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Abstract. Analysis and verification environments for next-generation nano-scale
RFIC designs must be able to cope with increasing design complexity and to ac-
count for new effects, such as process variations and Electromagnetic (EM) cou-
plings. Designed-in passives, substrate, interconnect and devices can no longer be
treated in isolation as the interactions between them are becoming more relevant
to the behavior of the complete system. At the same time variations in process
parameters lead to small changes in the device characteristics that may directly
affect system performance. These two effects, however, cannot be treated sep-
arately as the process variations that modify the physical parameters of the de-
vices also affect those same EM couplings. Accurately capturing the effects of
process variations as well as the relevant EM coupling effects requires detailed
models that become very expensive to simulate. Reduction techniques able to
handle parametric descriptions of linear systems are necessary in order to obtain
better simulation performance. In this work we discuss parametric Model Order
Reduction techniques based on Structure-Preserving formulations that are able
to exploit the hierarchical system representation of designed-in blocks, substrate
and interconnect, in order to obtain more efficient simulation models.

1 Introduction

New coupling and loss mechanisms, including EM field coupling and substrate noise
as well as process-induced variability, are becoming too strong and too relevant to be
neglected, whereas more traditional coupling and loss mechanisms are more difficult to
describe given the wide frequency range involved and the greater variety of structures
to be modeled. The performance of each device in the circuit is strongly affected by
the environment surrounding it. In other words, the response of each circuit part de-
pends not only on its own physical and electrical characteristics, but to a great extent
also on its positioning in the IC, i.e. on the devices to which it is directly connected
to or coupled with. The high level of integration available in current RFIC designs
leads to proximity effects between the devices, which induce EM interactions, that can
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lead to different behaviors of the affected parts. In any manufacturing process there is
always a certain degree of uncertainty involved given our limited control over the envi-
ronment. For the most part this uncertainty was previously ignored when analyzing or
simulating complete systems, or assumed to be accounted for in the individual device
models. However, as we step towards the nano-scale and higher frequency eras, such
environmental, geometrical and electromagnetic fluctuations become more significant.
Nowadays, parameter variability can no longer be disregarded, and its effect must be
accounted for in early design stages so that unwanted consequences can be minimized.
This leads to parametric descriptions of systems, including the effects of manufactur-
ing variability, which further increases the complexity of such models. Reducing this
complexity is paramount for efficient simulation and verification. However, the result-
ing reduced models must retain the ability to capture the effects of small fluctuations,
in order to accurately predict behavior and optimize designs. This is the realm of Para-
metric Model Order Reduction (pMOR). Furthermore, these parametric fluctuations of
the physical characteristics of the devices can affect not only the performance of such
devices, but also the coupling between devices. For this reason the parametric models
of the individual blocks of a system can no longer be simulated in isolation but must
be treated as one entity and verified together. Such reduction must take advantage of
the hierarchical description of those systems, namely to account for designed-in ele-
ments as well as interconnect effects. To this end, structure-preserving techniques must
be used which not only retain structural properties of the individual systems but also its
connections and couplings.

The goal of this paper is therefore to present and discuss techniques for model order
reduction of interconnect, substrate or designed-in passives, taking into account their
dependence on relevant process or fabrication parameters and their coupling and con-
nections. The paper is structured as follows: Section 2 gives an introduction to Model
Order Reduction. In Section 3 an overview of several existing pMOR techniques will
be presented. In Section 4 an introduction to two-level hierarchical MOR will be done,
and an extension to improve the reduction will be presented. In Section 5 the proposed
methodology for combining the parametric techniques with the hierarchical reduction
will be proposed. To illustrate the procedure, its pros and cons, in Section 6 some re-
duction results will be presented for several real-life structures. Finally conclusions will
be drawn in Section 7.

2 Model Order Reduction

Model Order Reduction (MOR) is a framework whose aim is to efficiently find a be-
havioral equivalent yet reduced representation of a system. The system is usually rep-
resented in its state-space representation, which in descriptor form can be written as

Cẋ(t)+Gx(t) = Bu(t)
y(t) = Lx(t) (1)

where C,G ∈ Rn×n are respectively the dynamic and static matrices describing circuit
behavior, B ∈ Rn×m is the matrix that relates the input vector u ∈ Rm to the inner states
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x∈Rn and L∈Rn×p is the matrix that links those inner states to the outputs y∈Rp. This
time-domain descriptor yields a frequency response modeled via the transfer function

H(s) = L(sC +G)−1B (2)

for which we seek to generate a reduced order approximation, able to accurately capture
the input-output behavior of the system,

Ĥ(s) = L̂(sĈ + Ĝ)−1B̂. (3)

Existing methods for linear model reduction can be broadly characterized into two
types: those based on balancing techniques (sometimes also referred to as SVD5-based
[1]), and those that are based on projection methods.

