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Abstract. Conventional MOS models for circuit simulation assume that the 
channel capacitances do not contribute to net power dissipation. Numerical 
integration of channel currents and instantaneous terminal voltages however 
shows the existence of higher order dissipating terms. To overcome these 
limitations, we present a self-consistent, first order, quasi-static power 
dissipation model that is able to predict dissipative (transport) and conserved 
(charging) current components. Charge conservation is insured by using the 
current continuity equation. An analytical expression for energy stored in the 
channel is derived by separating out current components that contribute to net 
power dissipation. The power dissipation estimation is made computationally 
efficient by leaving out energy conserving terms. 

1. INTRODUCTION 

Modeling is a process of accurately representing the behavior of a device to be used in a 
circuit simulator. Designers need these reliable and accurate device models for circuit 
development. With the growth of CMOS technology, MOSFET modeling has become 
increasingly important. The accurate modeling of the MOSFET channel capacitance has been 
an ongoing effort for many decades. First, Meyer’s [1] reciprocal capacitive model, then 
Ward’s [2] charge-based non-reciprocal capacitance model have been used. Many papers have 
been written on the comparison of these models. Some [3-5] claim that Meyer’s model fails due 
to charge non-conservation which justifies the usage of charge-based models, while others 
claim [6-7] that the charge non-conservation is mainly due to the incorrect mathematical 
modeling of non-linear capacitance by the simulation software. Recent papers on field-
dependent mobility [8] and laterally asymmetrical doping [9] have now shown inconsistencies 
in Ward’s model, which artificially partitions the channel charge into source and drain 
components. As pointed out by Fossum [10], it is not clear whether we have explored all other 
possibilities; we may be able to achieve a better result with a different channel partition or may 
be with no partition at all.  

 
Many models have also been put forward to analyze the charging and the trans-capacitive 

current components. One of such models by Lim and Fossum [11] has a first order transient 
transport current and suggests the difference between non-reciprocal capacitive elements to be 
responsible for this current. We show that this model is correct for transistor current 
computation; however it is inconsistent and has some drawbacks when used to predict power 
consumption. These drawbacks are: 
• Lim-Fossum’s equations use Ward’s channel charge partition model. 
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• The MOS capacitors dissipate power and the trans-capacitive term used in the charge model 
includes both dissipating as well as conserved components which are not separated.  
 
The charge partition model puts a constraint only on charge conservation. Even though the 

model predicts the channel charge correctly to first order, the device power is only predicted to 
zero order. The model may not include complete first order trans-capacitive currents due to the 
redistribution of the charges in the channel. This could cause the actual output waveform and 
delay to deviate from the simulation results [12]. In reality, the MOS channel is not purely an 
energy storage device [13]. Thus, it is not appropriate to leave out higher order dissipating 
terms due to charge redistribution as they become significant at higher frequencies. 

 
Though many papers/chapters [3-5, 14-17] have been written on the transient transport 

current, no one has found a solution to separate the transport and charging current components. 
This makes our model and the closed form expressions for the dissipative and conserved 
currents significant. We have developed a self consistent, quasi-static, charge conserving, first 
order power dissipation model. It analyzes the first order power dissipation and computes the 
energy function for the conserved component of the charge storage. The existence of the energy 
function makes it possible to exclude energy conserving terms that do not contribute to power 
dissipation, making the total power estimation computationally efficient.  

 
The rest of the paper is organized as follows. In the second section, we have used a one 

dimensional MOSFET transistor model with the current continuity equation to compute the 
channel currents and the channel charges as well as the currents at the source and the drain 
ends. In the third section, we have computed the power by integrating the power density over 
the entire channel. This leads to the derivation of an energy function in section four. In section 
five, we discuss the first order dynamic power dissipation model. Using the conserved power 
components, we have separated the conserved and dissipative current components in section 
six. Finally, we have developed an equivalent circuit by following the method used by Lim-
Fossum and verified the results for current and charge. Even though they used a charge 
partition instead of solving exactly as we have, both models predict the same source and drain 
currents, and hence the same terminal capacitances. However, we are able to separate out these 
capacitances into conserved and dissipative components.  

 

2. CHARGE DISTRIBUTION CALCULATION 

 
Fig. 1. SOI MOSFET Structure 

In order to obtain an analytical solution, the current flow is considered in one dimension 
parallel to the surface of the device. It is assumed that the region under the channel is 
completely depleted of mobile charges. This fully depleted assumption for SOI MOSFET’s 
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helps us to make use of a linear relationship between the body and the surface potential to 
compute the stored energy function without partitioning the channel charge. The linear relation 
also provides a simplified charge model and terminal currents. It should be noted that solving 
these equations involves complicated algebraic calculations that are practically impossible 
without modern mathematics tools like “Mathematica” [18].  
 

 
Fig. 1 shows NMOS SOI transistor. The charge per unit length ( qc ) at a position x along the 

channel is given by 
 ( ) ( ( ) ( ) / )q x c v v v x q x cc ox gb fb cb b oxφ= − − − − +  (1) 

Similarly, the body charge (back gate) per unit length ( qb ) at x can be written as 

( ) ( ( ))1q x c k v xb ox cbα= − +    (2) 

where v fb
, vgb

 and vcb  are the flat band, gate and channel voltages with respect to the body. 

1k  and α  are body effect coefficients. ( / )c W c Aox ox= is the oxide capacitance per unit 

length, where W is the channel width. Charge conservation is insured by defining the gate 
charge per unit length qg

as 

( )q q qg b c= − +   (3) 

It will be convenient to define the channel charge per unit length at the source ( 0)x qs= and the 

drain ( )x L qd=  and their time derivatives as 

q c vs ox gst= −    (4) 

where v v v vgst gb t sb= − −   

d dq c vs ox gstdt dt
= −   (5) 

In equation (4), vt is the threshold voltage. The body effect requires including the dependence of 
the threshold voltage on source terminal voltage and the substrate charge parameter [22]. 

