods proposed for opditioin based sizing of
analog circuits in recent years. Krasniekal. [1, 2] propose a sizing flow with a SPICE
level simulator for predicting the circuit performancett#dugh, using a simulator gives
highly accurate results, it proves expensive in terms ofims Symbolic analyzers
used for performance prediction are also highly accuratecdisas faster than spice [3,
4]. However, the limitation of symbolic models is the expoti@l increase of symbolic
terms with circuit size making them less scalable.

Performance macromodeling has emerged as faster sizihgitee compared to
exact spice-like optimization approaches. Here, datadoreschosen performance pa-
rameters is gathered at a number of sample points in theitoitesign space. Regres-
sion models are then developed for each performance pagarDetring sizing, these
fast evaluating regression models are used instead ofaiimnito speed up the synthe-
sis process. Wolfet al. [5], Doboli et al. [6] used neural networks for regressing over
performance parameters. Support Vector Machines werefasélte same by Kielyet
al. [7], Bernanandinigt al. [8] and Dinget al. [9]. Other techniques used for modeling
include adaptive splines [10, 11], boosted regressors [ 2¢view of several perfor-
mance modeling methods proposed in recent years can be iio{t@ 14].

3 Introduction to Circuit Matrix Models

To obtain performance parameters of an analog circuit av@ngpoint in the search
space, the system matrix of the circuit is generated. Thisixpalso called the cir-
cuit matrix, is derived based on the Modified Nodal Analy$iN@) formulation. The

circuit matrix can be represented as follows:

(G + sC)x = B;
y=L"x

here,GG: conductance submatri&;: susceptance submatri®; input vector,L: out-
put vector,z: unknown state vectog, output vector
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Pre-defined MNA stamps for all circuit elements allow citeuatrix generation to
be quite straightforward. The MNA stamp of a mosfet is writte terms of its small
signal values such as transconductange)( output conductance{s), capacitance
(cgs, cgd, cgd) etc., whereas for other circuit elements stamps are ing@frthe com-
ponent values. The small signal values of mosfets are adiy linearizing the circuit
around the operating point. The circuit matrix is solved htain the frequency re-
sponse of the circuit. Performance parameters such aswh&dquency gain, Unity
gain frequency (UGF), Gain Margin (GM), Phase Margin (PMy aalculated from
the frequency response. In simulation based synthesispilbe engine generates and
solves the circuit matrix. Macromodeling approaches use daaluating models and
eliminate the use of spice. As shown in fig. 1 macromodelimpissible atwo places
in the synthesis flow:

1. Modeling the performance parameters
2. Modeling the circuit matrix

‘ Search Space ‘ ‘ Search Space ‘
' !
(a) (b)
Sample Sample Circuit
Performance Matrix
Optimization i Model Model Circuit iOptimization
Engine Performance Matrix Engine
P
No l P No
Calculate
Performance
Yes Key: Yes
‘ S: Proposed Size '
P: Evaluated Performance

Fig. 1. (a) Performance Modeling Approach (b) Matrix Modeling Apach

Most of the existing macromodeling techniques use the fippr@ach i.e. they
model the performance parameters directly. Such methazglgrconcentrate on the
performance estimation speed, but suffer a tradeoff wittuaxy. This paper presents
an alternative method of estimating performance characteristics of linear apaio-
cuits by constructing a model of the circuit matrix. The attege, as will be seen, is
that the matrix can be very accurately modeled even with leinmpodeling approaches
such as multivariate polynomial regression. Since it issfiide to accurately estimate
performance values, true design convergence is obtaingddsnethod.

Performance is not directly modeled but it is calculatedrfriine matrix model.
Although this requires some extra computation time, thedpess is not significant
and is offset by the gain in accuracy and advantage of trueecgance. The matrix
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model generation time is dependent on the circuit size. We Bmnificantly reduced
the number of models to be built by utilizing device matchprgperties of analog
circuits. When matrix models are used in optimization bagadhesis, partial model
evaluation is done to speed up the matrix computation inessiee iterations.

