
On the Comparison of Different Number

Systems in the Implementation of Complex

FIR Filters

Gian Carlo Cardarilli1, Alberto Nannarelli2, and Marco Re1

1 Department of Electronics, University of Rome Tor Vergata, Rome, Italy
{g.cardarilli, marco.re}@uniroma2.it

2 DTU Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
an@imm.dtu.dk

1 Introduction

In modern electronic systems, complex arithmetic computation plays an im-
portant role in the implementation of different Digital Signal Processing
(DSP) and scientific computation algorithms [1], [2]. Most of the interest in
complex signal processing is related to the implementation of wireless com-
munication systems based on new concepts and architectures [3]. A very in-
teresting tutorial paper on complex signal processing and its applications has
been presented recently in [4]. In [4], the importance of the use of complex
signal processing in wireless communications systems has been shown. Re-
garding communication systems, one of the most critical computation to be
implemented in hardware is complex FIR filtering. In fact, FIR filters are
generally characterized by a high order (number of taps) to obtain sharp
transition bands that, in case of high speed real time computation, require a
many resources and have high power dissipation. In particular, for complex
FIR filters, the hardware complexity is mostly determined by the number of
complex multipliers (i.e. each complex multiplication is actually implemented
with four scalar multiplications). Different solutions have been proposed to
lower the hardware complexity of the complex multiplication either at algo-
rithmic level (Golub Rule) [5], or by using different number systems such as the
Quadratic Residue Number System (QRNS) [6], [2] and the Quater-Imaginary
Number System (QINS) [7].

The aim of this work is to compare in terms of performance, area and
power dissipation, the implementations of complex FIR filters based on the
traditional Two’s Complement System (TCS), the QRNS and the QINS (or
radix-2j) implemented in the Redundant Complex Number Systems (RCNS)
[8].

2 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

Previous work was done on both the QRNS ([6], [9]) and on the radix-
2j and the RCNS ([10], [11], [12]). In this work, we compare for a specific
application, the complex FIR filter, the performance and the tradeoffs of TCS,
QRNS and RCNS. The results of the implementations show that the complex
filter implemented in QRNS has the lowest power dissipation and the smallest
area with respect to filters implemented in TCS and RCNS.

The work is organized as follows: in Section II a background on the QRNS
and the radix-2j number systems is given; the FIR filter architectures for
the three number systems are described in Section III; the synthesis results
and the comparisons are discussed in Section IV. Finally, the conclusions are
drawn in Section V.

2 The Quadratic Residue Number System

A Residue Number System (RNS) is defined by a set of P relatively prime
integers {m1, m2, . . . , mP } which identify the RNS base. Its dynamic range
is given by the product M = m1 · m2 · . . . · mP .
Any integer X ∈ {0, 1, 2, . . .M − 1} has a unique RNS representation given
by:

X
RNS
→ (〈X〉m1

, 〈X〉m2
, . . . , 〈X〉mP

)

where 〈X〉mi
denotes the operation X mod mi [13]. Operations on different

mi (moduli) are done in parallel

Z = X op Y
RNS
→















Zm1
= 〈Xm1

op Ym1
〉m1

Zm2
= 〈Xm2

op Ym2
〉m2

.

ZmP
= 〈XmP

op YmP
〉mP

(1)

As a consequence, operations on large wordlengths can be split into several
modular operations executed in parallel and with reduced wordlength [13].

The conversion of the RNS representation of Z can be accomplished by
the Chinese Remainder Theorem (CRT):

Z =

〈

P
∑

i=0

mi · 〈mi
−1〉mi

· Zmi

〉

M

with mi =
M

mi

(2)

and mi
−1 obtained by 〈mi · mi

−1〉mi
= 1.

To better explain the CRT, we show an example in which we convert
the RNS representation {3, 6, 5}, with RNS base { 5, 7, 8 }, to integer.
The dynamic range of the RNS base { 5, 7, 8 } is M = 280. We start by
computing the values mi = M

mi

m1 =
280

5
= 56 m2 =

280

7
= 40 m3 =

280

8
= 35

Comparison of Different Number Systems for Complex Filters 3

To compute mi
−1, we have to find a number x such that

〈mi · x〉mi
= 1 (3)

For this reason, x is called the multiplicative inverse of mi and indicated as
mi