 ( ) 0v v v vt sb t sbα= +    (6) 

where 
0 1v v kt fb φ= + + is the threshold voltage at zero vsb, andφ is the fermi potential. At the 

drain end, 
q c vd ox gdt= −   (7) 

where (1 ) ( )v v v v v vgdt gb t sb db sbα= − − − + −  

d dq c vd ox gdtdt dt
= −   (8) 

It is assumed that positive current flows into the drain and velocity saturation effects can be 
neglected. Assuming strong inversion, diffusion current in the channel is small. Drift current at 
a distance x along the channel can be written as 

( , ) ( , ) ( )di x t q x t v xc c cbdx
μ=   (9) 

where μ is the charge carrier mobility in the channel. Charge conservation is assured using 
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the one dimensional continuity equation 

( , ) ( , )d di x t q x tc cdx dt
= −         (10) 

Using (9) in (10) gives 

[ ( , ) ( )] ( , )d d dq x t v x q x tc cb cdx dx dt
μ = −   (11) 

Taking the spatial derivatives of charge per unit length as a linear function of potential along 
the channel as in equation (1) and (2) gives 

( , ) (1 ) ( )d dq x t c v xc ox cbdx dx
α= +   (12) 

Substituting ( )d v xcbdx
 in (11) and rearranging terms gives 

(1 )[ ( , ) ( , )] ( , )d d dq x t q x t c q x tc c ox cdx dx dt
α
μ
+

= −   (13) 

In the quasi-static approximation, equation (13) can be solved iteratively to compute the current 
and the charge in the channel by expanding ....0 1q q qc c c= + +  where 0qc  is a function of 

terminal voltages only and 1qc  is a linear function of first order time derivatives of terminal 

voltages. In terms of the steady state (zero order) charge per unit length at any position x along 
the channel, equation (13) reduces to 

( ) 00 0
d dq qc cdx dx

=   (14) 

Performing integration from the source ( 0)x = to the drain ( )x L= , the zero order charge along 
the channel becomes 

2 2( (1 / ) /0q q x L q x Lc s d= − − +   (15) 

and the steady state drift current component of equation (9) simplifies to 

0 0 0(1 )
dI q qc c cc dxox

μ
α

=
+

  (16) 

Equation (16) gives the usual equation for steady current neglecting velocity saturation, which 
is shown in Table I. The first order current and charge can be found by keeping terms of first 
order in time derivatives in equation (13) 

(1 )( )0 1 1 0 0
d d d dq q q q c qc c c c ox cdx dx dx dt

α
μ
+

+ = −   (17) 

Rearranging the terms, equation for the first order channel charge simplifies to  
(1 ) 1 ( [ ] ) )1 0

0

dq c q x dx dxc ox cq dtc

α
μ
+

= − ∫ ∫   (18) 

and the first order current reduces to 

( )1 0 1 1 0(1 )
d di q q q qc c c c cc dx dxox

μ
α

= +
+

  (19) 

Finally, equation (19) can be solved to compute the first order channel current at the source 
( 0)1 1i i xs c= =  and the drain ( )1 1i i x Ld c= − = ends in all regions of operation. We have 

assumed pinch-off saturation which occurs when 0qd =  for
( )

(1 )

v vgs tvds α

−
≥

+
. In cut-off, it is 
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assumed that both 0qd = and 0qs = . Table 1 summarizes the charge and current in all 

regions of operations.  

2.1.  Derivation of First Order Channel Charge and Channel Current  

The equations for first order channel charge and first order currents were used in the 
previous section, however, the derivations were not shown, which is given in this section. 
These derivations are one of the most important findings of our research.  

 
The first order channel charge allows calculating the first order channel current without the 

charge partition, which can be used to calculate the first order drain and source currents. The 
first order channel current also makes it possible to derive the conserved and dissipative power 
components.   

 
Taking charge density as a function of potential along the channel, and keeping terms of first 

order in time derivatives, current continuity equation (17) can be rearranged to be written in 
terms of first order channel charge per unit length as  

(1 ) 1 [ ] 1 01 0
0

c doxq q x dxdx c x cc cq dtc

α

μ

+
= − + +∫ ∫

   

(20) 

where 0qc  is the zero order channel charge density and is given by equation (15). 
 
c1 and c0 

are constants of integration and can be calculated using the boundary condition 01qc =  at 

0x = and x L=   
(1 )

0 [ ]0
0

c doxc q x dxdxcdt
x

α

μ

+
= ∫ ∫

→  

 

2 2(4 5 )(1 )4 20 2 2 315 ( )

d d dq q q q q q qc d s d d s s sox dt dt dtc L qs q qd s

α

μ

− ++
=

− +
 

(21) 

(1 )
1 [ ]0

c doxc q x dxdxcdt
x L

α

μ

+
= ∫ ∫

→
 

(1 )41
15

5 3 2 5 5 2 3 5( ( 5 4 ) (4 5 ) )

2 2 3( )

coxc L

d dq q q q q q q q q q q qd d d d s s s d d s s sdt dt
q qd s

α

μ

+
=

− − + − − +

− +
 

(22) 

Substituting the values of c0, c1 and 0qc in (20), the first order charge at any point x along 

the channel then becomes 
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4 2 2(4 5 )1 {4 (1 2 2 32 2 ( )( )
15

5 5 3 2 2 3(( 4 ( ) 4 ( )

4 4 2 3(4 ) ( 4 )) ) /( ) ( ) )

d d dL q q q q q q q qs d s d d s s sdt dt dtq C Lc c q qq L x q x d ss d
L

d d d d d dq q q q q q q q q q q qd d s s d s d s d s d sdt dt dt dt dt dt
d d d dq q q q q q q q x q q q qd s d s d s d s d s d sdt dt dt dt

μ

− +
= − +

− +− +

− + − + + − + −

+ + + − +

3/ 22 2( )1 2 2( (4 5 )2 2 3( )

( )( )( ) )))

q L x q x d d ds d Lq q q q q q q qs d s d d s s sL dt dt dtq qd s
d dq q q q q q q q xd s d s d d s sdt dt

−

⎛ ⎞− +⎜ ⎟ − + −⎜ ⎟⎜ ⎟− ⎝ ⎠

− + −

 

The first order channel current at any position x along the channel can now be estimated 
using equation (19).