4 Comparison of Circuit Matrix Models and Performance Models

Performance estimation of analog circuits can use eithetesylevel models or perfor-
mance level models. It is known that the relation betweefopmance parameters such
as UGF, PM and device sizes is extremely nonlinear [15, §jh&ticated modeling ap-
proaches such as posynomials, neural networks are neededdeling these severely
nonlinear responses. However, these approaches too gniicant errors [13]. We
have observed that system matrix elements have lessenearity and can be accu-
rately modeled.

Normalized Phase Margin
o o ° o o ° o o
5 &5 2 & & S &5 &

°

o . . . . . . . .
20 40 60 80 100 120 140 160 180 200
Mosfet width in um

Fig. 2. Phase Margin vs. Device Width of OTA

Consider the operational Transconductance Amplifier (O&)g. 4(a) as an ex-
ample. We generated plots of performance parameters agavise sizes and matrix
elements against device sizes. Figures 2, 3 are reprasemiats of performance (PM)
and matrix elementyds_M4). We can intuitively state from the figures that the matrix
element is less nonlinear. The qualitative observation itietrix elements have less
nonlinearity is now backed with two quantitative measures:

1. entropy of response curves
2. variance of local differentials

Entropy measures the complexity of a response curve [1ghdnithe entropy more
complex the response. Entropy is calculated by definitiomff17]. Variance of local
first order differentials measures smoothness of a respaitbdesser variance indicat-
ing greater smoothness. A response that has low entropysamidoth is less complex
to model. Worst case entropy and local variance values arabbmgatrix elements is
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Table 1.Entropy and Local Differential Variation of OTA

Response Variable Variance of Local Differen-|Entropy
tial

Matrix Element 0.0316 0.8565

(Worst Case)

Gain 0.0369 0.8072

UGF 0.0422 0.7076

Gain Margin 0.2318 1.5674

Phase Margin 0.4248 3.8017

Results are on a dataset of 2000 points

shown in Table 1. The table also shows the entropy and locainee for performance

parameters. Phase and Gain Margins have entropy and latahe@ an order greater
than the matrix elements. From these qualitative and giaéimé measures we can infer
that matrix elements are less nonlinear and can be modetadyvgater accuracy than
their performance counterparts.

o o

Normalized gds(M4)
°

o . . . . . . . .
20 40 60 80 100 120 140 160 180 200
Mosfet width in um

Fig. 3. Matrix Element vs. Device Width of OTA

5 Modeling Methodology

The matrix elements show a linear or curvilinear variatiathwespect to design vari-
ables. We model the response matrix by polynomial regras3ioe input variables of
the model, usually the transistor widths, are normalized ¢ 1] range using eq.( 2),
since for polynomial regression it is important that higbeter terms do not have high
collinearity with lower order terms [18].

T — Tmin
Ttransformed — (2)
Tmazx — Tmin
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The response is modeled using a least squares (LS) polyhétrgéazen by the
following equation:

Y(z1..20) = Bo + B121 + .. + Bun + P1127 + Broz122 + .. 3
(whereg;s are coefficients of the polynomial fit.)

It is observed that the capacitance sub-matrix terms at@yhimpllinear with re-
spect to the design variables, and lower order polynomralsafficient for modeling
them. The conductance sub-matrix containing terms sugimagds etc are more non-
linear and are modeled by higher order polynomials. Oncedbponse model within
acceptable error limits is obtained by a LS fit, the reg@ssbefficients are saved. The
response at any unknown design point within the model boaadsow be predicted
by simply plugging the input variable values in the modekgiby eq.( 3). This makes
response prediction extremely fast.

5.1 Circuit Matrix Generation

The first step in matrix macromodeling is generation of thewust matrix. Subsequently
values for the matrix are obtained in the design space anchétex is modeled. Since
we want to model the circuit matrix in terms of its elements, would like to reduce
the number of matrix elements to be modeled to as few as pes3ib enable this
reduction, we take advantage of:

— matched element identification
— reverse element identification

T Vdd Frequency Response (OTA)
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Fig. 4. (i) OTA schematic (ii) Actual vs. Modeled Frequency ResmoasOTA

