
An adaptive genetic algorithm for dynamically
reconfigurable modules allocation

Vincenzo Rana, Chiara Sandionigi, Marco Santambrogio and Donatella Sciuto

chiara.sandionigi@dresd.org,
{rana, santambr, sciuto}@elet.polimi.it

Politecnico di Milano - Dipartimento di Elettronica e Informazione
Via Ponzio 34/5 - 20133 Milano, Italy

Abstract. This paper aims at defining an adaptive genetic algorithm
tailored for the allocation of dynamically reconfigurable modules. This
algorithm can be tuned at run-time with a set of parameters to best
characterize different architectural scenarios (i.e., single device or multi-
FPGAs characterized by several kinds of communication infrastructures)
and to adapt the performance of the algorithm itself to the scenario in
which it has to operate.

The proposed approach has been validated on a large set of meaningful
combinations of parameters (i.e. changing the mutation or the crossover
probability), in order to demonstrate the possibility of performing either
a fast or an accurate allocation phase.

1 Introduction

Nowadays, thanks to reconfigurable devices (such as FPGAs), it is possible to
dynamically tailor the hardware to a specific application, in order to dramatically
improve its performance. One of the most suitable approaches in the develop-
ment of reconfigurable systems is the module-based approach (see [1]), in which
the original application is partitioned into several functions, each one of them
implemented as a single module. These modules, thus, can be either dynami-
cally loaded into the system or removed from the system, in order to change its
overall functionality. The most recent Xilinx design flow, the Early Access Par-
tial Reconfiguration (EAPR) flow, is based on the same approach, as described
in [2].

One of the most interesting challenges in such a scenario is the allocation of
requested modules in the free space of the reprogrammable device. The allocation
phase has to take into account the fragmentation of the device in order to keep
the maximum set of contiguous free slots, able to contain bigger modules. On
the other hand, this phase has to be executed in a very short time, since it is not
desirable to further increase the overhead due to the reconfiguration processes.

The approach presented in [5] trades the execution time for quality of place-
ment, introducing a placement algorithm that is a hybrid solution of the best-fit

and first-fit algorithm. Another feasible solution to this problem is represented
by the adaptive genetic algorithm proposed in this paper. This algorithm can be
tuned for different scenarios of dynamic reconfiguration. In fact, since it can be
executed with a different combination of parameters, it can perform the alloca-
tion task either in a very short time or in a very accurate way, as shown by the
presented experimental results.

This paper deals with the application of an adaptive genetic algorithm to
the allocation of dynamically reconfigurable modules, introducing a very flexible
approach to perform the allocation phase. In particular, the next section presents
the scenario in which the genetic algorithm can be applied. Section 4 introduces
the genetic algorithm on which the adaptive genetic algorithm presented in this
paper is based. Section 5 describes the details of the adaptive genetic algorithm
and all the parameters that it is possible to tune in order to achieve different
levels of performance. Section 6 presents the experimental results that prove the
effectiveness of the proposed approach. Finally, conclusions are drawn in Section
7.

2 Module based reconfiguration approach

As previously hinted, one of the more widely used approaches to reconfiguration
is the module based approach, that has been proposed by Xilinx in [1]. This
approach consist of splitting the reconfigurable device into two different parts:

– a static part, and
– a reconfigurable part.

The reconfigurable part has to be furthermore partitioned in a set of recon-
figurable slots, as shown in Figure 1 (2). Both the size of the static part and the
number of reconfigurable slots (that strictly depends on reconfigurable modules
size) can be tuned in order to adapt the system to the particular design.

In order to change the functionality of the implemented system, it is possible
to develop a set of reconfigurable modules, as shown in Figure 1 (3). These
modules can be of different size, but they have to span the whole height of the
device in order to be compliant with Xilinx Virtex 2 and Xilinx Virtex 2 Pro
reconfigurable devices (while the newest Xilinx Virtex IV and Xilinx Virtex V
devices also support rectangular modules of any size).