 

Taking derivatives of qc0 and qc1, and substituting the corresponding 
values, equation (19) expands to

 4 3 2 2 3 4{4( ( 4 4 4 )1 2 315( ) ( )

4 3 2 2 3 4 2 2(4 4 4 )} 10( )( (1 )

2 2 2 2{ (2 (3 ) ) ( )( ) }

L di q q q q q q q q q qc d d d d s d s d s sdtq q q qd s d s
d x xq q q q q q q q q q q q q qd s d d s d s d s s d s s ddt L L

d d d dq q q q q q q q q q q q q xs d d s d s s d s d d s sdt dt dt dt

= + − − − +
− +

+ + − − − + − +

− − − − −

  

As mentioned above, this is one of the most important findings of our research and can be 
solved to find the first order drain ( , )1 1i i x Lc d− = →  and source ( , 0)1 1i i xc s= →  current 

components, which are shown in Table 1. These results obtained without partitioning the 
channel charge are in agreement with previous results by Lim and Fossum, which were 
obtained using Ward’s partition. Therefore we have verified that Ward’s partition is correct 
when the body charge has a linearly dependence on channel potential.  

3. CALCULATION OF MOSFET POWER 

This section describes the detailed derivations of MOS power components. To not to 
confuse with the general definition of the static and dynamic power terms, channel power 
components are defined as the zero and the first order powers. It should be pointed out that the 
zero order power is different than the static power. In general, static power is defined as being 
independent of time (time invariant). However, the zero order power that has been used in this 
study is time variant. Although there is no explicit dependence, it depends on the terminal 
voltages that change in time. In fact it includes exactly the dynamic powers terms that are 
proportional or are the functions of the terminal voltages, and ignore the explicit terms 
proportional to dv/dt. The first order power on the other hand, depends on the time derivatives 
of the terminal voltages, while the dynamic power that has been used in the literature depends 
on energy stored in external capacitances which includes zero order and some of the first order 
power dissipated in the transistor. 
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The steady state current is usually used to determine power dissipation for MOS transistors. 

Charge redistribution in the channel causes additional power dissipation. In the quasi-static 
model, charge redistribution is assumed to happen instantaneously with no propagation delays. 
However, the channel charge density still changes as an indirect function of time through the 
dependence on time varying terminal voltages. This allows the use of the quasi-static model to 
predict the charge redistribution and the associated power dissipation.  

 
The conventional charge model is based on the assumption that the MOSFET capacitors do 

not contribute any net power dissipation in the channel. But, the channel capacitances are not 
energy conserving [13]. They do have some higher order power dissipative terms due to the 
charge redistribution in the channel. These dissipative terms become significant at higher 
frequencies, which make it essential to include their effects for accurate power dissipation 
prediction. 

 
Fig. 2 shows a MOS device. Considering a slice of thickness xΔ , MOS channel can be 

thought of having two power components:  
• Dissipative component (Fig. 2a): The current ( )i x flowing through the slice of thickness 

xΔ having a potential vΔ which looks like a series resistance and results in the power 
dissipation of i vΔ .  

• Conserved component (Fig. 2b): The rate of change of charge that is building in the slice 
due to the difference in current iΔ . This power change v iΔ  is the energy stored in the 
charge at the potential ( )v x   

 

Fig. 2: MOS Channel Power Calculation 

The instantaneous total power going into the transistor channel Pc  can be estimated by 

integrating the power density over the channel length: 

( ( ) ( ) )
0

( )( ( )) ( )( ( ))
0 0

L dP i x v x dxc c cbdx

L Ld dv x i x dx i x v x dxcb c c cbdx dx

= ∫

= +∫ ∫

   (23) 

where the first integral represents change in stored energy and second term represents power 
dissipation. Keeping non-zero terms to first order in time derivatives, equation (20) can be 
expanded as:  

0 1, 1,P P P Pc c c diss c cons= + +    (24) 
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where 

( ( )) ( )0 0 0 00

L dP I v x dx I v vc c cb c db sbdx
= = −∫    (25) 

( ( ))1, 1 00

L dP i v x dxc diss c cbdx
= ∫    (26) 

( )1, 0 10

L dP v i dxc cons cb cdx
= ∫    (27) 

The total instantaneous power P into the transistor is the sum of channel power Pc  and gate 

power
1,Pg cons

.  

1,P P Pc g cons= +  

   (28) 
where the gate power is  

1, 1P i vg cons g gb=    (29) 

Equation (25) represents the zero order power dissipation. Equation (26) represents the first 
order power dissipation due to the trans-capacitive transient current components and equation 
(27) represents the first order conserved power in the channel.  Table 2 summarizes the power 
components.  

4. ENERGY STORED IN THE CHANNEL 

For the stored energy derivation, we have assumed that there is no charge leakage from the 
gate to the channel. However, energy is still supplied from the gate to drive the channel 
charges. It becomes necessary to add the conserved power contribution from the gate together 
with the channel conserved power. It is then possible to derive a closed form analytical solution 
for an energy function from the total conserved power.  

4.1. Energy function validation for the channel 

Clairaut’s theorem states that, “If two second order partials are continuous, they will be 
equal”. The same theorem can be used to check the equality of second order partial and verify 
the existence of the energy function.   