In the OTA circuit fig 4, we can see that the transistor padifé — M1, M2 —
M3, M4 — M5 and M6 — M7 are matched. Using the half circuit concept [19] we
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know that the small signal values of the matched pairs wiktpeal. Thus, if the matrix
elements are linear combinations of small signal valuesat€hed elements, even these
matrix elements will be identical. As a simple example, ia @TA the paird/0 — M1
andM?2 — M3 are matched angim0 = gm1 andgm2 = gm3. If the circuit matrix
has two elements, one beigg.0 + gm?2 and the other beingm1 + gm3, we know
that these two elements will always have the same value. atsirsgle model will be
sufficient for both these matrix elements. With the MNA folation we have seen that
such identical elements occur at many places in the circaitix

It is also observed that in the MNA matrix, some elements appealy with a re-
versal of polarity. For example, one matrix elemengig4 and the other is-gm4. It
is possible to use a single model for elements that occuragposite signs. Thus, we
observed two properties of the circuit matrix elements Wwhigll help us reduce the
number of elements to be modeled.

When the circuit matrix is generated through its MNA forntida, the matrix coef-
ficients are first generated in a symbolic form to identifgridical and reverse polarity
elements. For our benchmarks, the number of non-zero cieetficin the original ma-
trix versus the number of coefficients that need modelingraftduction is depicted in
Table 2. The achievable reduction depends on the topologjjtennumber of matched
elements.

Table 2. Reduction of Matrix Elements

Benchmark Original  Matrix |Elements after RetPercentage Redug-
Elements duction tion

TSO 43 24 44

OTA 39 14 64

Differential Ampli-|145 61 58

fier

5.2 Data Generation and Modeling

As with any modeling approach, we first need to generate @& dn which the model
will be built. The data is obtained by performing a spice agiag point analysis at a
number of design points and storing values of circuit mattements. We have used
random numbers drawn on a uniform distribution of the dexécges to sample the en-
tire design space. About 2000 random data points are sarfgoledcuits with smaller
design space such as the two stage amplifier, OTA and abo0Otpiilats for circuits
such as the differential amplifier with a larger design spadée have used high or-
der polynomial response surface models for the circuit mas these give adequate
accuracy.

For polynomial models it is importantto choose the orderappately since choos-
ing a lower order than necessary will give an erroneous madetreas choosing a
higher order will cause overfitting. In our benchmark citswie find that polynomials
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Table 3.Modeling Accuracy for OTA

Matrix  Ele- |Polynomial Max Error [Mean  Error |Std Dev (%)
ment Model Order |(%) (%)

Ci 2 0.0667 0.0129 0.0094
Cis 2 0.0439 0.0107 0.0085
Cie 3 0.0467 0.0122 0.0089
Cs3 3 0.0908 0.0153 0.0155
C3s 1 0.0409 0.0102 0.0085
Css 1 0.0430 0.0104 0.0081
Ces 3 0.0488 0.0115 0.0087
G111 2 0.0641 0.0179 0.0119
Gis 6 0.2016 0.0207 0.0266
Gis 6 0.1879 0.0198 0.0252
Gs1 7 0.3574 0.0602 0.0508
Gss 6 0.1888 0.0196 0.0254
Ge1 4 0.1423 0.0202 0.0192
Ges 4 0.1256 0.0268 0.0206

with order 8 and beyond tend to overfit. We predefine the maxiratder as 7 for our
models. The model error is calculated using eq.( 4). We definerror of 0.5% as the
allowable model error.

Starting with a linear model, if the model error is less thiaa &llowable error, that
order is chosen, else we fit a polynomial with one higher ordiais is done till the
maximum order of 7 is reached. In some cases, increasingrtiez, @ives very little
return in terms of error reduction (the adjust®é regression criterion), in which we
use a lower order model to avoid complexity. Algorithm 1 skdhe entire modeling
procedure. Table 3 shows the modeling accuracy for eachxneément of the OTA
matrix. The frequency response of the OTA with the origiryatsm matrix versus the
modeled matrix at a random design point is shown in fig. 4. Bden that the two
frequency responses match extremely well.