Each reconfigurable module can be dynamically placed on one or more recon-
figurable slots (depending on its size), as shown in Figure 1 (4), where modules
A, B and C have been configured on the reconfigurable part of the device.

When a module ends the computation, it can be unused for a unknown time
interval (such as modules B and C in Figure 1 (5)); in this case, it is possible to
remove the module from the system in order to free the resources occupied by
the module itself. Another solution, presented in Figure 1 (6), consists of keeping
the module configured on the device, implementing thus a sort of module cache.
The latter solution occupies a larger amount of reconfigurable resources, but it

S

A B C S A BC

Static part Reconfigurable slots

Reconfigurable modules

FPGA

1) 2)

3) 4)

S A BC5) 6) S A BC

Cached modulesNot used modules

Fig. 1. Module based reconfiguration approach

makes it possible to avoid a reconfiguration (avoiding thus the reconfiguration
time overhead) when a module that is cached is required. For instance, referring
to Figure 1 (6), if either module B or module C is required, there is not the
need to perform a reconfiguration, since they are both already configured in the
system; this means that they can be used at any time without requiring any
additional setup time.

3 Reconfiguration scenarios

One of the most general platforms on which a configurable or reconfigurable
system can be developed is a multi-FPGA scenario where the reconfigurable
resources are distributed on several interconnected FPGAs. In such a scenario
it is common to have a master FPGA able to reconfigure, partially or totally,

other slave FPGAs. These slave FPGAs can be divided into several slots that
can be filled with IP-Cores (or modules) by the master FPGA.

PPC

PPC

PPC

PPC

Master FPGA

Master FPGA

Master FPGA

Slave FPGA Slave FPGA Slave FPGA

Slave FPGA Slave FPGASlave FPGA

Slave FPGA Slave FPGA

Master and Slave FPGA

Sl
ot

 1

Sl
ot

 2

Sl
ot

 3

Sl
ot

 4

Sl
ot

 5

Sl
ot

 6

Sl
ot

 7

Sl
ot

 8

Sl
ot

 1

Sl
ot

 2

Sl
ot

 3

Sl
ot

 4

Sl
ot

 5

Sl
ot

 6

Sl
ot

 7

Sl
ot

 8

Sl
ot

 9

Sl
ot

 1
0

Sl
ot

 1
1

Sl
ot

 1
2

Sl
ot

 1

Sl
ot

 2

Sl
ot

 3

Sl
ot

 4

Sl
ot

 5

Sl
ot

 6

Sl
ot

 7

Sl
ot

 8

Sl
ot

 9

Sl
ot

 1
0

Sl
ot

 1
1

Sl
ot

 1
2

Sl
ot

 1

Sl
ot

 2

(Scenario A)

(Scenario B)

(Scenario C)

(Scenario D)

Fig. 2. Multi-FPGA scenarios

Figure 2 presents a collection of different scenarios. In all these scenarios,
each master FPGA is characterized by the presence of an embedded PowerPC
processor, on which the Operating System runs, in addition to the static hard-

ware components such as a memory controller, general purpose inputs/outputs,
and a reconfiguration manager.

The slave FPGAs, instead, hold the reconfigurable resources used to dynami-
cally load hardware modules into the system. These resources are used according
to a 1D-placement with a granularity of four CLB (Configurable Logic Block)
columns [6]. This means that dynamic modules always use the full height of the
FPGA, while their width is a multiple of four CLB columns, even if this scenario
can be easily extended to the 2D scenario realized using Xilinx Virtex-4 [3] and
Virtex-5 FPGAs [4].

In the first scenario, called Scenario A in Figure 2, there is one FPGA that
is used both as a master and as a slave FPGA. An example of such a scenario
can be found in [8]. This FPGA is logically divided into two different parts:

– a fixed part, that is the part of the FPGA that contains the PowerPC
processor and that acts as a single master FPGA;

– a reconfigurable part, that is handled as a single slave FPGA, even if the
number of slots that it is possible to configure is smaller.