−1. By computer iterations, we find

m1
−1 = 1 m2

−1 = 3 m3
−1 = 3

Finally, applying (2) to the set of residues {3, 6, 5} we get

〈

3
∑

i=1

mi · 〈mi
−1〉mi

· Zi

〉

280

= 〈 56 · 1 · 3 + 40 · 3 · 6 + 35 · 3 · 5 〉
280

=

〈 1413 〉
280

= 13

We can easily verify that

〈13〉5 = 3, 〈13〉7 = 6, 〈13〉8 = 5

In the complex case, we can transform the imaginary term into an integer if
the equation q2 + 1 = 0 has two distinct roots q1 and q2 in the ring of integers
modulo M (ZM). A complex number xR + jxI = (xR, xI) ∈ ZM × ZM , with
q root of q2 + 1 = 0 in ZM , has a unique Quadratic Residue Number System
representation given by

(xR, xI)
QRNS
→ (Xi, X̂i) i = 1, 2, . . . , P

Xi = 〈xR + q · xI〉mi

X̂i = 〈xR − q · xI〉mi

(4)

The inverse QRNS transformation is given by

(Xi, X̂i)
RNS
→ (XRi, XIi) i = 1, 2, . . . , P

XRi = 〈2−1(Xi + X̂i)〉mi

XIi = 〈2−1 · q−1(Xi − X̂i)〉mi

(5)

where 2−1 and q−1 are the multiplicative inverses of 2 and q, respectively,
modulo mi:

〈2 · 2−1〉mi
= 1 and 〈q · q−1〉mi

= 1 .

Then, by applying the CRT we get

(XR1, XR2, . . . , XRP)
CRT
→ xR

(XI1, XI2, . . . , XIP)
CRT
→ xI

(6)

Moreover, it can be proved that for all the prime integers which satisfy

p = 4k + 1 k ∈ N

4 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

the equation q2 + 1 = 0 has two distinct roots q1 and q2.
As a consequence, the product of two complex numbers xR + jxI and

yR + jyI is in QRNS

(xR + jxI)(yR + jyI)
QRNS
→ (〈XiYi〉mi

, 〈X̂iŶi〉mi
) (7)

and it is realized by using two integers multiplications instead of four.
We illustrate an example of QRNS multiplication in the ring modulo 13.

The complex multiplication to perform is

(xR + jxI)(yR + jyI) = (3 + j)(2 + j2) = 4 + j8

For m = 13 the root is q = q1 = 5 ↔ 〈5 · 5〉13 = −1. The conversion to QRNS
according to (4) gives

X = 〈3 + 5 · 1〉13 = 8 Y = 〈2 + 5 · 2〉13 = 12

X̂ = 〈3 − 5 · 1〉13 = 11 Ŷ = 〈2 − 5 · 2〉13 = 5

The two QRNS multiplications (modulus 13) are:

X · Y = 〈8 · 12〉13 = 5 X̂ · Ŷ = 〈11 · 5〉13 = 3

And finally, the conversion QRNS to integer according to (5) gives

zR = 〈7(5 + 3)〉13 = 4 being 2−1 = 7
zI = 〈7 · 8(5 − 3)〉13 = 8 and q−1 = 8

3 The Radix-2j Number System

It is well known that an integer x can be represented by a digit-vector

X = (xn−1, . . . , x1, x0)r

such that

x =
n−1
∑

i=0

xi · r
i

where r is the radix of the representation. By choosing r = 2j, we obtain
a Quater-Imaginary Number System (QINS) [7]. Complex numbers can be
represented in QINS by vectors with the non-redundant digit set {0, 1, 2, 3}.
Therefore, a complex number a + jb is represented in QINS as:

a + jb = xn−1(2j)n−1 + xn−2(2j)n−2 + . . . +
+x3(−8j) + x2(−4) + x1(2j) + x0(1)

= (xn−1, . . . , x1, x0)2j

(8)

Comparison of Different Number Systems for Complex Filters 5

Real Imaginary

-8 00200.0 -8j 01000.0
-7 00201.0 -7j 01010.2
-6 00202.0 -6j 01010.0
-5 00203.0 -5j 01020.2
-4 00100.0 -4j 01020.0
-3 00101.0 -3j 01030.2
-2 00102.0 -2j 01030.0
-1 00103.0 -1j 00000.2

0 00000.0 0j 00000.0

1 00001.0 1j 00010.2
2 00002.0 2j 00010.0
3 00003.0 3j 00020.2
4 10300.0 4j 00020.0
5 10301.0 5j 00030.2
6 10302.0 6j 00030.0
7 10303.0 7j 103000.2
8 10200.0 8j 103000.0

Table 1. Representation of real and imaginary integers in QINS.