The first set of techniques, those in the truncated balanced realization (TBR) family
[2], perform reduction based on the concept of controllability and observability of the
system states. They rely on balancing the system and then truncating the states with
small controllability and observability, information given by the Hankel Singular Val-
ues of the product of the system Gramians, which are obtained by solving a pair of
Lyapunov equations. These methods are purported to produce nearly optimal models
and have easy to compute a-posteriori error bounds. There are also known techniques
[3] that extent this framework in order to guarantee the passivity of the Reduced Order
Model (ROM), independently of the structure of its representation. However, the TBR
procedures are awkward to implement and expensive to apply, which limits their appli-
cability to small and medium sized problems. Hybrid techniques that combine some of
the features of each type of methods have also been presented [4–6].

Among the second set of techniques, Krylov subspace projection methods such
as PVL [7] and PRIMA [8] have been the most widely studied over the past decade.
They are very appealing because of their simplicity and performance in terms of effi-
ciency and accuracy. They rely on the computation of a basis for the Krylov subspace,
colspan{V} = Kr{A,R,q×m}, which encloses information about the transfer func-
tion, with A = G−1C, R = G−1B, and q the number of block moments matched (each
block with m columns). The projection of the high-dimensional original system in the
lower-dimensional generated subspace guarantees such implicit moment matching and
avoids numerical errors in the reduction process.

Ĝ = V T GV Ĉ = V TCV B̂ = V T B L̂ = LV (4)

Furthermore, this orthogonal projection (and congruence transformation), performed in
PRIMA, guarantees the preservation of the passivity in the reduction process if C,G
are positive definite and B = LT (see [8] for details). However the procedures in this
framework exhibit several known shortcomings. The lack of a general strategy for error
control and order selection, as well as a dependence on the original model’s structure if
passivity is to be guaranteed after the reduction are among the more obvious ones.

A different technique that attempts to establish a bridge between the two families of
methods was also proposed. The Poor Man’s TBR [9] is based on a projection scheme

5 SVD – Singular value decomposition.
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where the projection matrix approximately spans the dominant eigenspaces of the con-
trollability and observability matrices and provides an interesting platform for bridging
between the two types of techniques. The controllability Gramian is estimated via a
frequency-based quadrature rule of its integral form

X =
Z

∞

−∞

( jωC +G)−1BBT ( jωC +G)−Hdω (5)

where X is the controllability Gramian, and ω is the frequency. The Gramian can be
estimated by

X̄ = ∑
k

zkzH
k = ZZH (6)

where Z = [z1 z2 . . . ] and zk =
(

jω(k)C +G
)−1

B, with ω(k) the kth frequency sample.
In [9] it was shown that if the quadrature scheme is accurate enough, then the estimated
Gramian X̄ in (6) converges to the original one X , which implies that the dominant
eigenspace of X̄ converges to the dominant eigenspace of X (and in fact it converges
faster than the Gramian).

Still the technique is not without drawbacks, as it relies on proper choice of sam-
pling points, a non-trivial task in general.

3 Parametric Model Order Reduction

Actual fabrication of physical devices is susceptible to the variation of technological
and geometrical parameters due to deliberate adjustment of the process or from random
deviations inherent to the manufacturing procedures. This variability leads to a depen-
dence of the extracted circuit elements on several parameters, of electrical or geomet-
rical origin. This dependence results in a parametric state-space system representation,
which in descriptor form can be written as

C(λ)ẋ(t,λ)(λ)+G(λ)x(t,λ) = Bu(t)
y(t,λ) = Lx(t,λ) (7)

where the various elements have the meaning described for (1). The elements of the
matrices C and G, as well as the states of the system x, depend on a set of Q parame-
ters λ = [λ1,λ2, . . . ,λQ] which model the effects of the mentioned uncertainty. Usually
the system is formulated so that the matrices related to the inputs and outputs (B and
L) do not depend on the parameters. This time-domain descriptor yields a parametric
dependent frequency response modeled via the transfer function

H(s,λ) = L(sC(λ)+G(λ))−1B (8)

for which we again seek to generate a reduced order approximation, able to accurately
capture the input-output behavior of the system for any point in the multidimensional
frequency-parameter space.

Ĥ(s,λ) = L̂(sĈ(λ)+ Ĝ(λ))−1B̂ (9)
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In general, one attempts to generate a ROM whose structure is as much similar to the
original as possible, i.e. exhibiting a similar parametric dependence and retaining as
much of the original structure as possible. In this situation, the generated models can be
efficiently combined and used inside simulation environments.

3.1 Representation of the Parametric System

The treatment of the system matrices as appear in (7) is quite inappropriate, as the
parameter dependence can vary from element to element inside the matrices, and the
reduction methodology will likely not maintain this dependence. For this reason, an
approximate representation is generally used as the original system. An affine model
based on a Taylor Series expansion can be used for accurately approximating the be-
havior of the static and dynamic matrices, G(λ) and C(λ), expressed as a function of
the parameters.