On the other hand, in all the remaining scenarios each FPGA of the system
acts either as a master or as a slave FPGA, without logical internal divisions.

The differences between these scenarios reside in the different ways in which
the communication infrastructure is implemented. The second scenario (Scenario
B) presents a chain communication in which the master FPGA can communicate
with just one slave FPGA, and each slave FPGA can communicate just with the
following one, for instance by using a communication module in the last slot.

Scenario C and Scenario D, instead, represent a point to point connection
and a bus-based connection, respectively. In both these scenarios the master
FPGA is able to communicate directly with each slave FPGA. [7] presents an
architecture that can be represented using Scenario D.

Even if the presented scenarios differ in the logical partitioning of master
and slave FPGAs sets and in their communication infrastructures, they can be
reduced to the same class of platforms from the software point of view. For this
reason they can be handled by the same software solution, as described in the
following.

4 The genetic algorithm

A first version of the genetic algorithm that can be used for the allocation of dy-
namically reconfigurable modules has been first proposed in [9]. This approach
proposes the encoding of a single chromosome (that has to contain the informa-
tion about the solution that it represents) as a pair of arrays, the Slots and the
Modules arrays:

– The Slots array consists of a collection of genes, which contain the infor-
mation on which module is configured on each slot of the reprogrammable

device. In particular, each gene directly corresponds to a single slot of a slave
FPGA. Since on a device of n slots it is possible to configure not more than n
modules (this is possible only when each configured module requires just one
slot), the alleles of these genes are represented by a number between 0 and
n-1. The numbers contained in the Slots array correspond to the position of
a gene in the second array.

– The Modules array consists of a set of genes that represent hardware IP-
Cores. The following numbers represent the coding of the alleles for this
kind of gene:
• 0: this number means that the module is not configured on the repro-

grammable device, since it has not been placed yet or it has already been
deleted from the system;

• 1: this number indicates that the module has been already configured on
the FPGA and it is still running, so at this time it cannot be directly
unloaded from the system;

• -2: a module characterized by this number is a cached IP-Core. In other
words it is a module that has already been placed on the reprogrammable
device but it is not currently used, thus it is possible to unload it to
overwrite its slots with the configuration of a more useful IP-Core.

1
0

0
1

3
2

3
3

0
0

-2
1

0
2

1
3

Slots

Modules

Fig. 3. Genetic algorithm chromosome

The example shown in Figure 3 represents a status of the system in which
the second module (module 1) is configured on the first slot of the FPGA (slot 0)
and the fourth module (module 3) is placed on the third and on the fourth slot
(slot 2 and slot 3), while the second slot (slot 1) is free (since the first module,
module 0, is not configured).

The Slots array gives further information, indicating that the second module
(module 1) is cached, while the fourth module (module 3) is still running. This
means that the largest module that is possible to configure starting from this
status is a module that requires two slots, since it can be configureb on the
first two slots of the FPGA (slot 0 and slot 1), by unloading the second module
(module 1) that is currently cached.

After the choice of the proper coding for chromosomes, genes and alleles, it
has to be defined a suitable fitness function. Main objective of the allocation

manager is to handle the configurable space of the reprogrammable device to
avoid both a waste of slots and the refusing of the configuration of an IP-Core,
that happens when there is no place where it is possible to configure it. This
means that it is desirable to keep the free slots all together, without breaking
them in a lot of smaller separate set of free slots, since a large collection of
contiguous slots allows to configure also bigger modules.

For this reason the fitness function has been defined as a number that in-
creases of a small quantity for each free slot. This quantity starts from a default
value, but it gets bigger when a free slot is followed by another free slot. On the
opposite, when a free slot is followed by a slot containing a cached or a running
module, the gain comes back to the default value. Moreover, to prefer solutions
with a large number of cached modules, that are useful to speed up the recon-
figuration process, a fixed reward is introduced for each cached IP-Core of the
solution.