The above expression, shows that the real part is represented by the digits
of even weight, while the imaginary one by the digits of odd weight. Further-
more, the sign is embedded in the representation. The imaginary number j

cannot be represented by (8). To represent j, we need the power −1, which
corresponds to − 1

2
j, that in the conventional number systems (e.g. binary)

is only needed to represent fractional numbers. Table 1 shows how the real
and imaginary numbers, in the range [−8, 8] and [−8j, 8j] respectively, are
represented in QINS. Every complex number xR + jxI can be obtained by
overlapping the real and imaginary parts. For example, according to Table 1,
4 − 5j is represented by the digit vector 11320.2.

From Table 1 we can notice that for a given number of digits the repre-
sentation is not symmetric with respect to the zero. For example, in the two’s
complement binary system with 8 digits we can represent the dynamic range
{−128, 127}. In the QINS, for the real part, with 3 digits (equivalent to 64
different values) the dynamic range representable is {−12, 51}.

3.1 Addition

The addition of two QINS numbers can be performed by changing the carry

rule according to (8). First, because the even weight digits represent the real
part and the odd weight the imaginary one, the carry is propagated by skip-
ping a digit. Second, because two adjacent even (or odd) weight digits have
opposite sign, the carry propagated acts as a borrow. For example, if a positive
weight digit generates a carry, this positive value will decrement the next digit

6 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

with negative weight, and vice-versa. In addition, the propagation of borrows
can generate negative digits (e.g. -1). Therefore, because of the quaternary
representation of the QINS, the negative digits are converted into positive
(modulo operation) and an always positive carry propagated. Summarizing
the addition algorithm is implemented as:

xi, yi, si ∈ {0, 1, 2, 3}
ci ∈ {1, 0, 1}

si = (xi + yi + ci) mod 4

ci+2 =







1 if (xi + yi + ci) ≥ 4
1 if (xi + yi + ci) < 0
0 otherwise

For example, if we wnat to add xR = 1 and yR = 3 in QINS we get:

X : 0 0 0 0 3. 0 +
Y : 0 0 0 0 1. 0 +
c: 1 0 1 0 0. 0 =
S: 1 0 3 0 0. 0 → sR = 4

3.2 The Redundant Complex Number Systems

The implementation of the basic arithmetic operators in radix-2j can take
advantage of the Signed-Digit (SD) representation [14], which allows carry
free addition. The combination of radix-2j and SD representation, resulted in
the Redundant Complex Number Systems (RCNS), which is described in [8],
[10], [11], [12] and [15].

We now briefly recall the characteristics of the RCNS. The RCNS is a
redundant positional number system based on the radix rj where its digits
can assume the 2α + 1 values: Aα = {α, · · · , 1, 0, 1, · · · , α} where α = −α. .
In the case of the radix 2j, two possible RCNSs [10] are:

1. RCNS 2j, 2 with digit set A2 = {2, 1, 0, 1, 2}
2. RCNS 2j, 3 with digit set A3 = {3, 2, 1, 0, 1, 2, 3}

In this work, RCNS 2j, 2 is used to recode the multiplier, and RCNS 2j, 3
is used for the signed-digit additions, as illustrated next.

4 FIR Filter Architecture

A complex FIR filter of order N is expressed by

y(n) =

N−1
∑

k=0

akx(n − k) (9)

Comparison of Different Number Systems for Complex Filters 7

Z
−1

+

+ Z
−1

+

+Z
−1 +

++
a

0
a

1
a a

n−1

y(t)

x(t)

n−2

Fig. 1. Structure of FIR filter in transposed form.

where x, y and ak denote complex numbers. We consider the implementation
of a FIR filter in transposed form because its structure is more regular with
respect to the filter order N and it does not require a tree of adders. The filter
in transposed form (Fig. 1) can be regarded as the sequence of groups, often
referred as taps, composed of:

• a complex multiplier;
• a complex adder implemented with one adder for the real part, and one

for the imaginary part;
• a register to store the real and imaginary parts.