ActualValue — PredictedV alue
ActualValue

Model Error = * 100%

(4)

After the model has been generated using sample data, thetepxs model vali-
dation. Validation is necessary to ensure that the regnessodel obtained holds good
for the entire design space and not just the sample data oedd the model. Valida-
tion of the model involves assessing the effectivenesseofritbdel against an indepen-
dent set of data and is essential if confidence in the modelle texpected [20]. For
the purpose of validation we generate an independent sandbm data points, 1000
data points for smaller circuits and 2000 points for largenuits. The validated matrix
model is used for estimating the performance of the analogiti
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Algorithm 1 Generate MatrixModel
Input: circuit.spice
Output: regression coefficients for all matrix elements
Generate_System_Matriz();
Identify_-Unique_Elements();
Generate_Datal();
V Unique Elements do:
order = 1;
done = false;
while (Idone)do
polyfit(response, variables, order);
Error(order)= Calc.ModeLError(order);
if (error(order)<= max allowed errthen
SaveReg Coeffs(element);
done = true; break;
end if
if ((error(order)-error(order-1)x= 1%)then
SaveReg Coeffs(element);
done = true; break;
end if
if (order<= max allowed ordthen
Increment(order,1);
else
SaveReg Coeffs(element);
done= true;
end if
end while
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6 Experiments and Results

We have used three benchmark circuits: the two stage amglif&0), the operational
transconductance amplifier (OTA) and the high gain diffee@éamplifier (DA) for test-
ing the accuracy of our models. The TSO [5] is a 8 transistaudi with five design
variables (fig. 5), the OTA is a 9 transistor circuit with fotariables (fig. 4)and the
differential amplifier [21] is a 33 transistor circuit witlivé variables (fig. 6). Design
space reduction was done as explained in [5] to obtain thgmlgariables. The design
variables and their ranges used for the experiments (Tgbéeedselected similar to
earlier published performance macromodeling work of [5¢t@able a comparison of
results for the two methods. The design variable rangesumfe that all design points
lie in a valid pocket i.e. all transistors are in saturatiottie given range.
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Fig. 5. (i) TSO schematic (ii) Actual vs. Modeled Frequency ResparfsTSO

Operating point analysis is done using Syno@¥tspice and values for the ele-
ments of the matrix are obtained. For generating and evatutite polynomial regres-
sion models the Matla®Statistics Toolbox running on a 1.7GHz Penti@il with
512 MB RAM is used.

Table 5 shows the time required to build the models and the torestimate per-
formance values for a given size. Table 6 shows the maximutribomaodeling errors
for the benchmarks. It is seen that the elements are modelydaecurately with the
maximum error about 0.5-4%. Figures 5, 7 compare the ac émyuresponse obtained
from actual circuit matrix and the modeled circuit matrix fbe TSO and Differential
amplifier for a randomly chosen circuit size. The modelegoase matches the actual
response extremely well. We compare our model building atichation time with a
performance macromodeling approach [9] that uses suppotbwmachines. As per-
formance is directly modeled in the second case the esbméitne is lower, but the
maximum error is 10.1%.
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Table 4. Design variable ranges for Benchmarks

Benchmark |Mosfet Count |Number of|Ranges
Variables

TSO 8 5 M1-M5,M7:20-80um, Cc:2-
10pF, I:2um

OTA 9 4 M2-M5:20-200um
MO0,M1,M6,M7:20-35um,
[:2um

DA 33 5 M1-M10, 4*M25, 4*M26,
2*M23, 2*M27, 2*MZ28,
2*M32:  40-200um, Ca:
10-50pF, |: 4um

Table 5. Modeling and Estimation Time

Benchmark Modeling Time Performance (All) Estima-
tion Time
Matrix Modeling Approach
TSO 3.7min 0.033sec
OTA 16sec 0.021sec
DA 31.7min 0.104sec
Competing Approach [9]
TSO 131.15min 0.01sec
OTA 50.085min 0.001sec

The performance parameters are calculated from the gedearatrix models and
results are compared with a spice simulation. Table 7 shbavsntaximum, mean and
standard deviation of the performance estimation erroafidoenchmarks. The maxi-
mum error with matrix models is about 3% and the highest mean & about 0.1%.
To enable a comparison with performance macromodelingnoohial regression mod-
els were built on the performance parameters directly.ef@domprises the results of
directly modeling the performance. As would be expected dirors are higher. The
TSO and Differential Amplifier circuits are identical to therk of [5] which uses neu-
ral networks for performance estimation. The maximum perénce estimation error
in [5] is 45% and highest mean error is about 5%.