 
Using equation (29), the conserved gate power can be written in terms of energy as 

1,

E dv E Edv dvE dv g gb g gdb sbPg cons v dt v dt v dt v dtgb db sb

∂ ∂ ∂∂
= = + +
∂ ∂ ∂ ∂

 

(30) 

where Eg is the gate energy. Comparing (29) and (30), 'E s
v

∂
∂

 can be derived from the 

coefficients of 
dv jb

dt
as  
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2 (2 )

23( )

E c Lv v v vg ox gbt gst gdt gst
v v vsb gdt gst

∂ − +
=

∂ +
  (31) 

2 ( 2 )

23( )

E c Lv v v vg ox gbt gdt gdt gst
v v vdb gdt gst

∂ − +
=

∂ +
  (32) 

22( )1 (6 )26 ( )

E v vg gdt gstc Lvox gbtv K v vgb gdt gst

∂ −
= −

∂ +
  (33) 

As mentioned earlier, energy function exists if and only if the second order partials are 
equal. Taking partials and comparing equations (31-33), it is found that the second order 
partials are not equal. Hence, energy function does not exist for the gate.  

4.2. Energy function validation for the channel 

Taking similar approach, 'E s
v

∂
∂

 are calculated from the coefficients of 
dv jb

dt
in 1,Pc cons  in 

(27) as  
2(3( ) 4 (2 )

26( )

c Lv v v v v vE ox gst gdt gst gbt gdt gstc
v v vsb gdt gst

− + − +∂
=

∂ +
(34) 

2(3( ) 4 ( 2 )

26( )

c Lv v v v v vE ox gdt gdt gst gbt gdt gstc
v v vdb gdt gst

− + − +∂
=

∂ +
 (35) 

3 2 2(3( ) 4 ( 4 )

26 ( )

c L v v v v v v vE ox gdt gst gbt gdt gdt gst gstc
v K v vgb gdt gst

+ − + +∂
=

∂ +

 

(36) 
where Ec is the channel energy. It can again be shown that the second order partials are not 

equal and the channel also has no energy function from all of its conserved components. 

4.3. Energy function validation for combination of the gate and the channel 

Combining the conserved gate and channel power components, the first order conserved 
power can be written as 

( ) ( ) ( )
E dv E EE E dv E dvg gb g gc c db c sbPcons v v dt v v dt v v dtgb gb db db sb sb

∂ ∂ ∂∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂

 

(37) 
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which can again be solved to get 'E s
v

∂
∂

 from the coefficients of 
dv jb

dt
as 

2(3( ) 4 (2 )

26( )

2 (2 )

23( )

c Lv v v v v vE ox gst gdt gst gbt gdt gst
v v vsb gdt gst

c Lv v v vox gbt gst gdt gst

v vgdt gst

− + − +∂
=

∂ +

− +
+

+
(38) 

2(3( ) 4 ( 2 )

26( )

2 ( 2 )

23( )

c Lv v v v v vE ox gdt gdt gst gbt gdt gst
v v vdb gdt gst

c Lv v v vox gbt gdt gdt gst

v vgdt gst

− + − +∂
=

∂ +

− +
+

+
 (39) 

22( )1 (6 )26 (1 )( )

3 2 2(3( ) 4 ( 4 )

26(1 )( )

v vE gdt gstc Lvox gbtv v vgb gdt gst

c L v v v v v v vox gdt gst gbt gdt gdt gst gst

v vgdt gst

α

α

−∂
= −

∂ + +

+ − + +
+

+ +

 

(40) 
   

In this case, second order partials are equal. It confirms that an energy function exists from 
all of the conserved components of the gate and the channel. 

4.4. Energy Function Equation 

The existence of an energy function was validated in previous section. In this section an 
energy function equation is derived solving the partial differentials using  

( , , ) ; , ,
EEE gcv v v j g s dgb sb dbv v vjb jb jb

∂∂∂
= + =

∂ ∂ ∂
   (41) 

This method however, is cumbersome as it involves lots of algebra. A simple solution is 
possible by separating the gate power into two components. 

1, 1 1 0 1 0P i v i v i vg cons g gb g gbt g t= = +
  (42) 

where 0 0v v vgbt gb t= − and 1 0i vg t is the threshold power. In terms of energy, the gate power 

becomes 
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0 0 0( ) ( ) ( )1,

dE dv dE dEdE dE dv dE dvgbt gb gbt gbtt t db t sbPg cons dv dv dt dv dv dt dv dv dtgb gb db db sb sb
= + + + + +

 (43) 
where 0Et and is the threshold energy function and Egbt is the energy function from the 

remaining gate terms. Equation (41) now can be rewritten as 

0( , , ) ; , ,
EE EE gbtc tv v v j g s dgb sb dbv v v vjb jb jb jb

∂∂ ∂∂
= + + =

∂ ∂ ∂ ∂
 (44) 

Though the total E
v

∂
∂

is same, the separation of the threshold component makes it possible to 

derive two simple energy functions, one from the combination of 
EE gbtc

v vjb jb

∂∂
+

∂ ∂
, and the other 

from 0Et
v jb

∂

∂
. These two energy functions can then be combined to find the total energy 

function.  

4.4.1. Threshold Energy Function (Et0) Calculation 
 

From (42) and (43), the threshold power can be written as 

0 0 0
1 0

vE E v E vgbt t db t sbi vg t v t v t v tgb db sb

∂∂ ∂ ∂ ∂ ∂
= + +
∂ ∂ ∂ ∂ ∂ ∂

 (45) 

where 1ig is the gate current. Since 0vt is constant, the threshold energy function can be 

estimated using  

( )0 1 0 0
dE i v Q vt g t g tdt

= =  (46) 

where Qg is the gate charge and is given in Table III. 
 