Figure 4 shows an example of the evaluation of the fitness function of three
given chromosomes, with a default gain of 2 points, increased of 1 point for
each contiguous free slot, and a fixed reward of 1 point for each cached module.
The three chromosomes are very similar, but the seventh module (module 6)
is placed in a different position in each solution. In the first example (A), the
seventh module is located at the end of the FPGA, in the second example (B) it
is configured to break the set of the last four free slots, while in the third example
(C) it has been placed in the most suitable location, that is the second slot (slot
1). Even if the number of configured IP-Cores, the number of cached modules
and the total number of free slots are the same for all the solutions, the first one
presents two sets of free slots (whose sizes are 1 and 3 slots, respectively) with
a fitness of 13, the second one 4 sets (with sizes of 1, 2 and 1 slots, respectively)
with a fitness of 11, while the third one is a single set of 4 slots with a fitness of
16. Obviously the last solution is the most suitable, since it is the only one that
allows the configuration of a new module that requires 4 contiguous slots, in fact
it presents the largest fitness value within the class of the presented solutions.

The proposed genetic algorithm is performed each time a set of new mod-
ules has to be configured on the reprogrammable devices of the system. If each
module can be placed in n positions, an exhaustive search with a set of m IP-
Cores requires nm evaluations of feasible solutions. With a genetic algorithm it
is possible to considerably decrease the time required by the allocation process,
since it works on a smaller set of solutions, trying to modify them to reach a
good sub-optimum solution in a reasonable time.

In particular, the first step of the algorithm is the creation of an initial set of
randomly generated chromosomes. Then, after the fitness evaluation, a subset
of chromosomes is chosen to create a new population. These chromosomes are
called parents of the offspring, that is formed through the crossover process.

The crossover task is performed by randomly choosing two parents. The
new chromosome is generated by keeping the genes of the first part of the first
parent, while the other genes are directly taken from the second parent. During
this phase it is possible to introduce, with a random probability, a mutation.

1
0

0
1

3
2

3
3

0
0

-2
1

0
2

1
3

Slots A

Modules A

0
4

0
5

0
6

6
7

0
4

0
5

-2
6

0
7

1
0

3
1

3
2

3
3

5
4

8
5

12
6

13
7

Fitness A
+2 +0 +0 +2 +3 +4 +1

1
0

0
1

3
2

3
3

0
0

-2
1

0
2

1
3

Slots B

Modules B

0
4

0
5

6
6

0
7

0
4

0
5

-2
6

0
7

1
0

3
1

3
2

3
3

5
4

8
5

9
6

11
7

Fitness B
+2 +0 +0 +2 +3 +1 +2

1
0

6
1

3
2

3
3

0
0

-2
1

0
2

1
3

Slots C

Modules C

0
4

0
5

0
6

0
7

0
4

0
5

-2
6

0
7

1
0

2
1

2
2

2
3

4
4

7
5

11
6

16
7

Fitness C
+1 +0 +0 +2 +3 +4 +5

Fig. 4. Fitness evaluation examples

This is defined as a change in the partial solutions found by the parents, which
means that the location inherited by the parents can be randomly modified, to
prevent that all solutions in the population fall into a local optimum.

5 Adaptive genetic algorithm

The genetic algorithm described in Section 4 has been extended with a set of
configurable parameters that make the algorithm dynamically adaptive with
respect to the platform scenario where it has to work. These parameters provide
the possibility of choosing either a fast or a very accurate allocation phase,
depending on the timing performance and on the space constraints.