G(λ1, . . . ,λQ) = ∑
∞
k1=0 . . .∑∞

kQ=0 Gk1,...,kQλ
k1
1 . . .λ

kQ
Q

C(λ1, . . . ,λQ) = ∑
∞
k1=0 . . .∑∞

kQ=0 Ck1,...,kQλ
k1
1 . . .λ

kQ
Q

(10)

where Gk1,...,kQ and Ck1,...,kQ are, respectively, the sensitivities of the static and dynamic
system matrices. The Taylor series can be extended up to the desired (or required) order,
including cross derivatives, for the sake of accuracy.

The techniques here presented can be combined with any order of the Taylor Series
in (10). However, for simplicity, in the following a first order approximation, with first
order sensitivities and no cross terms, will be used to illustrate the procedure.

G(λ1, . . . ,λQ) = G0 +Gλ1 λ1 +Gλ2 λ2 + . . .+GλQλQ

C(λ1, . . . ,λQ) = C0 +Cλ1λ1 +Cλ2 λ2 + . . .+CλQλQ
(11)

where G0 and C0 are the nominal matrices, whereas Gλi and Cλi represent the 1st order
derivatives of the original matrices with respect to the ith parameter. Under this rep-
resentation of the parametric system, the structure for parameter dependence may be
maintained under a projection scheme, as long as the projection is not only applied to
the nominal matrices, but to the sensitivities as well.

Ĝ(λ1, . . . ,λQ) = Ĝ0 + Ĝλ1 λ1 + Ĝλ2 λ2 + . . .+ ĜλQλQ

Ĉ(λ1, . . . ,λQ) = Ĉ0 +Ĉλ1 λ1 +Ĉλ2λ2 + . . .+ĈλQλQ
(12)

where Ĉ0 = V TC0V , Ĝ0 = V T G0V , Ĉλi = V TCλiV , and Ĝλi = V T GλiV , with V the pro-
jector whose columns span the desired subspace basis. This is one of the main features
that make the projection-based reduction the procedure followed by most of the para-
metric model order reduction techniques.

Another important issue is the passivity of the system. Taylor Series is not globally
accurate, and, under large parameter variations, can lead to loss of accuracy, and more
important, passivity. To avoid such pitfalls, the building of the Taylor Series formulation
must be done such that under any expected parameter setting, the system matrices retain
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their positive definiteness. A simple scheme for ensuring this is to compute the deriva-
tives element-wise, i.e. for each resistor, capacitor, etc..., consistently with the nominal,
and thus under any possible parameter setting the stamping of this value still yields a
positive definite matrix. Projection techniques are able to guarantee the passivity of the
reduced models under certain circumstances (as pointed in Section 2), usually fulfilled
in the case of electric models (for details see [8]).

3.2 Reduction via Multi-Dimensional Moment Matching

Some of the most appealing techniques for the reduction of the parametric systems
are multi-dimensional moment matching algorithms. These techniques appear as exten-
sions to nominal moment-matching ones [8, 7, 10]. Moment matching algorithms have
gained a well deserved reputation in nominal MOR due to their simplicity and effi-
ciency. The extensions of these techniques to the parametric case feature a similar sim-
plicity. They are usually based in the implicit or explicit matching of the moments of the
parametric transfer function (8). These moments depend not only on the frequency, but
on the set of parameters affecting the system, and thus are denoted as multi-dimensional
moments.

Some schemes, denoted as Multi-Parameter Moment Matching [11], rely on match-
ing, via different approaches, the multi-parameter moments of (8).

x(s,λ1, . . . ,λQ) =
∞

∑
k=0

k

∑
ks=0

k−ks

∑
k1=0

. . .
k−ks−k1....−kQ−1

∑
kQ=0

Mk,ks,k1,...,kQsksλ
k1
1 . . .λ

kQ
Q (13)

where Mk,ks,k1,...,kQ is a k-th (k = ks +k1 + . . .+kQ) order multi-parameter moment cor-

responding to the coefficient term sksλ
k1
1 . . .λ

kQ
Q . Following the same idea used in the

nominal moment matching techniques, a basis for the subspace formed from these mo-
ments can be built

colspan[V ] = colspan{M0,0,0,...,0,M1,1,0,...,0, . . . ,Mk,ks,k1,...,kQ} (14)

and the resulting matrix V can be used as a projection matrix for reducing the orig-
inal system. The generated parameterized ROM matches up to the k-th order multi-
parameter moment of the original system. The main inefficiencies of these techniques
arise from the fact that the same number of moments is matched for all the parameters
(including the frequency), and the expansion is performed around a single point. How-
ever, it should be noticed that the parameters usually fluctuate in small ranges around
their nominal values, whereas the frequency has a much wider range of variation. To
match the number of moments required to maintain the accuracy for large frequency
ranges may lead to large basis, and thus oversized reduced models. Some schemes have
been proposed to cope with this issue [12], but still suffer from some drawbacks.