As the circuit matrix is modeled, the time for an operatingnpanalysis is saved
which can be upto 70% of the total analysis time [3]. Althodigé performance is not

Table 6. Worst Case Validation Error

Benchmark Validation Dataset Size Worst case Error (%)
TSO 1000 1.8

OTA 1000 0.51

DA 2000 4.37
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Table 7. Performance Estimation Accuracy with Proposed Approach

Benchmark  [Max Error (%)  [Mean Error (%) [Std Dev
Two Stage Op-Amp
Gain 0.3231 0.0301 0.0370
UGF 0.6234 0.0544 0.0623
GM 1.2944 0.0900 0.1220
PM 0.7848 0.0521 0.0833
CMRR 0.7372 0.0668 0.0818
Operational Transconductance Amplifier
Gain 0.1555 0.0134 0.0168
UGF 0.3111 0.0232 0.0320
GM 0.3199 0.0363 0.0367
PM 1.2864 0.0597 0.1068
Differential Amplifier
Gain 3.2670 0.1214 0.1490
UGF 2.2863 0.1473 0.1820
PM 0.7970 0.0648 0.0666

available directly and needs an extra step for its compriathe performance calcula-
tion time is much smaller than a spice evaluation. The addedraage with our method
is that since the entire ac behavior is modeled, any relatefdpnance can be evalu-
ated. Thus, if a performance parameter is required, it Simpéds to be evaluated from
the matrix model and a new model need not be generated fopainameter.

7 Synthesis Using Circuit Matrix Models

This section describes circuit sizing using the developexdit matrix models. An op-
timization algorithm such as Simulated Annealing (SA) uk®dsizing works by per-
turbing the current solution to propose a new solution. Witlhemental perturbation a
single parameter of the current solution is varied in eviemation. An important obser-
vation is that a design parameter affects only some elenoéthg circuit matrix. Thus
during an SA move only the affected matrix elements are edueted.

Synthesis is explained using the Differential Amplifier asexample. The Differ-
ential Amplifier hasi1 matrix elements ang design variables. The design variables are
four mosfet width§w; — w,) and capacitanc€'.. The correlation coefficient between
matrix elements and design variables is calculated. If thalpe of the correlation is
less tharD.1, the correlation is considered significant. Based on thelyeegat is seen
thatw, affects8 matrix elementsw, affects30, ws andw, affect30 and36 elements
respectively whereasl elements are dependent 6. Thus, with a maximum o086
elements are evaluated when changes and onl§ elements need to be evaluated if
wi changes.

During synthesis, new solutions are proposed by increrfignfadating the current
solution. Based on the design variable that is perturbedaffected matrix elements
are calculated from their models. The circuit matrix is tisehved for various values
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Table 8. Estimation Accuracy by Direct Performance Modeling

Benchmark |Polynomial Max Error [Mean  Error |Std Dev
Order (%) (%)
Two Stage Op-Amp
Gain 4 0.2523 0.0285 0.0272
UGF 7 14.06 1.4307 1.2449
GM 5 3.4894 0.6363 0.4933
PM 6 2.6748 0.3855 0.3463
CMRR 5 0.4704 0.0512 0.0555
Operational Transconductance Amplifier
Gain 5 0.7582 0.0784 0.0878
UGF 6 8.4583 1.3731 1.0731
GM 7 7.1955 0.6016 0.7836
PM 7 3.3e3 186.31 411.50
Differential Amplifier
Gain 4 6.2527 1.2365 1.1651
UGF 2 35.8732 9.9997 9.3995
PM 4 0.5234 0.0490 0.0567

of the frequency variable ’s’. This gives the frequency e for the circuit. Values

such as gain, bandwidth are calculated from the frequersporese and compared with
the given specification. The sizing algorithm terminategmwh solution satisfying the
required specifications is found or if no solution can be fbimreasonable amount
of time. Circuit sizing results for the Differential Amplfi by Simulated Annealing

are given in Table 9. The target specifications are given lanan 1. Column 2 gives

the predicted values for performance at the sizing solyaod column 3 is the actual
spice verified values for the sizing solution. It can be sbanthe predicted and actual
performance values match very well. Thus circuit matrix gledgre very accurate and
can be used for performance prediction during synthesis.