The parameters that can be tuned to tailor the solution onto a specific sce-
nario are:

– initial population size, that is the initial size of the randomly generated
population, as described in Section 5.1;

– selection size, the number of chromosomes that are chosen to create the
new population, described in Section 5.2;

– maximum number of rounds, introduced in Section 5.3, that is the max-
imum number of generations that can be performed before stopping the
execution of the algorithm;

– minimum fitness, described in Section 5.4, that is the fitness threshold;
– crossover probability, that is the probability of performing a crossover of

two parents in order to generate a new offspring (otherwise the first parent
is not modified), as presented in Section 5.5;

– neutral mutation probability, described in Section 5.6, that is the prob-
ability of performing a neutral mutation on the new chromosome;

– positive mutation probability, described in Section 5.7, that is the prob-
ability of performing a positive mutation on the new chromosome;

– negative mutation probability, described in Section 5.8, that is the prob-
ability of performing a negative mutation on the new chromosome.

Each parameter can be tuned in order to achieve the desired performance,
both in terms of time and in terms of refused modules.

It is possible, in fact, that a particular scenario requires a fast allocation
phase, for instance when the module that has to be deployed has to be available in
a very short time. In this case it is possible to run the genetic algorithm with a set
of parameters that provides a feasible position for the module in a fast way. The
execution of the algorithm with this set of parameters affects the performance of
the algorithm itself and increases the fragmentation of the reconfigurable device,
but this negative effect can be kept under control by choosing the most suitable
set of parameters, as shown in Section 6.

On the other hand, when a module is requested in advance with respect to its
real utilization time (for instance when pre-fetching is performed), it is possible
to execute the genetic algorithm with a set of parameters that allows the search
for a solution that minimizes the fragmentation of the reprogrammable device.
To achieve this result, it is necessary to know the right set of parameters that
are able to reduce the average number of refused modules during the whole life
of the system.

For these reasons, each parameter has been tested with a large set of signifi-
cant values, as described in the following sections.

5.1 Initial population size

Each time a module is requested, the genetic algorithm has to create an initial
population that consists of randomly generated individuals. Each one of these
individuals has to satisfy all the constraints, since it has to represent a feasible
solution. The single chromosome within the population will change its character-
istics, but the total number of chromosomes will not change, since the population
size is fixed to the value of the size of the initial population. The initial popula-
tion size, then, will affect the whole execution of the genetic algorithm, since it
represents the size of the population on which each operation (such as crossover
and mutations) will be performed. The genetic algorithm has been tested with
three different values, that are 10, 50 and 100 chromosomes.

5.2 Selection size

When the fitness of each chromosome of the population is evaluated in order
to choose the chromosomes that will act as parents (that are, in other words,
the chromosomes with the maximum fitness value) during the generation of the
new population, it is possible to select a set of these chromosomes that will be
kept, without any changes, in the next generation. The selection size is hence
the number of chromosomes that will be kept without any changes, while the
difference between the initial population size and the selection size represents the
number of chromosomes that have to be created during the offspring generation
phase. The selection size depends on the initial population size: for this reason
the values of the selection size has been chosen as 1/4, 1/2 and 3/4 of the initial
population size, that represent three different situations, in which few, half or a
lot is preserved from the previous generation.

5.3 Maximum number of rounds

The generation (that consists of the evaluation of the fitness, in the selection
of the most suitable solutions and in the generation of the children) has to
be performed either for the maximum number of rounds or until the minimum
fitness is reached. In the first case, in which the minimum fitness is never reached,
the value that represents the maximum number of rounds has to be chosen
keeping into account that a big value requires a large execution time, while a
small value can lead to a solution that is not optimal and that increases the
fragmentation of the reconfigurable device. In particular, in our experiments, we
used for this parameter the following values: 10, 20 and 50.

5.4 Minimum fitness

The minimum fitness represents the threshold that has to be exceeded in order
to accept a chromosome as a final solution. This parameter is very important
since it allows an early-stop of the algorithm when a good solution has been
found. Obviously, with a small minimum fitness value, the final solution will

not be optimized, while a big value of this parameter will probably bring the
algorithm to execute for the maximum number of rounds, as described in Section
5.3. The minimum fitness is hence a measurement of the goodness of the desired
soution. The goodness index will be explained more in details in Sextion 6. For
our experiments we used three different values: 100, 1000 and 2000.