We perform our design space exploration for programmable N-tap complex
FIR filters with input and coefficients size of 10 bits for both the real part
and imaginary parts. The 20 bit dynamic range of the filter guarantees error
free operations3.

4.1 TCS FIR Filter

A single tap of the The programmable N-tap TCS complex FIR filter is real-
ized as sketched in Fig. 2. It is composed of two branches: the real branch (top
part of Fig. 2) and the imaginary branch (bottom part of Fig. 2). The real
and imaginary products are both realized with two Booth multipliers each,
and the resulting partial products are accumulated in a Wallace’s tree struc-
ture which produces a carry-save (CS) representation of the product at each
side of the filter. We chose to keep the product in carry-save (CS) format to
speed-up the operation, and delayed the assimilation of the CS representation
to the last stage of the filter. In both branches (real and imaginary) of each
tap we need to add the CS representation of the product to the value stored
in the register (previous tap). Again, to avoid the propagation of the carry,
we can store the CS representation. For this reason, we need to implement
the addition with an array of 4:2 carry-save adders (CSA), as shown in Fig.
2.

3 These wordlengths are derived from the specification of an actual digital filter for
satellite TV broadcasting.

8 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

CSA 4:2

R
E

G

C
S

A
 4

:2

CSA 4:2

X

X

X

X

R
E

G

C
S

A
 4

:2

XRE

XIM

ARE

ARE
AIM

- AIM

COMPLEX FILTER TAP

CSA 4:2

R
E

G

C
S

A
 4

:2

CSA 4:2

X

X

X

X

R
E

G

C
S

A
 4

:2

XRE

XIM

ARE

ARE
AIM

- AIM

COMPLEX FILTER TAP

Fig. 2. Structure of tap in TCS complex FIR filter.

We convert the CS representation of yRe and yIm with two carry-propagate
adders at the filter output.

4.2 QRNS FIR Filter

The architecture of the QRNS filter, is a direct consequence of (1), (7) and
(9), and it can be realized by two RNS filters in parallel as shown in Fig. 3.
Each RNS filter is then decomposed into P filters working in parallel, where
P is the number of moduli used in the RNS representation. In addition, the
RNS filter requires both binary to QRNS and QRNS to binary converters.

In order to have a dynamic range of 20 bits, as required by the specifica-
tions, we chose the following set of moduli:

mi = {5, 13, 17, 29, 41}

such that
log2(5 · 13 · 17 · 29 · 41) > 20 .

For each path mod mi, we have to build a FIR filter with a structure similar
to that of Fig. 1. Therefore, we need to implement modular multiplication and
addition.

Comparison of Different Number Systems for Complex Filters 9

m1

m2

m P

...

m1

m2

m P

...

co
nv

er
si

on
 T

C
S

 −
−

>
 Q

R
N

S

co
nv

er
si

on
 Q

R
N

S
 −

−
>

 T
C

S

y(n)_x(n)_

X Y

ŶX̂

RNS FIR

RNS FIR

Fig. 3. QRNS FIR Filter architecture

Implementation of modular addition

The modular addition
〈a1 + a2〉m

can be implemented by two additions. If the result of a1 + a2 exceeds the
modulo (it is larger than m− 1), we have to subtract the modulo m. In order
to speed-up the operation we can execute in parallel the two operations:

(a1 + a2) and (a1 + a2 − m).

If the sign of the three-term addition is negative, it means than the sum
(a1 + a2) < m and the modular sum is a1 + a2, otherwise the modular ad-

10 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

n−bit adder

carry−save adder

m u x

n−bit adder

0 1

−m 1 2

MSB

n
n

nn

n

1

a a

Fig. 4. Architecture of the modular adder.

n w 〈qw〉m = n

0 N/A
1 0 〈20〉5 = 1
2 1 〈21〉5 = 2
3 3 〈23〉5 = 3
4 2 〈22〉5 = 4

Table 2. Example of isomorphic transformation for m = 5 (q = 2).

dition is the result of the three-term addition. The above algorithm can be
implemented with two binary adders as shown in Fig. 4.

Implementation of modular multiplication by isomorphism

Because of the complexity of modular multiplication, it is convenient to im-
plement the product of residues by the isomorphism technique [16] . By using
isomorphisms, the product of the two residues is transformed into the sum of
their indices which are obtained by an isomorphic transformation. According
to [16], if m is prime there exists a primitive radix q such that its powers
modulo m cover the set [1, m − 1]:

n = 〈qw〉m with n ∈ [1, m − 1] and w ∈ [0, m − 2].