A slightly different approach, that provides more compact ROMs, is presented in
[13], which relies on the computation of several subspaces, built separately for each
dimension, i.e. the frequency s and the parameter set λ. Given a parametric system
(7), the first step of the algorithm is to obtain the ks block moments of the transfer
function with respect to the frequency when the parameters take their nominal value (for
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example, via [8]). These block moments will be denoted as Vs. The next step is to obtain
the subspace which matches the kλi block moments of x with respect to each of the
parameters λi (with the values for the rest of the parameters j 6= i fixed to their nominal
values), and will be denoted by Vλi . Once all the subspaces have been computed, an
orthonormal basis can be obtained so that its columns span the union of all previously
computed subspaces.

colspan[V ] = colspan{Vs,Vλ1 , . . . ,VλQ} (15)

Applying the resulting matrix in a projection scheme ensures that the parametric ROM
matches ks moments of the original system with respect to the frequency, and kλi mo-
ments with respect to each parameter λi. If the cross-term moments are needed for accu-
racy reasons, the subspace that spans these moments can be also included by following
the same procedure.

Still a different alternative was proposed in [14], where the number of multi-parameter
moments matched is increased by applying a two step moment matching scheme. The
first step matches the parameter moments explicitly, and a second projection step is
applied to capture the frequency moments (for details see [14]). Unfortunately, the pa-
rameter dependence is lost and the passivity is not preserved.

Recent approaches [15, 16] were presented to overcome these shortcomings. They
rely on a recursive procedure to compute the same moments spanned by the approach in
[14]. Basically, the frequency moments of the nominal transfer function are generated,
and from these moments, in a recursive fashion, the frequency moments for each pa-
rameter moment are also generated. As an example, for first order moment with respect
to the parameters

colspan[V0] = colspan{V 0
0 ,V 1

0 , . . . ,V α0−1
0 }

colspan[Vλi ] = colspan{V 0
λi

,V 1
λi

, . . . ,V αi−1
λi

}
V j

λi
=−(G0 + seC0)−1(GλiV

j
0 + seCλiV

j−1
0 + seC0V j−1

λi
)

(16)

where V0 is the basis that allows matching α0 frequency moments for the nominal sys-
tem (V j

0 is related to the j th moment of the nominal system with respect to frequency),
and Vλi is the basis that allows matching αi frequency moments for the first moment of
the i th parameter, that is M1,0,··· ,1,··· up to Mαi,αi−1,··· ,1,··· in Eqn.( 13 (V j

λi
is related to the

j th frequency moment for the first moment of the i th parameter; see [15, 16] for further
details). This adds flexibility as the number of moments to match with respect to each
parameter and the frequency can be different. Furthermore, the number of frequency
moments generated for each parameter moment can be also different. Both techniques
differ in the methodology for selecting the most relevant moments, either by apply-
ing sampling on a tree scheme [15], or by generating the moments exhaustively until
no rank is added [16]. The moments generated are orthonormalized and applied as an
overall basis, V , in a projection scheme on the Taylor Series matrices.

colspan[V ] = colspan{V0,Vλ1 , . . . ,VλQ} (17)

These schemes avoid or minimize the growth of the ROM with the number of parame-
ters and moments to match.
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3.3 Reduction via Variational PMTBR

A different approach was also proposed that extends the PMTBR [9] algorithm to in-
clude variability [17]. This approach is based on the statistical interpretation of the
algorithm (see [9] for details) and enhances its applicability. In this interpretation, the
approximated Gramian is seen as a covariance matrix for a Gaussian variable, x(0),
obtained by exciting the underlying system description with white noise. Rewriting the
Gramian from (5) as

Xλ =
Z

Sλ

Z
∞

−∞

( jωC(λ)+G(λ))−1BBT ( jωC(λ)+G(λ))−H p(λ)dωdλ (18)

where p(λ) is the joint Probability Density Function (PDF) of λ in the parameter space,
Sλ. Just as in the original PMTBR algorithm, a quadrature rule can be applied in the
parameter plus frequency space to approximate the Gramian via numerical computation

zk = z(s = s(k),λ = λ
(k)) = (s(k)C(λ(k))+G(λ(k)))−1B (19)

where zk is the kth sample, obtained for a frequency value of s(k) and a parameter set
λ(k) (i.e. λ(k) = [λ(k)

1 . . .λ
(k)
Q ]). The sampling scheme can be combined with any repre-

sentation, i.e. does not require the computation of the sensitivities of the Taylor Series
representation as in the case of multi-dimensional moment matching techniques. On
the other hand, the Taylor Series representation exhibits further advantages in terms of
maintenance of the parametric dependence and reuse, which are useful for efficient use
of the reduced models in simulation environments. Note that the accuracy of the result-
ing ROM does not depend on the accuracy of the approximation of the integral, but on
the projection subspace. After the quadrature is performed in the overall variational sub-
space, the deterministic procedure is followed and the most relevant vectors are selected
via Singular Value Decomposition (SVD) in order to build a projection matrix