5.5 Crossover probability

The crossover task is performed by randomly choosing two parents within the set
of the selected chromosomes, as introduced in Section 5.2. Each new chromosome
is generated by keeping the genes of the first part of the first parent, while the
other genes are directly taken from the second parent. When the crossover is
not performed, the new chromosome is equal to one of the two parents, chosen
randomly. In both cases, children always represent valid solutions for the given
problem. The crossover parameter is hence responsible for the generation of an
offspring that mixes the good characteristics of the most suitable solutions of the
previous generation, in the hope to determine a better one. In our experiments
we tested this probability with the following values: 25%, 50% and 75%.

5.6 Neutral mutation probability

Each time a new chromosome is generated it is possible to perform a neutral
mutation by modifying the position of the requested module within the recon-
figurable device (for this reason it has been called neutral mutation, since it
preserves the status of the modules configured on the reconfigurable device).
This mutation allows the generation of a new solution that was not present in
the initial population, so it is an index of the difference between the solutions
achieved by a population and the following one. The new location of the re-
quested module has to be a feasible position, since each chromosome has always
to represent a feasible solution. As with the other probabilities, we tested this
parameter with the following values: 25%, 50% and 75%.

5.7 Positive mutation probability

With a positive mutation it is possible to free space on the reprogrammable
device by deleting a module that was previously kept in cache. This mutation
allows the increase of the number of positions where the requested module can
be placed (as described in Section 6) without any penalization. The slots occu-
pied by the deleted module are marked in a special way, since they have to be
recognized at the end of the algorithm, when slots that have been deleted but
that are not used by the requested module can be simply reintroduced without
introducing any overhead and increasing the goodness of the final solution. Also
this probability has been tested with the following values: 25%, 50% and 75%.

5.8 Negative mutation probability

A negative mutation, in which a module that has been removed from the cache
will be reintroduced in the cache, can be introduced to increase the goodness
of the solution at run-time. This kind of modules, in fact, can be reintroduced
in the cache in order to avoid the placement of the requested module, without
any penalization, in a location that will lead to delete a cached module. In our
experiments, we used the following values for this probability: 25%, 50% and
75%.

6 Experimental results

Each combination of the values of the parameters presented in Section 5 has been
tested in order to achieve the performance characterization of all the possible
sets of parameters.

The base scenario on which these tests have been performed consists of a
reconfigurable device that has been divided in fifty reconfigurable slots. Further-
more, the size of the single module that can be deployed on the system ranges
from one to three slots.

Table 1. Parameters values

Parameter First Second Third
value value value

Initial 10 50 100
population size (IPS)

Selection size 1
4
∗ IPS 1

2
∗ IPS 3

4
∗ IPS

Maximum number 10 20 50
of rounds

Minimum 100 1000 2000
fitness

Crossover 25 50 75
probability

Neutral mutation 25 50 75
probability

Positive mutation 25 50 75
probability

Negative mutation 25 50 75
probability

Table 1 presents all the possible values for each parameter. Since there are
eight parameters and each parameter presents three different values, it is nec-

essary to perform 38 = 6561 experiments in order to evaluate all the possible
combinations of the parameters’ values.

For each combination of parameters an experiment has been performed that
consists of the following steps:

– fifty tests, consisting of fifty module requests each, have been performed. In
particular, each test performs the following tasks:
• a random module request is given as input to the genetic algorithm;
• the result (success/fail) of this process and the time required for its

execution are stored to calculate the fitness of the current solution;
• randomly a module is deleted from the reconfigurable device (in order

to avoid the saturation of the device itself);
– at the end of each test the status of the reprogrammable device has been

reset and the average results of the simulations (number of refused modules,
cash index and timing performance) have been updated.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

0

25

50

75

100

Fig. 5. Goodness index for all the solutions

Figure 5 shows the average goodness index (that represent the fitness of
a given solution) for each combination of parameters (the test flow previously
described has been performed two times in order to avoid erroneous results).
The goodness has been evaluated as follows:

Goodness = CI
ET∗RM

where:

– CI is the Cache Index: this index is inversely proportional to the fragmen-
tation of the reprogrammable device (CI = 1

Fragmentation);

– ET is the Elapsed Time: it represents the time necessary to perform a whole
experiment, that consists of 2500 module requests;

– RM is the number of Refused Modules. In other words, this index represents
the number of modules that have not been placed during the execution of
the algorithm.