An example of isomorphic transformation is shown in Table 2 for m = 5. In
this case, the primitive radix is q = 2.

Both transformations n → w and w → n can be implemented with m − 1
entries look-up tables, if the moduli are not too large (less than 8-bit wide).
Therefore, the product of a1 and a2 modulo m can be obtained as:

Comparison of Different Number Systems for Complex Filters 11

1
w

2
w

mod(m−1) adder

w

.
m

a
2

a
1

IIT Table

DIT Table DIT Table

a
1

a
2

Fig. 5. Structure of isomorphic multiplication.

〈a1 · a2〉m = 〈qw〉m

where

w = 〈w1 + w2〉m−1 with a1 = 〈qw1〉m and a2 = 〈qw2〉m

In order to implement the modular multiplication the following operations are
performed:

1) Two Direct Isomorphic Transformations (DIT) to obtain w1 and w2;
2) One modulo m − 1 addition 〈w1 + w2〉m−1;
3) One Inverse Isomorphic Transformations (IIT) to obtain the product.

The architecture of the isomorphic multiplier is shown in Fig. 5. Special at-
tention has to be paid when one of the two operands is zero. In this case
there exists no isomorphic correspondence and the modular adder has to be
bypassed.
For example, for the modular multiplication 〈3 · 4〉5 = 2 using the isomorphic
transformation of Table 2, we have

1) 3 = 〈23〉5
DIT
→ w1 = 3

4 = 〈22〉5
DIT
→ w2 = 2

2) 〈2 + 3〉4 = 1

3) 1
IIT
→ 〈21〉5 = 2

Implementation of FIR filter modulo m

By using the isomorphism technique, the product of the two residues is trans-
formed into the sum of their indices which are obtained by an isomorphic

12 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

adder mod (m −1)
i

adder mod m i

inv. isomorphism

register

from prev.
 tap

to next
 tap

isomorphic
multiplier

modular
adder

X A
k

(Isomorphic representation)

Fig. 6. Structure of RNS tap for filter in transposed form.

transformation. As a result, in each tap, the modular multiplication is reduced
to a modular addition followed by an access to table (inverse isomorphism).
The two input DIT tables of Fig. 5 do not need to be replicated in every
tap. By observing that in computing the product AkX(n − k) the term X is
common to all taps and it can be converted once in the input conversion unit,
and that the term Ak can be stored directly as the index of the isomorphism.
Therefore, the structure of each modular tap can be simplified as shown in
Fig. 6.

4.3 Radix-2j Filter (RCNS)

Because of the radix-2j representation, the filter tap is simply implemented
with a multiplier and an adder. We implement the multiplier as described in
[10]. The complex x and ak are converted in non-redundant QINS and then
ak is recoded into RCNS 2j, 2. The partial products (PPs) are then accumu-
lated by a tree of arrays of signed-digit full-adders (SDFA) which operates in
RCNS 2j, 3.
In RCNS 2j, 3, the complex number

X = (Xn−1, . . . , Xi, . . . , X1, X0, X−1)

has digits in the set Xi = {3, 2, 1, 0, 1, 2, 3}, which encoded in binary as

Xi = 2x1
i + x0

i with x1
i , x

0
i ∈ {1, 0, 1} (10)

Comparison of Different Number Systems for Complex Filters 13

0 1

mux

0 1

mux

binary SDFA

0 1

mux

0 1

mux

binary SDFA

y
i

x
i

s
i

P1 P0M1 M0P1 P0 M0

P1 P0M1 M0

x
i

x
i

x
i

y
i

y
i

y
i

M1

i−2
c

i−2
c M1

P1

c
i

P0

c
i

M0

c
i

c
i

P1

M1

s
i

s
i

s
i

Fig. 7. Implementation of SD full-adder (SDFA).

Both x1
i and x0

i are then encoded with two bits each as shown in Table 3.
Therefore, the resulting binary encoding of Xi is illustrated in Table 4. For
bits are necessary to represent each RCNS 2j, 3 digit. With the encoding of
Table 4 the SDFA of Fig. 7 can be derived.

x1

i xP1

i xM1

i x0

i xP0

i xM0

i

1 0 1 1 0 1
0 0 0 0 0 0
0 1 1 0 1 1
1 1 0 1 1 0

Table 3. Binary encoding of x1

i and x0

i .