4.4.2. Ecgbt Calculation 
 

Leaving out the threshold terms, equation (44) reduces to  

( , , ) ; , ,
E EEcgbt gbtcv v v j g s dgb sb dbv v vjb jb jb

∂ ∂∂
= + =

∂ ∂ ∂
 

(47) 

which can be solved to find E
v

∂
∂

’s as 

1 (2 )
2

Ecgbt c L v v vox gbt db sbvgb

∂
= − −

∂
 (48) 
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1 ((1 ) )
2

Ecgbt c L v vox sb gbtvsb
α

∂
= + −

∂
 (49) 

1 ((1 ) )
2

Ecgbt c L v vox db gbtvdb
α

∂
= + −

∂
 (50) 

The second order partials of equations (48-50) are equal. It shows that an energy function 
also exist for the sum of remaining gate and channel components. This energy function 
Ecgbt can then be calculated solving the partial differentials with three independent voltage 

variables , ,v v vgb sb db  respectively. 

Solving with respect to the gate potential 

1 2( , ) ( ) ( , )1 0 0 0 12

EcgbtE dv E v v c L v v v v v E v vcgbt gb sb db ox gbt gbt db gbt sb sb dbvgb

∂
= + = − − +∫

∂

Solving with respect to the drain potential 

1 12( , ) (1 ) ( , )2 24 2

EcgbtE dv E v v c L v c Lv v E v vcgbt db gb sb ox db ox gbt db gb dbvdb
α

∂
= + = + − +∫

∂
  

Solving with respect to the source potential 

1 12( , ) (1 ) ( , )3 0 34 2

EcgbtE dv E v v c L v c Lv v E v vcgbt sb gb db ox sb ox gbt sb gb dbvsb
α

∂
= + = + − +∫

∂
  

Comparing and combining equations for Ecgbt , the energy function reduces to 

1 2 2 2 2(( ( ) ( ) ( ) )0 04
E c L v v v v v vcgbt ox db sb gbt db gbt sbα= + + − + −

 
(51)  

 
 
The total energy function E  can now be estimated using (46) and (51) as 

0E E Ecgbt t= +   

and is shown in Table 3. 

5. DYNAMIC POWER DISSIPATION MODEL 

The basic idea of dynamic power estimation is that power dissipation comes from trapping 
the energy stored on a load capacitor by turning off a transistor very quickly. However, it does 
not make any sense as the first order dynamic power in those cases would be infinite. Also, the 
energy stored in the switching transistor should be included. In section 4, it was shown that an 
energy function was possible only from the combination of the gate and the channel conserved 
power components, which makes it very difficult to know the exact dissipation during the 
transients using the energy model alone. This is because the conserved components of channel 
currents are flowing in and out of the source and drain terminals during the transition. When the 
gate turns off, some of the energy supplied from the gate flows back to the supply through the 
source terminal while some of the energy gets dissipated from the drain terminal, and there is 
no way of telling what fraction goes to where without solving for the voltages and currents.  
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Charge based dynamic power estimation is an attractive alternate technique.  Even though 

we do not know how much of the stored energy flows out the source and drain, we can always 
find the total drain charge, Qd, and source charge, Qs, from Ward’s partition [2]. Qs and Qd are 
not physically separate but act as pseudo-charges, the sum of which constitutes the total 
channel charge. All they do is give a way to find the currents by taking their time derivatives. 
Even though there is no physical channel charge partition, it turns out that the current equations 
act as if they are the time derivatives of the charges. If currents are integrated over a time 
interval to get the total charges going in or out, it is exactly the same as the changes in Qs and 
Qd. Hence, we can figure out the total charge injected by a transistor without knowing the 
details of the waveform. All we need to know is the beginning and ending voltage of the 
transistor terminals and we can figure out ΔQ for each terminal. This ΔQ then gets added to the 
charge on the load capacitor and eventually all gets dissipated. 

 
The total power dissipation is the sum of dynamic power and short circuit power.  In 

contrast with dynamic power, short circuit power cannot be determined without an exact 
solution to the current and voltage waveforms.  Short circuit power comes from the zero order 
component of the drain current from the turned off transistor.  This current component is 
assumed to be zero in the following derivation.  

 

CL

ic

 
Fig. 3. Charge Based Dynamic Power Model 

 
Fig. 3 shows the charge based dynamic power model. If we define the drain current as 

positive going in, then the total charge coming out is negative of the integral of the drain 
current. The zero order turn on current ( )0i on

 
going from the source to the drain terminal can 

then be estimated using  
( )0i on dt Q Q QDP DN L− = −Δ − Δ − Δ∫

 
(52)  

where QLΔ gives the charge going into the load capacitance. QDPΔ  and QDNΔ are defined 

as the drain charges at the PFET and the NFET respectively and can be estimated from [11] as 
3 5 5( 1) ( 1)2 2(1 ) 23 2 1 5 (2 1)

u u up p pQ Lc vDP oxp p ds u up p

α

⎛ ⎞− − −⎜ ⎟
= − + − +⎜ ⎟− −⎜ ⎟

⎝ ⎠
  

(53)
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3 5 5( 1) ( 1)2 2(1 ) 23 2 1 5 (2 1)

u u un n nQ Lc vDN oxn n ds u un n

α
⎛ ⎞− − −⎜ ⎟= − + − +⎜ ⎟− −⎜ ⎟
⎝ ⎠

  
(54)

 where 
(1 )

v vgs tpu p vp dsα

−
=

+
, 

(1 )

v vgs tnun vn dsα

−
=

+
, coxp and coxn are the oxide capacitance per unit 

lengths, pα and nα are the bulk charge coefficients and vtp and vtn are threshold voltages of 

PFET and NFET respectively. The change in charge at the ground or the supply can then be 
estimated using 