Table 9. Differential Amplifier Synthesis with Partial Model Evatin

Performance Specification |Estimated Actual
Gain> 78 dB 78.86 79.04
UGF > 25 MHz 25.38 24.95
Phase Margin> 88 Deg 88.43 88.72

8 Techniques for Faster Synthesis

This section describes two techniques to speed up the sisthieanalog circuits us-
ing circuit matrix models. Both techniques are based onaieduthe time required to
evaluate matrix elements from their models during eachti@n of the synthesis run.
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8.1 Speedup by Hashing

Here we store computed matrix elements in hash tables wheclieeched when re-
quired to reduce model evaluation time. The SA algorithmdufee synthesis starts
with an initial random sizing solution and continuously reakincremental changes to
the solution till the target specifications are satisfiedh@dligh exactly same solutions
are rarely encountered during the synthesis run, subignibften get repeated. For
example, for a circuit with 4 design variables two solutigmsposed at different SA
iterations arey; = 10,v, = 20,v3 = 30,v4 = 40 andv; = 10,v5 = 40,v3 = 60,v4 = 40.
Although, the solutions proposed are different, the subtsm v; = 10,v4 = 40 is the
same in both cases. Thus, if we save matrix elements depemden v, computed at
the earlier iteration, they can be simply fetched and modaation time is saved.
Each matrix element is a function of a subset of design veegabVe group all ma-
trix elements that depend on the same design variable sithset class calledhash
class. One hash table is constructed for each hash class. Theofutisgs and the corre-
sponding matrix element values for each hash class araldtotiee hash table. During
synthesis, the hash table is queried to check if the suliisnlwas encountered previ-
ously. If the sub-solution was visited earlier, all the halstss elements can be obtained
at once from the hash table, otherwise they are evaluated from thedels and stored.
Thus, the steps involved in using hash tables for faster ren@dduation are:

— group matrix elements into hash classes
— initiate one hash table for each hash class
— retrieve matrix elements from the hash table when possible

For example, the 61 matrix elements of Differential Amptifaércuit are divided
into 9 different hash classes. The largest hash class hasafréralements while the
smallest has 1 element. Hash tables are constructed usiRjteelR data structure [22].
Both insertion and querying is performed in O( log n ) timeiridshash tables to avoid
matrix element recomputation gives an average synthesisdsgp of 2.8x measured
over a set of 35 synthesis experiments of the DA. Details efgtocedure of using
hashing for expedited synthesis and further experimeesailts can be found in [23].

8.2 Speedup by Near Neighbor Searches

Hash tables store and reuse matrix element values, thusingdihe time required to
evaluate the matrix from its element models. Hashing isulgefly when a newly pro-
posed sub-solutioexactly matches a previously visited one. However, during a synthe-
sis run there may be many sub-solutions close to previousited solutions without
matching exactly. In such cases, computing values of matdrments incrementally
from a close (neighboring) previously visited design pbielps in saving matrix model
evaluation time.

For example, consider a matrix element M dependent on Vagab, v, vs, there-
fore M = f(vy, vo, v3). A first order Taylor series expansion for M is given by:

oM oM oM

dM = — -d —-d —-d 5
Bvl v1t 8’1}2 vz + (%3 s ( )
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If the value of M is already calculated at some design peint(x, v, =Y, v = 2), its
value can be quickly obtained at the neighboring designtfjoir= x + Ax, vy =y + Ay,
vg =z + Az) using eq.( 5). Thus instead of evaluating a higher ordmuonial model,
the element evaluation is done using the linear equationeathaking the computation
faster. For all design points visited during synthesisvhiee of the computer matrix
element M and its associated differentiasl/ov are stored and reused to compute
matrix value at many neighboring points. Thus, computingrixalement values using
the above method require the following steps:

— find a previously evaluated neighbor of the currently psgebsub-solution

— obtain the matrix element value and the value of diffeedatat the neighboring
point

— calculate the matrix element value at the new point using=q

A good neighbor searching algorithm is essential for theessg of this method.
An optimal (near) neighbor search algorithm proposed byatyal. [24] can be suc-
cessfully applied for this purpose. Since only few of thenmatlements require actual
evaluation from their models the speedup by this method ishrmiore than hashing
alone. For the Differential Amplifier synthesis, computimgtrix elements incremen-
tally from its neighbors results in a speedup of about 13x simple matrix element
evaluation whereas with hashing it was only 2.8x. Furtheaitieof this method and
experimental results can be found in [25].