Z = [z1, . . . ,zk, . . .]−→V SU = SV D(Z) (20)

where S is the diagonal matrix with the singular values σi in its entries, and V and U
are the unitary matrices that span the vectors associated with such singular values. The
vectors of V whose associated singular values do not fall below a desired tolerance, are
used in a congruence transformation on the parametric system matrices (7) (and thus
retain the projection-based reduction advantages when applied to a Taylor Series repre-
sentation). As in the deterministic case, an error analysis and control can be included,
via the singular values, but in this variational case, only a bound on the expected error
can be given (as we are working with statistical analysis)

E{‖x̂0− x0‖2
2} ≤

n

∑
i=r+1

σ
2
i (21)

where r is the reduced order, n the original number of states, and σi are the singular
values obtained from (20). The complexity and computational cost is generally the same
as that of the deterministic PMTBR plus the previous quadrature operations, and, it
has been shown that the size of the reduced model is less sensitive to the number of
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Fig. 1. Illustration of two-level block hierarchy in the system matrix.

parameters in the description, and to how this parameter dependence is modeled. On
the other hand, the issue of sample selection, already an important one in the non-
parametric context, becomes even more relevant, since the sampling must now be done
in a potentially much higher-dimensional space.

4 Block Hierarchical Model Order Reduction

4.1 Structure Preservation

As pointed out, individual blocks inside an RFIC can no longer be treated in isola-
tion, and for this reason the complete system must be treated as an entity. Consider-
ing the linear system composed of all these interconnected component blocks including
designed-in passives, interconnect, etc, the joint description has an interesting structure,
where the diagonal blocks correspond to the individual block matrices, whereas the off-
diagonal blocks correspond to the static interconnections (in the G matrix) and dynamic
couplings (C matrix), as shown in Figure 1. Standard model order reductions techniques
can be applied to this joint, global system and while the resulting reduced model will
usually be able to accurately capture the input-output behavior of the complete set of
blocks, this approach leads to full reduced matrices. Furthermore, the original two-level
hierarchy with interconnections and couplings, in where the individual sub-systems can
be recognized, can no longer be recovered (as seen in top of Figure 2).

An alternative approach is to perform the reduction of the individual models in a
hierarchical fashion, i.e to reduce each model independently without taking into account
the rest of the models or the environment (as seen in bottom of Figure 2). Hence every
model is reduced separately and thus the hierarchy and structure of the global system
is maintained. However, to apply MOR to each model implies capturing its individual
behavior, not the global one. This can be inefficient as too much effort may be spent
capturing some local behavior that is not relevant for the global response (maybe filtered
by another model). Furthermore certain aspects of the global response might be missed
as it is not clear at the component level how relevant they are.

To avoid these problems, one can reduce each component block separately but ori-
ented to capture the global input-output response. This approach will provide us with
more control in the reduction stage while also preserving the structure of the intercon-
nections. The transfer function to match is the global one, so the most relevant behavior
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Fig. 2. Illustration of flat reduction in a Block Structured System (Up), and illustration of inde-
pendent reduction of each system (Down).

for the complete RF system is captured. Hence the global matrices are used in the pro-
cess of generating the basis for the projector, and thus only the global inputs and outputs
of the complete interconnected system are relevant. Therefore, the inefficiencies caused
by the large number of ports of the individual component blocks can be avoided. The
basis is later used for the reduction of the individual blocks, so the hierarchy can be
maintained.

Some recent methods have advocated this approach. In [18] a control theoretic view-
point of reduction of interconnected systems was presented, but it has the disadvantage
that it is unable to treat capacitive couplings, and it is cumbersome to define the inter-
connections in complex settings. A generalization that overcomes such problems is the
Block Structure Preserving (BSP) framework, first presented in [19], in which it was
applied to separate variables of different nature, and later generalized in [20, 21].

Considering a system composed of Nb sub-systems, the resulting description matri-
ces can be written as

G=

G11 . . . G1Nb
...

. . .
...

GNb1 . . . GNbNb

 C=

C11 . . . C1Nb
...

. . .
...

CNb1 . . . CNbNb


B =

[
B1

T . . . BNb
T ]T

L =
[
L1 . . . LNb

]
. (22)

The main idea is to retain the system block structure, i.e. the two-level hierarchy and
thus some degree of sparsity, after reduction via projection, allowing for a more efficient
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Fig. 3. Illustration of the effect of the Block Structure Preserving reduction.

reduction and use of the reduced model. The procedure relies on expanding the projector
of the global system (obtained via any classical MOR projection technique) into a block
diagonal matrix, with block sizes equal to the sizes of its Nb individual component
blocks (22). A basis that spans a suitable subspace for reduction via projection is then
computed (for example a Krylov subspace). The projector built from that basis can be
split and restructured into a block diagonal one so that the 2-level structure is preserved
under congruence transformation.

V =

 V1
...

VNb

 V̆ =

V1
. . .