( )0Q i on dt Q QS BΔ = − − Δ − Δ∫
 

(55)
 

where QSΔ and QBΔ are defined as the changes in source and the substrate charges. Using this 

approach, the difference in charge at ground due to a falling transient can be estimate using 
Q Q Q Q Q Qf DPf DNf Lf SNf BNfΔ = −Δ − Δ − Δ − Δ − Δ

 
(56)

 
and the difference in charge at ground due to the rising transient becomes 

Q Q Q Q Qr SNr BNr SNf BNfΔ = −Δ − Δ = Δ + Δ
 

(57)
 

which is correct if the short circuit power is zero. For a rising transient, as mentioned above, 
zero order components are assumed to be zero. Hence we only get the reverse changes in 

QSΔ and QBΔ . The difference in charge QΔ  can then be rewritten as 

Q Q Q Q Q Qr f DPf DNf LfΔ = Δ + Δ = −Δ − Δ −Δ
 

(58)
 

In equation (58), the last term represents the normal component present in the conventional 
dynamic power model, while our model adds two extra terms responsible for the first order 
power dissipation from charge stored in the channel. The dynamic power dissipation is then 
given by 

( )( ) ( ) ( ) ( )P Q V f Q final Q initial Q final Q initial V fdd r r f f dd
⎛ ⎞= Δ = Δ − Δ + Δ − Δ⎜ ⎟
⎝ ⎠  

(59)
 

which can be solved for a falling transient as
  

For the PFET: 

( ) 0
0

Q initial QDP DP Vgs
= =

→  
(60)

 

1( ) ( )
2, 0

Q final Q c V VDP DP oxp dd tpV V Vgs dd ds
= = +

→ − →  
(61)

 

From (60) and (61) 
1 ( )
2

Q c V VDP oxp dd tpΔ = +
 

(62)
 

 
For the NFET: 

1( ) ( )
2, 0

Q initial Q c V VDN DN oxn dd tnV V Vgs dd ds
= = − −

→ →  
(63)
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( ) 0
0

Q final QDN DN Vgs
= =

→  
(64)

 

From (63) and (64) 
1 ( )
2

Q c V VDN oxn dd tnΔ = −
 

(65)
 

 
For the load: 

( ) 0
0

Q initial C VL L db Vdb
= =

→  
(66)

 

( )Q final C V C VL L db L ddV vdb dd
= =

→  
(67)

 

From (66) and (67) 
Q C VL L ddΔ =

 
(68)

 
From (62), (65) and (68)  

1 1( ) ( )
2 2

Q C V c V V c V VL dd oxn dd tn oxp dd tpΔ = + − + +
 

(69)
 

Substituting QΔ  in (59), the dynamic power equation reduces to 
1 12 ( ) ( )
2 2

P C V f c V V V c V V V fL dd oxn dd tn dd oxp dd tp dd
⎛ ⎞= + − + +⎜ ⎟
⎝ ⎠  

(70)
 

Equation (70) shows the presence of extra dynamic power component to the conventional 
dynamic power equation. 
  

6. FIRST ORDER CURRENT COMPONENTS 

 

 
Fig. 4: First order dissipative and conserved current components 

 
As seen from Table I, first order current is a function of terminal voltages and their time 

derivatives, and as mentioned above, the coefficient of /dv dt instead of representing purely 
storage capacitance, is also responsible for some of the power dissipation in the channel. This 
suggests that the first order drain and the source currents consist of two separate components, 
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one that contributes to power dissipation in the channel, and another that is responsible for the 
energy storage. Taking this approach, id1 and is1 can be expanded as 

1 1, 1,i i id d cons d diss= +    (71) 

1 1, 1,i i is s cons s diss= +   (72) 

 
Fig. 4 shows this concept where first order currents id1 and is1 are separated into two 

components. Since the gate and the substrate currents are non-dissipative in the absence of 
leakage, there is no need to separate them. 

 
The dissipative current components in equations (71) and (72) are due to the first order 

power dissipation in the channel from the charge redistribution and is computed by dividing the 
power dissipated in the channel by the drain to source potential 

1,
1, , 1,

Pc dissi i id diss tt diss s dissvds
= = = −   (73)  

,itt diss
 in equation (73) is the trans-capacitive transport current that is responsible for the 

extra power dissipation in the channel, and is defined as positive going into the drain. The 
conserved drift component can now be computed by subtracting the dissipated component from 
the total first order current.  

1, 1 ,i i id cons d tt diss= −   (74) 

1, 1 ,i i is cons s tt diss= +   (75) 

 
Separation of currents into conserved and dissipative terms helps to compute the true energy 

conserving capacitances. True in the sense that these capacitances are estimated simply from 
the conserved components of current using equations (74) and (75).  

( ) ; , , , , .1, ,
i C v C v i j g d s bi cons cii t ib cij t jbj i b

= ∂ − ∂ =∑
≠

  (76) 

where ,C Ccii cij
are the conserved components of the capacitor. In equation (76) and all the 

subsequent equations, the subscript notation ‘c’ or ‘d’ is used for conserved or dissipative 
components. Table 4 and 5 summarize the conserved and dissipative components of currents 
and capacitances.  