Table 2. Top four experimental results

Combination 22 942 1554 2289
number

Initial 10 10 10 10
population size

Selection size 2 7 5 5

Maximum number 10 20 50 10
of rounds

Minimum 100 100 100 1000
fitness

Crossover 25 50 25 25
probability

Neutral mutation 75 75 50 75
probability

Positive mutation 50 50 50 25
probability

Negative mutation 25 75 75 75
probability

Number of 250 230 175 262
refused modules

Elapsed 0.5465 0.544 0.6885 0.5295
time (s)

Cash 15450 13540 12977 14399
index

Goodnes 113 108 107 104
index

Table 2 chesh index and inversely proportional to both the number of refused
modules and the elapsed time. It is also possible to tune this goodness function
in order to give more importance to the first two components (for instance, by
using this function for the goodness index, Goodness = CI2

ET∗RM2 ,the result will
be a solution optimized in terms of the number of refused modules) or to the
last one (for instance, by using the following function, Goodness = CI

ET 2∗RM , the
result will be a solution optimized with respect to timing performance).

Table 3 presents two combinations of parameters that lead to a very small
number of refused modules (both combinations have achieved less then 200 re-
fused modules). In both these combinations the maximum number of rounds has
been set to 50 and in the second one the initial population size has been set to
50 too.

Table 3. Refused modules optimization

Combination 1554 1891
number

Initial 10 50
population size

Selection size 5 37

Maximum number 50 50
of rounds

Minimum 100 100
fitness

Crossover 25 50
probability

Neutral mutation 50 25
probability

Positive mutation 50 25
probability

Negative mutation 75 25
probability

Number of 175 180
refused modules

Elapsed 0.6885 1.792
time (s)

Cash 12977 17381
index

Goodnes 107 54
index

Table 5 shows the top three combinations that are able to perform the allo-
cation of a requested module in a very short time. By using these combinations,
in fact, it is possible to accomplish a single module request in less than 0.2
milliseconds, since 2500 modules requests require less than 0.5 seconds. All the
combinations presented in Table 5 are characterized by an initial population size
of 10, by a selection size of 7, by a maximum number of 10 and by a minimum
fitness of 100.

Table 4. Timing optimization

Combination 166 169 179
number

Initial 10 10 10
population size

Selection size 7 7 7

Maximum number 10 10 10
of rounds

Minimum 100 100 100
fitness

Crossover 25 25 25
probability

Neutral mutation 25 25 50
probability

Positive mutation 50 75 75
probability

Negative mutation 25 25 50
probability

Number of 522 546 335
refused modules

Elapsed 0.473 0.476 0.477
time (s)

Cash 12579 11854 14770
index

Goodnes 51 46 92
index

Finally, Figure 6 shows a comparison between timing performance of the
genetic algorithm and an exhaustive approach. The experiment has been per-
formed on a reconfigurable module 8 columns wide. Communication overhead
(that is needed in order both to perform a module request and to know where
the module has been placed) is around 1 ms. Since communication with the
Reconfigurator Manager occurs two times, the total communication overhead is
around 2 ms. These values, that can be found in Table 5, are the same for both
the genetic algorithm and the exhaustive approach.