VNb


V = colsp [Kr{A,R,q}]→ colspan [V ]⊂ colspan

[
V̆

] (23)

where Kr{A,R,q} is the q column Krylov subspace of the complete system (A = G−1C
and R = G−1B). The block-wise congruence transformation is (see Figure 3)

Ĝi j = V T
i Gi jVj Ĉi j = V T

i Ci jVj B̂i = V T
i Bi L̂ j = L jVj (24)

It should be noticed that the above projection matrix V̆ has Nb (number of blocks) times
more columns than the original projector. This leads to an Nb times larger reduced sys-
tem. On the other hand, this technique maintains the block structure of the original
system and gives us some flexibility when choosing the size of the reduced model de-
pending on the block layout and relevance. The reduced system will be able to match
up to Nb times q block moments of the original complete transfer function (see [20]
for details) under the best conditions (i.e. with very weak entries in the off-diagonal
blocks). Under the worst conditions, only q block moments are matched, i.e. the same
number than in the flat reduction.

This technique is applicable to the global system, composed of the individual blocks
and their connections (including both resistive as well as capacitive or inductive cou-
plings between the blocks). The BSP technique therefore preserves the block structure
of the system. However, the inner structure of the blocks themselves is lost since the
procedure turns any non-empty block in the original system into a full block, but it is
still possible to identify the blocks and relate them to the original device or interaction
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block. Nevertheless, if any block is empty in the global system matrix, it remains empty
after reduction, increasing the sparsity.

4.2 PMTBR in Block Structure MOR

Any projection-based MOR procedure can be extended in the BSP manner to maintain
the hierarchical structure of a system. In the case of the PMTBR algorithm, additional
characteristics of the procedure can be further taken advantageous of in the current
framework.

If the system has some internal structure, then the matrix Z that is computed from
the vector samples of the global system can be split into blocks. The estimated Gramian
can be written block-wise as Z1

...
ZNb

→ ZZH =

Z1ZH
1 . . . Z1ZH

Nb
...

. . .
...

ZNbZH
1 . . . ZNb ZH

Nb

=X̄ (25)

But if we expand the matrix Z into diagonal blocks

Z̆=

Z1
. . .

ZNb

→ Z̆Z̆H=

Z1ZH
1

. . .
ZNbZH

Nb

=X̆ . (26)

From (25) it can be seen that ZiZH
i = X̄ii, i.e. the matrix X̆ = Z̆Z̆H is a block diago-

nal matrix whose entries are the block diagonal entries of the matrix X̄ . Under a good
quadrature scheme, the matrix X̄ converges to the original X , and therefore X̆ will con-
verge to the block diagonals of X . This means that the dominant eigenspace of X̆ con-
verges to the dominant eigenspace of the block diagonals of X . We can then apply an
SVD to each block of the Z matrix

Zi = ViSiUi → X̆ii = X̄ii = ViS2
i V T

i (27)

where Si is real diagonal, and Vi and Ui are unitary matrices. The dominant eigenvectors
of Vi in 27 corresponding to the dominant eigenvalues of Si, can be used as a projec-
tion matrix in a congruence transformation over the system matrices for model order
reduction. The elements of Si can also be used for a priori error estimation in a way
similar to how Hankel Singular Values are used in TBR procedures. Of course, the
convergence of these singular values, and therefore the error bounds, depends on the
strength of the coupling and the interconnections, but it is supposed that the impact of
the systems (placed in the block diagonals) in the global behavior dominates the im-
pact the couplings and interconnections may have in such global behavior. Using these
block projectors Vi, a structure preserving projector for the global system can be built
(23) which will capture the most relevant behavior of each block (revealed by the SVD)
with respect to the global response (recall that Z is composed of sample vectors of the
complete system). This approach provides us with more flexibility when reducing a
complete system composed of several blocks and the interactions between them, as it
allows to control the reduced size of each device via an error estimation on the global
response.
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5 Parametric Block Structure MOR

From the two-level hierarchical description of a system it is possible to have some extra
block information that allows us to perform a more efficient MOR. But the behavior
of the individual blocks that compose the system is subject to the effect of process
variations, both geometrical and electrical. Such variations, as previously pointed out,
also affect the interactions and couplings between these blocks. Any system-wide EM
simulations must address these effects. Therefore, the variability study must be done
over the complete system, and after model generation, a two-level parametric system
will be obtained, with the block matrices in the block diagonals and the interactions
between them in the off-diagonals. All these blocks will be functions of the relevant
process and geometrical parameter.

G =

 G11(λ{11}) . . . G1Nb(λ{1Nb})
...

. . .
...

GNb1(λ{Nb1}) . . . GNbNb(λ{NbNb})

 C =

 C11(λ{11}) . . . C1Nb(λ{1Nb})
...

. . .
...

CNb1(λ{Nb1}) . . . CNbNb(λ{NbNb})


B =

[
B1

T . . . BNb
T
]T L =

[
L1 . . . LNb

]
(28)

where λ{i j} represents the subset of parameters affecting block Gi j in (28) (it is sup-
posed that some parameters are local, and thus only affect some localized blocks).
From (28) is clear that we have a parametric system depending on λ =

SNb
i=1, j=1 λ{i, j}.

Therefore we can apply parametric MOR reduction. Note that any parameter affecting
several blocks (diagonal blocks and their interactions) is treated as a single parameter
(this avoids the treatment of the same parameter affecting different systems as several
different ones).