7. EQUIVALENT CIRCUIT 

In this section, we develop an equivalent circuit by following the method used by Lim-
Fossum [11]. Table IV showed that the capacitances were not reciprocal, which makes the 
capacitance representation using two terminal reciprocal capacitances impossible if these 
capacitances are made to represent the total first order drain current. However, equation (74) 
can be rewritten with reciprocal capacitors as 

1, ,i C v C v id cons gd t dg bd t db tt cons= ∂ + ∂ +   (77) 

where  
( ) ( ),i C C v C C v C vtt cons gd cdg t gb csd cds t sb csd t ds= − ∂ + − ∂ + ∂   (78) 
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The dissipative component of current from equation (73) can also be written in terms of 
dissipative capacitances as 

1,i C v Cd diss ddd t db ddg t= ∂ − ∂   (79) 

 

Cgs

CbdCbs

Cgd
itt,cons

itt,diss

Ic0

DrainSource

Gate

Substrate

is

ig

id

ib

CgbMOSFET

ig
is

ib
id

 
Fig. 5: Equivalent Circuit for a four terminal SOI MOSFET 

 
Fig. 5 shows an equivalent circuit of a four terminal MOSFET. The model is equivalent to 

Lim-Fossum [11], but we have separated the trans-capacitive transport current, itt into 
conserved and dissipative components.  There are three current components flowing from the 
drain to the source terminal. The current component responsible for the first order power 
dissipation in the channel is represented by itt,diss the conserved current component is 
represented by itt,cons. Ic0 represents the steady state zero order current. The two terminal 
reciprocal capacitances Cgd, Cgs, Cbd, Cbs and Cgb represents the conserved gate to drain, gate to 
source, substrate to source, substrate to drain and gate to substrate capacitances respectively. 
The two terminal capacitances do not conserve energy by themselves; the conserved 
component of itt must be included. Cddd, Cddg, Cdds in equation (79) represents the dissipative 
drain to drain, drain to gate and drain to source capacitances respectively. 

8. MODEL VALIDATION AND COMPARISON 

 

 

Fig. 6: (a) Pass transistor logic (b) Voltage Waveforms 

In this section, we have shown that the gate is leakage free and does not contribute any net 
charge to the channel. We have also validated the fact that our first order power dissipation 
model is indeed a charge conserving, as the total charge over a complete cycle is conserved. 
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Fig. 6 shows the idealized voltage waveforms for the drain, gate and the source terminals 

used to pass the logic through the NFET. The drain terminal is assumed to be high during the 
entire simulation, while the gate and the source potentials goes through many transitions. In the 
first transition (t0 to t1), the gate terminal goes from low at t0 to high at t1, while the source 
potential remains low. The transistor enters the saturation as soon as the gate to source potential 
becomes greater than the threshold voltage vt . The extra gate charge 1QgΔ , is then given by   

1

1 2 ( )0 01 3 1 3

Q c v c vg gg gb gg gbcutoff saturation

c v c v vox t ox dd t
α α
α α

⎛ ⎞ ⎛ ⎞Δ = Δ + Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + + −⎜ ⎟+ +⎝ ⎠

  (80)  

During the second transition (t1 to t2), the gate terminal stays high ( vdd ) and the pass 

transistor remains in the saturation. The source terminal on the other hand, goes from low (0) to 

high (
1

v vdd t
α

−

+
) and the extra gate charge 2QgΔ becomes   

2 0
2 3 1

v vdd tQ c v cg gs sb oxsaturation α

−⎛ ⎞Δ = − Δ = −⎜ ⎟
+⎝ ⎠

  (81) 

The transistor now enters the cutoff (at t2) and remains there even though the gate and 
source terminals come back to its original states at t4 and t5. The extra gate charge during these 
transitions are given by 

3 1
Q c v c vg gg gb ox ddcutoff

α
α

⎛ ⎞Δ = Δ = −⎜ ⎟
+⎝ ⎠

  
(82) 

The total gate charge QgΔ is then calculated by adding the extra gate contributions as 

3

1
0

i
Q Qg gi

=

Δ = Δ =∑
  

(83) 

For a complete cycle, charge is conserved and there is no extra non-zero contribution from 
the gate. Fig. 7 shows this concept using a two dimensional profile, where /(1 )0v vsb gbt α= +  

sets a boundary between the cutoff and saturation regions. Simulation is started at some point 
A, and goes through transitions B, C and D, before settling back to its initial state at A.  

 

0
1

vgbtvsb α
=

+

0vgbt

vsb

0v vdd t−
 

1 2 3 4 5

-0.2

0.2

0.4

0.6
ox

cap
c L

dsv

 
Fig. 7 : Charge Profile    Fig. 8: Capacitance Plots vs. vds 
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Our model also verifies that Ward’s method of charge partitioning works correctly as long 
as the body charge has a linear dependence on the channel potential. It predicts the same source 
and the drain currents, and hence the same terminal capacitances. However, we are able to 
partition these capacitances into conserved and dissipative components, as shown in Fig. 8. The 
partitioning approach to capacitances offers several advantages over conventional trans-
capacitances. 
• The energy stored in the conserved capacitances can be predicted.  
• They can be made to agree with Meyer’s capacitances [1] if the body effect and body bias 

are ignored.  
 
Our other significant contribution has been in the power estimation. Our models have 

improved the device power measurements by implementing two important concepts: 
• First order terms have to be included for power dissipation estimation as they become 

significant at higher frequencies. 
• Stored components can be ignored for computationally efficient power dissipation 

estimation. 
The average device power, P , is then possible by taking dissipative current times voltage 

and integrating them over time. A simple simulation can be used to show the importance of first 
order power.  