On the other hand, the Reconfigurator Manager overhead strictly depends on
the algorithm that has been chosen. With an exhaustive approach, around 3 ms
are needed in order to perform the allocation phase, while the genetic algorithm
is able to decrease this value to 1 ms (introducing a negligible worsening in the
quality of the output, as shown by the previous experimental results). Thus, the
adoption of a Reconfigurator Manager based on the proposed genetic algorithm

provides the possibility to achieve a total speedup of ∼ 1.5, since the genetic
algorithm makes it possible for the Reconfiguration Manager to perform the
allocation phase around 3 times faster.

 CommunicationReconfigurator Manager

 Communication Reconfigurator
Manager Communication

Hardware reconfiguration
(8 columns module)

0 1 2

Time (ms)

3 4 5 6

 Communication

Genetic algorithm

Exhaustive approach

Hardware reconfiguration
(8 columns module)

7

Fig. 6. Timing performance comparison

7 Conclusions

Figure 5 proves that the goodness index (Y-axis), evaluated for all the possi-
ble combinations of the parameters (X-axis), is a cyclic function and that it is
significantly affected by the changes in the parameters value.

Furthermore, results presented in Section 6 have shown how it is possible
to perform an allocation of a requested module with a different combination
of parameters in order to achieve different optimizations. It is possible either
to minimize the number of refused modules or to reduce the time required for
the computation. It is also possible, finally, to use a combination of parameters
that optimizes the goodness index; this makes it possible to achieve an optimal
compromise between the three presented metrics.

The genetic algorithm presented in Section 4 and extended as described in
Section 5 has been proved to be an effective solution for dynamically reconfig-
urable modules allocation.

Table 5. Timing performance comparison

Algorithm Exhaustive Genetic

Hardware reconfiguration ∼ 3 ms ∼ 3 ms
(8 columns module)

Communication overhead ∼ 1 ms ∼ 1 ms
(request)

Communication overhead ∼ 1 ms ∼ 1 ms
(response)

Reconfiguration Manager ∼ 1 ms ∼ 3 ms
overhead

Reconfiguration Manager ∼ 3 1
speedup

Total ∼ 5 ms ∼ 7 ms
time

Total ∼ 1.5 ms 1
speedup

Total reconfiguration ∼ 2 ms ∼ 4 ms
overhead

Total reconfiguration overhead ∼66 % ∼133 %
w.r.t. hardware reconfiguration time

References

1. Xilinx Inc., Two Flows of Partial Reconfiguration: Module Based or Dif- ference
Based, Tech. Report XAPP290, Xilinx Inc., November 2003.

2. Xilinx Inc., Early Access Partial Reconfiguration User Guide, Tech. Report UG208,
Xilinx Inc., March 2006.

3. Xilinx Inc., Virtex-4 User Guide, Tech. Report UG070, Xilinx Inc., April 2007.
4. Xilinx Inc., Virtex-5 User Guide, Tech. Report UG190, Xilinx Inc., February 2007.
5. K. Bazargan, R. Kastner, M. Sarrafzadeh Fast template placement for reconfig-

urable computing systems, IEEE design and test - Special issue on reconfigurable
computing, pages 68-83, Volume 17, Issue 1, January 2000.

6. H. Kalte, M. Porrmann, U. Ruckert System-programmable-on-chip approach en-
abling online fine-grained 1D-placement, IPDPS’04, Workshop 3, page 141.

7. H. Kalte, M. Porrmann, U. Ruckert A Prototyping Platform for Dynamically Re-
configurable System on Chip Designs, Proceedings of the IEEE Workshop Hetero-
geneous reconfigurable Systems on Chip (SoC), 2002.

8. Alberto Donato and Fabrizio Ferrandi and Marco D. Santambrogio and Donatella
Sciuto Coperating system support for dynamically reconfigurable SoC architectures.,
IEEE-SoCC, 2005.

9. Vincenzo Rana, Chiara Sandionigi and Marco Domenico Santambrogio, A genetic
algorithm based solution for dynamically reconfigurable modules allocation, South-
ern Conference on Programmable Logic, pages 183-186, 2007.