9 Synthesizing circuit with different specifications

In the case of performance macromodels, performance dgtthered for certain pa-
rameters. Models are developed for these parameters angeador synthesis. Using
models makes performance evaluation faster than simolatid expedites the synthe-
sis process. However, only the parameters for which pedona models have been de-
veloped can be included in the synthesis. On the other haittdcircuit matrix models
the target specifications need not be known beforehandbeathce parameter values
required are calculated from the frequency response atdiom solving the circuit
matrix. This is demonstrated with a band pass filter circuit.

9.1 Additional specifications for synthesis

Fig. 8 shows a 2nd order band pass filter with a Sallen Key imptgation. Design
variables identified for the filter synthesis are widths ofsfiets M9, M7, resistor R3,
capacitors C1, C2. The filter is to be synthesized with taspetifications for gain,
bandwidth and center frequency. The synthesis engine pessizes for design vari-
ables. For each set of sizes, the circuit matrix is obtaineih fevaluating the element
models. Substituting the 's’ variable with frequency valgéives the frequency response
of the circuit. The values of gain, bandwidth and centerdety are calculated from
the frequency response till a sizing solution meeting tleedigations is obtained. The
synthesis results are shown in table 10.
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Fig. 8. (i) Amplifier used in bpf (ii) Active band pass filter schenzati

Suppose, the filter has to be synthesized for another agiplicahere target spec-
ification include FP1 (frequency at the edge of the start efghss band), FP2 (fre-
quency at the edge of the end of the pass band) in additionitg lgandwidth and
center frequency. With circuit matrix models, synthegiziircuit with these additional
specifications is simple. The cost function is changed tludecthe additional specifi-
cations. Both FP1 and FP2 are calculated from the frequessponse along with the
other specifications and synthesis procedure is the samef@a®bTable 10 shows the
synthesis results.

Table 10.Synthesis results for the band pass filter

Performance Specification |Estimated Actual
Gain> 14 dB 15.18 15.44
Bandwidth> 2000 Hz 2409 2417
Center Frequency 2500 Hz|2590 2592
FP1> 200 Hz 273 273
FP2< 15000 Hz 12109 12103

9.2 Alternate forms of target specifications

With circuit matrix models, circuits can be synthesizedhatternate forms of target
specifications and not necessarily performance paramateng. In the next experi-
ment, we synthesize the filter circuit with the specificagigiven in the form of a fre-
quency response instead of parameters such as gain, bandi¥id input specifications
are in terms of the magnitude response at different fregasriphase response spec-
ifications can be added similarly). The cost function is @ethto include frequency
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response parameters instead of performance parametersedttof the synthesis pro-
cess remains the same. Figure 9 shows the synthesis r8hdtdlue line shows the
specified response. The red dots show the frequency respohigaved by the target
circuit and the green dots are the SPICE frequency respongied sized circuit. Thus
synthesis is possible with alternate specifications onlgh®nging the cost function.

Magnitude Response for the filter
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Fig. 9. Synthesizing filter from Frequency Response

10 Conclusion

Two methods for performance estimation of analog circpgsformance modeling and
circuit modeling, are compared. It is demonstrated thattieit matrix can be accu-
rately modeled using polynomial regression. The numberefficients that need to
be modeled are significantly reduced by taking advantagean§istor matching. The
accuracy of the proposed method is validated through exyerts on three operational
amplifier benchmarks. Techniques such as hashing and nighiboe searches can sig-
nificantly speed up the synthesis process. Using circuitimnatodels, synthesis can
be performed for different types of specification such adgoerance parameters or
frequency response.
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