In this circumstances, BSP techniques can be applied in order to maintain the sys-
tem structure. This is possible as long as the selected pMOR technique is based on a
projection scheme, which is the case for most of the existing procedures (as already pre-
sented in Section 3). The extension is very simple: obtain a suitable basis for projection
from the complete system, and then split and expand it into a block structure preserving
projector. If the basis spans the most relevant behavior of the parametric system, then
the expanded BSP projector will capture those as well.

All the advantages and disadvantages mentioned in Section 4 hold here. But there is
an extra and important advantage in the parametric case: the BSP technique maintains
the block parametric dependence, i.e. if a block Ci j depends on a subset of param-
eters λ{i j}, then the reduced block Ĉi j = V T

i Ci jVj will depend on the same parameter
subset and no other. This fact has inherent advantages in terms of storage and use of
the sensitivities, as the reduced sensitivities are even sparser than the nominal matrices.
On the other hand, as previously discussed, some pMOR algorithms yield very large
ROMs, and therefore their combination with BSP techniques will lead to an extremely
large ROM.

However, it was shown in Section 3.3 that the ROM sizes obtained with the Vari-
ational PMTBR method are usually less sensitivity to the number of parameters, and
such method is an extension of the PMTBR framework to handle parametric systems;
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Algorithm I: Block Structure Preserving VPMTBR

Starting from a Block Structured System C,G,B,L with Nb blocks:
1: Select a quadrature rule of K points in the space [s, λ]

2: For each point compute: zk =
(

s(k)C(λ(k))+G(λ(k))
)−1

B

3: Form the matrix columns Z = [z1 . . .zK ]
4: Split it into Nb blocks, according to the system structure

Z =

 Z1
...

ZNb


5: For each block Z j obtain the SVD: Z j = V jS jU j
6: For each matrix V j drop the columns whose singular values falls bellow the desired global

tolerance
7: Build a Block Structure Preserving Projector from the remaining columns

V̆ =

V1
. . .

VNb


8: Apply V̆ in a congruence transformation on the Block Structured System C,G,B,L

the main difference is that the sampling scheme for obtaining the matrix whose columns
span the desired subspace is extended to the multidimensional space of the parameters
and the frequency, the rest of the procedure being exactly the same.

For this reason, the Variational PMTBR framework can be easily extended and com-
bined with the BSP methodology, by direct use of the technique presented in Section
4.2 in the variational case. The advantages of the block size control and error estimation
provided in such case are still valid, although in this case, as in [17], only a bound on
the expected error can be given. This block-wise control is very useful when the various
component models of a complete system have very different relevant rank: if the same
ROM size is applied to every block, the reduction may grow unnecessarily large. In con-
trast, the complexity of the proposed methodology is exactly the same as that for the
non-structure-preserving techniques. The only difference is that the SVD (or orthonor-
malization in the moment matching approaches) must be done block-wise in order to
avoid numerical errors (e.g. the expansion of a orthogonal matrix to a block diagonal
does not guarantee the orthogonality of this new basis). This can become an advantage,
because for some blocks the number of vectors needed is lower, so less computational
effort is required in orthonormalization steps.

6 Results

To illustrate the proposed procedure we present results from two examples to which
several pMOR techniques were applied. These include [17] denoted as VPMTBR, [13]
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Fig. 4. Bus topology for Example 1.

Fig. 5. (Up) Y34 versus the frequency for Example 2 for the nominal, pertubed and parametric
ROMs with random parameter variation set. (Down) Relative Error of the ROMs w.r.t. the per-
turbed response.

denoted as PPTDM, and two Block Structure preserving methods: Algorithm I, denoted
as BS VPMTBR, and block structure based on [13], denoted as BS PPTDM. The non-
reduced model response will be denoted as Original or Perturbed, depending on whether
a parameter variation has been applied.

6.1 Example 1 - Coupled Buses

This example, depicted in Figure 4, is composed of 16 blocks: 2 buses of 8 parallel
lines each (each line modeled as an RC ladder of 100 segments) are on different metal
layers, and cross at a square angle. The inputs and outputs are taken at the edges of
each line of the first bus, so the system will have 16 ports. In this case there is no
interconnection, just coupling effects. Each line is assumed coupled to the previous and
the next line of their bus, and to every line of the other bus in the crossing area. Each
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Fig. 6. Example 1 - Structure of the matrices for the original system (up), and the ROM obtained
with BS VPMTBR (down). Note the different dimensions (nz is the number of nonzero elements
in matrix).

Table 1. Characteristics of the pMOR methods applied in Example 1

MOR Method Size NNZ (G C) Sparsity Ratio

NONE 1600 4768 12588 0.0018 0.0049

VPMTBR 71 5041 5041 1.000 1.000

PPTDM 544 295936 295936 1.000 1.000

BS VPMTBR 96 722 5438 0.078 0.590

BS PPTDM 160 1600 17200 0.062 0.672

line has its width (W) as a parameter, which implies 16 independent parameters. The
width variation affects the line model, as well as the in-bus coupling (width variation
also affects the interline spacing), and the inter-bus coupling (the crossing area varies).