 
Fig. 9: vgb and vdb waveforms 

 
Fig. 9 shows the idealized voltage waveforms for the drain and the gate terminals used for 

simulation of turning a transistor on then off. The average first order dissipative power from the 
first transition (vds=vdd) when vgb goes from low at t0 to high at t1 is computed by 

1 1 ( )( ) 1, 1,0 1 ( ) 01 0

t
P i v i v dtt t t d diss db s diss sbt t

= +→ ∫
−

     (84) 

If we assume the source and the substrate are at the same potential (vsb=0), equation (84) 
can be rewritten as 

1 1 ( )( ) 1,0 1 ( ) 01 0

t
P i v dtt t t d diss dbt t

=→ ∫
−

  (85) 

In the second power dissipating transition, when the gate terminal is high, the drain swings 
from high at t1 to low at t2. The dissipative power equation (84) reduces to 

21
( ) 1,1 2 ( )2 2 1

t
P i v dtt t d diss dbt t t

=→ ∫
−

     (86) 
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During the interval t2 to t4, there is no power dissipation in the channel (vds=0). The final 
power transition occurs when the drain waveform swings from low at t4 to high at t5. As the 
gate voltage has already reached a steady low value, the power equation becomes 

51
( ) 1,4 5 ( )5 4 4

t
P i v dtt t d diss dbt t t

=→ ∫
−

    (87) 

The total dissipative power for a complete cycle is computed taking the sum of all these 
powers as 

( ) ( ) ( )0 1 1 2 4 5
P P P Pt t t t t t= + +→ → →   (88) 

For a complete cycle, energy is conserved. This allows us to leave out the conserved 
component from the power equation for computationally efficient power dissipation predictions 
[13]. Nonetheless, the total dissipative power includes the first order terms as predicted by 
equation (88). These first order dissipative components become significant at higher 
frequencies and modify the total power dissipated in the channel as shown in Fig. 10. The total 
power is no longer constant, and at high frequencies becomes dependent on the switching 
frequencies.  
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Fig. 10: Dissipative Power vs. Frequency Fig. 11: Conserved Power vs. Frequency 
 
The result also shows that we need to be extra careful while doing the power measurements. 

It is not appropriate to look only at the channel dissipation; the first order power dissipation 
does have contributions from the gate. If the power dissipation is estimated by just considering 
the total channel power, there would be an extra negative component from the conserved 
energy. In that case, the channel could act as an energy generator. In reality, that is not the case. 
Power is pumped from the gate to the channel and when the contribution from the gate is 
added, the conserved terms cancel out (Fig. 11).  

 

8. CONCLUSIONS 

The development of a self consistent, quasi-static, first order power dissipation model for a 
fully depleted SOI MOSFET has been described. The Lim-Fossum current and charge model 
has been verified as correct to first order even though the Ward partition of source and drain 
charge was used. The transient current is separated into conserved and dissipative components. 
Significance of higher order power dissipation at higher frequencies is discussed. The existence 
of energy function also is validated to make the power dissipation estimation computationally 
efficient. 
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Table 1: Charge and Current Equations for NMOS 

 Linear Saturation Cut-Off 
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=

=
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dq  c vox gdt−  0 0 
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cox v v
L

μ

α
−

+

 2

2 (1 ) gst
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 0 
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v v dt dt
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4
15
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Table 2: Power Equations 

 Linear Saturation Cut-Off 

0cP  
2 2( )
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cox v v vdsL
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Table 3: Energy Function 

 Linear Saturation Cut-Off 

gQ  2(1 )( )
2 12( (1 )( ) / 2)

db sb db sb
ox gb fb sb

gst db sb

v v v vc L v v v
v v v

α
φ

α
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Table 4: Conserved and Dissipative Current Components 

 Linear Saturation Cut-Off 

,

1,

tt diss

s diss

i
i

=

−
 2 2

3
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3( ) 7 ( )

30( )
ox gst gdt

gdt gdt gst gst gdt gst gdt gst
gdt gst

c L v v d d d dv v v v v v v v
v v dt dt dt dt

− ⎛ ⎞+ + +⎜ ⎟+ ⎝ ⎠
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v v dt dt
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6( )
ox

gdt gdt gdt gst gst gst gdt gst
gdt gst

c L d dv v v v v v v v
v v dt dt

⎛ ⎞+ + +⎜ ⎟+ ⎝ ⎠
 

2

c L dox vgstdt  
0 

 

Table 5: Conserved and Dissipative Capacitances 

 Linear Saturation Cut-Off 

gbC  2

2

( )
3(1 ) ( )

gdt gst

gdt gst

v v
c Lox v v

α
α

−

+ +
 3(1 )

c Lox
α
α+

 
(1 )

c Loxα

α+
 

gdC  
2

( 2 )2
3 ( )

gdt gst
ox gdt

gdt gst

v v
c Lv

v v
+

+
 

0 0 

gsC  
2

(2 )2
3 ( )

gdt gst
ox gst

gdt gst

v v
c Lv

v v
+

+
 

2
3

c Lox  
0 

csgC  2 2

2

( 8 3 )1
6 ( )

gdt gdt gst gst
ox

gdt gst

v v v v
c L

v v
+ +

+
 

1
2

c Lox  0 

csbC  Ccsgα  Ccsgα  0 

csdC  
2

( 3 )(1 )
6 ( )

gdt gdt gst
ox

gdt gst

v v v
c L

v v
α ++

−
+

 
0 0 

cdgC  2 2

2

(3 8 )1
6 ( )

gdt gdt gst gst
ox

gdt gst

v v v v
c L

v v
+ +

+
 

1
6

c Lox  0 

cdbC  Ccdgα  Ccdgα  0 

cdsC  
2

(3 )(1 )
6 ( )

gst gdt gst
ox

gdt gst

v v v
c L

v v
α ++

−
+

 1
6 oxc Lα+

−  0 

ddgC  ( )32 2( )(3 14 3 )/30ox gst gst gst gstgdt gdt gdt gdtc L v v v v v v v v− + + +  1
10

c Lox   0 

ddsC  ( )3(1 ) ( ) (7 3 )/30 gdt gstc L v v v v vox gst gdt gst gdt gst v vα− + − + +  1
10

c Lox
α+

−  0 

ddbC  ddgCα−
10

c Lox
α

−  
0 

dsgC  ddgC−  ddgC−  0 

dsdC  ( )3(1 ) ( ) (3 7 )/30 gdt gstc L v v v v vox gst gdt gst gdt gst v vα+ − + +  0 0 

dsbC  ddbC−  ddbC−  0 

 