By arranging the SDFAs in a tree the 10 PPs are reduced to 2 as shown
in Fig. 8. An extra array of SDFAs adds the product x · ak to the partial sum
coming from the previous tap. As for the TCS case, we keep the carry-save
representation of the digits until the last stage of the filter where we perform
the conversion from RCNS 2j, 3 to radix-2 (binary) integers. Due to the CS
representation of digits we need to store 8N bits in the tap’s registers.

5 Filters Implementation

The filters are implemented in the 90 nm STM library of standard cells [17]
and they have been synthesized by Synopsys Design Compiler. All the filters

14 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

Xi x1

i x0

i xP1

i xM1

i xP0

i xM0

i

3 1 1 0 1 0 1

2 1 0 0 1 0 0
0 1 1 1

1 0 1 0 0 0 1
1 1 0 1

1 1 0 1 1 0

0 0 0 0 0 0 0
1 1 0 0
0 0 1 1
1 1 1 1

1 0 1 0 0 1 0
1 1 1 0

1 1 1 0 0 1

2 1 0 1 0 0 0
1 0 1 1

3 1 1 1 0 1 0

Table 4. Binary encoding of Xi.

Booth’s Recoding
&

PP Generator
R

E
G

SDFA

x(n)

Ak

N

N

8N
8N

Booth’s Recoding
&

PP Generator
R

E
G

SDFA

x(n)

Ak

N

N

8N
8N

Fig. 8. Structure of RCNS tap.

can be clocked at fmax = 300 MHz. By interpolating the results obtained by
synthesis on filters of different order (number of taps), we obtain the trends
shown in Fig. 9 for the area and Fig. 10 for the power. The values of area and
power dissipation for the single tap (Fig. 2, Fig. 6 and Fig. 8) determine the
slopes of the curves in the figures. The conversions from the TCS to the other

Comparison of Different Number Systems for Complex Filters 15

0 10 20 30 40 50 60
0

500

1000

1500
Area for different Number Systems

A
re

a
(µ

 m
2)*

10
E

3

Number of taps

TCS Filter
QRNS Filter
RCNS Filter

Fig. 9. Trends in area for increasing N.

Area P at 100 MHz
tap conv. tap conv.

TCS 21.8K 2.0K 1.00 0.10
QRNS 9.6K 12.0K 0.25 1.20
RCNS 23.9K 8.0K 1.05 0.30

[µm2] [mW]

Table 5. Values of area and power dissipation.

number systems (and vice versa) are a constant contribution that does not
depend on the number of taps, but only on the dynamic range of the filters.
Table 5 reports the data for tap and conversion contribution for the three
number systems.

The results show that complex filters implemented in QRNS consume sig-
nificantly less power than the corresponding ones in TCS and RCNS. The
expression for the power dissipated dynamically [18] in a system composed of
n cells is

Pdyn = V 2
DDf ·

n
∑

i=1

CLiai (11)

where

VDD is the power supply voltage;
f is the clock frequency;
CLi is the load connected to the i-th cell (both active load and interconnec-

tions);

16 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70
Power consumption for different Number Systems

P
ow

er
 (

m
W

)

Number of taps

TCS Filter
QRNS Filter
RCNS Filter

Fig. 10. Trends in power dissipation (at 100 MHz) for increasing N.

ai is the activity factor of the i-th cell, which is the measure of how many
transitions occur at its output. The activity factor is normally related to
the clock ai ∈ [0, 1].

The lower power dissipation in the QRNS filter is due to the combination of
two factors:

1. As clearly shown in Fig. 9, the smaller area results in a global reduced
capacitance

∑n

i=1
CLi (including shorter interconnections).

2. The work in [19] showed that the number of transitions, i.e. the switching
activity, for vectors of the same number of bits k, in RNS is lower than in
TCS

(

k
∑

i=1

ai

)

RNS

<

(

k
∑

i=1

ai

)

TCS

Therefore, the switched capacitance
∑n

i=1
CLiai, and by (11) the power con-

sumption, in QRNS is smaller than in TCS and RCNS.

6 Conclusions

In this work, the use of different number representations for the implementa-
tion of complex FIR filters has been investigated.