Figure 5 shows the frequency response of the nominal system, the pertubed response
of the non-reduced system, and the responses of ROMs for VPMTBR, PPTDM, BS
VPMTBR and BS PPTDM. Again, the main characteristics of the resulting ROMs are
shown in Table 1. The PPTDM based algorithms result in very large ROMs even for
small number of moments to match (2 w.r.t. the frequency and 2 w.r.t. each parameter).
For these reasons each block moment from PPTDM was truncated to 10 vectors to keep
the size manageable (otherwise no reduction would be possible). While this seems to
produce acceptable results, there is little control over the result. On the other hand, the
PMTBR based techniques leads to more compressed ROMs, as the SVD reveals the
most relevant vectors. In the case of the BS VPMTBR, the control of each block allows
different reduction sizes for each bus: since the ports of the 2nd bus are not taken into
account, less effort is needed to capture its behavior. In fact, the models for the 1st bus
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Fig. 7. Interconnection scheme for Example 2, with original sizes and parameter indication.

Fig. 8. Example 2 - (Up) Magnitude in dB of Y11 versus the frequency of Example 1 for the nom-
inal, the pertubed and the parametric ROMs for a random parameter variation. (Down) Relative
Error (in dB) of Y11 for the ROMs w.r.t. the perturbed response.

are of sizes 8 to 10, while models for the 2nd bus are all size 3. The ability to control
reduction locally is clearly an advantage of the method. The effect of this control can be
seen in Figure 6, which shows the structure for the original (nominal and one sensitivity)
matrices (up), and the structure obtained with BS VPMTBR reduction.

6.2 Example 2 - EM based models

The second example system is composed of four blocks: a Multiple Input Multiple Out-
put (MIMO) RC ladder of size 101, with 2 ports, a MIMO EM based model of a planar
Spiral Inductor of size 4961, with 2 ports, another RC ladder of size 101 and 2 ports,
and an MIMO EM-based model for a metal-insulator-metal (MIM) capacitor. The four
systems are connected in series as shown in Figure 7, so the global inputs and out-
puts are taken in the first port of the first RC and the second port of the CMIM model.
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Fig. 9. Example 2 -(Up) Structure of the nominal G matrix (left), and the structure of the sensitiv-
ities of G w.r.t. p1 (centre, affecting the block related to the spiral), and w.r.t. p5 (right, affecting
the RC ladders) for the BSP-based reduction. (Down) Same matrices, but for the dynamic part.

Table 2. Example 2 - Characteristics of the pMOR methods applied

MOR Method Size NNZ (G C) Max. RE Generation Cost

(Blocks) (Sparsity Ratio)

NONE 11207 49305 13708 0 none

(101,4961,101,6044) (0.00039 0.00011)

VPMTBR 169 28561 28561 −18.7dB 90Samples(s+λ)

(169) (1.00 1.00) SV D(n×169)

BS VPMTBR 182 18146 14034 −31.9dB 90Samples(s+λ)

(8,91,8,75) (0.55 0.42) SV D(n×{8,91,8,75})

The system depends on six parameters, affecting different blocks. Figure 8 shows the
frequency response of the self-admittance Y11 of the nominal system, the pertubed re-
sponse of the non-reduced system, and the responses of the PMTBR-based models (the
PPTDM and BS PPTDM models do not produce competitive results sizewise, and there-
fore were omitted). Table 2 shows the main characteristics of the obtained ROMs. The
BS VPMTBR yields a slightly bigger ROM, but it maintains the block structure, both of
the nominal matrices and the sensitivities (see Figure 9), of the original system, and is
able to control the size of each reduced block depending on its relevance on the global
response. Furthermore, the block parameter dependence is clearly maintained. Figure 9
shows the structure of the matrices obtained with BS VPMTBR, for the nominal ma-
trices (left, G up and C down), where the effect of the block order control can be seen,
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and for two sensitivities, one affecting only the block related to the Spiral (centre), and
other affecting the RC ladders (right), which are extremely sparse. On the other hand,
the flat reduction via VPMTBR yields full matrices, both for the nominal and the sen-
sitivities. The accuracy is also better for the BSP based approach, and the procedure
requires similar computational effort.

7 Conclusion

In this paper we have presented a block structure-preserving parametric model order
reduction technique, as an extension of existing parametric MOR techniques, in order to
improve the reduction when a two-level hierarchical structure is available in the system
description. This type of structure is common in coupled or interconnected systems,
and can lead to simulation advantages. The methodology presented here is general in
the sense that it can be used with any projection parametric MOR technique to maintain
the two-level hierarchy and the block-parameter dependence. The presented extension
of the PMTBR-based procedures into the Block Structure Preserving framework, allows
more control on the reduction, provided by the inclusion of estimated error bounds on
the single blocks oriented to the global response.
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