Complex multipliers determine the performance, area and power dissipa-
tion of complex filters. Previously in [10], complex multipliers in TCS and

Comparison of Different Number Systems for Complex Filters 17

RCNS were evaluated, while in [9], complex filters in QRNS and TCS were
compared. Here we extended the comparison to complex filters implemented
in TCS, QRNS and RCNS.

The experimental results on complex filters with 20 bit dynamic range
show that for the TCS and the RCNS the area and power dissipation are sim-
ilar and confirms the findings of [10]. As for the QRNS, the results presented
here, confirm those of [9], based on the implementation of TCS and QRNS
complex filters in a 0.35 µm technology.

To summarize, this work shows that for complex high order FIR filters im-
plementations based on QRNS offer significant advantages in area and power
dissipation without any performance degradation.

References

1. A. V. Oppenheim and R. V. Shafer, Digital Signal Processing. Englewood Cliffs
N.J.: Prentice Hall, 1995.

2. S. K. Mitra and K. Kaiser, Handbook for Digital Signal Processing. Wiley-
Interscience, 1993.

3. R. W. Brodersen and M. S.-W. Chen, “Digital Complex Signal Processing Tech-
niques for Impulse Radio,” Proc. of IEEE GLOBECOM ’06 Global Telecommu-
nications Conference, pp. 1–5, Nov. 2006.

4. K. W. Martin, “Complex signal processing is not complex,” IEEE Transactions
on Circuits and Systems I, vol. 51, pp. 1823–1836, Sep. 2004.

5. P. S. Moharir, “Extending the scope of Golub’s method beyond complex mul-
tiplication to binary converters,” IEEE Transactions on Computers, vol. C-34,
no. 5, pp. 484–487, 1985.

6. M. Sodestrand, W. Jenkins, G. A. Jullien, and F. J. Taylor, Residue Number
System Arithmetic: Modern Applications in Digital Signal Processing. New
York: IEEE Press, 1986.

7. D. E. Knuth, The Art of Computer Programming 2: Seminumerical Algorithms,
3rd ed. Reading, MA: Addison-Wesley Publishing Company, 1998.

8. T. Aoki, H. Amada, and T. Higuchi, “Real/Complex Reconconfigurable Arith-
metic using Redundant Complex Number Systems,” Proc. of 13th IEEE Sym-
posium on Computer Arithmetic, pp. 200–207, July 1997.

9. A. D’Amora, A. Nannarelli, M. Re, and G. C. Cardarilli, “Reducing Power Dis-
sipation in Complex Digital Filters by using the Quadratic Residue Number
System,” Proc. of 34th Asilomar Conference on Signals, Systems, and Comput-
ers, pp. 879–883, Nov. 2000.

10. T. Aoki, K. Hosci, and T. Higuchi, “Reduntant Complex Arithmetic and its
Application to Complex Multiplier Design,” Proc. of 29th IEEE International
Symposium on Multiple-Valued Logic, pp. 200–207, May 1999.

11. Y. Ohi, T. Aoki, and T. Higuchi, “Redundant Complex Number Systems,” Proc.
of 25th IEEE International Symposium on Multiple-Valued Logic, pp. 14–19,
May 1995.

12. T. Aoki, Y. Ohi, and T. Higuchi, “Redundant Complex Number Arithmetic
for High-Speed Signal Processing,” VLSI Signal Processing VIII (1995 IEEE
Workshop on VLSI Signal Processing), pp. 523–532, Oct. 1995.

18 Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

13. N. Szabo and R. Tanaka, Residue Arithmetic and its Applications in Computer
Technology. New York: McGraw-Hill, 1967.

14. A. Avizienis, “Signed-Digit Number Representations for Fast Parallel Arith-
metic,” IRE Trans. Electronic Computers, vol. EC-10, pp. 389–400, Sep. 1961.

15. A. M. Nielsen and J.-M. Muller, “Borrow-Save Adders for Real and Complex
Number Systems,” Proc. 2nd Conf. on Real Numbers and Computers, Apr. 1996.

16. I. Vinogradov, An Introduction to the Theory of Numbers. New York: Pergamon
Press, 1955.

17. STMicroelectronics, 90nm CMOS090 Design Platform,
http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm.

18. N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd ed.
Addison-Wesley Publishing Company, 1993.

19. T. Stouraitis and V. Paliouras, “Considering the alternatives in low-power de-
sign,” IEEE Circuits and Devices Magazine, vol. 17, pp. 22–29, July 2001.

