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Abstract. The design and implementation of a hardware accelerator dedicated 

to Binary Arithmetic Decoding Engine (BADE) is presented. This is the main 

module of the Context-Adaptive Binary Arithmetic Decoder (CABAD), as used 

in the H.264/AVC on-chip video decoders. We propose and implement a new 

approach for accelerating the decoding hardware of the significance map by 

providing the correct context for the regular hardware engine of the (CABAD). 

The design development was based on a large set of software experiments, 

which aimed at exploiting the characteristic behavior of the bitstream during 

decoding. The analysis gave new insights to propose a new hardware 

architecture to improve throughput of regular engines for significance map with 

low silicon area overhead. The proposed solution was described in VHDL and 

synthesized to standard cells in IBM 0.18 µm CMOS process. The results show 

that the developed architecture reaches 187 MHz with a non optimized physical 

synthesis.  

Keywords: Hardware Dedicated Architectures for Decoding H.264/AVC 

Video Standard, Arithmetic Entropy Coding, CABAC, CABAD. 

1   Introduction 

The growing importance of high definition digital videos, mainly for real-time 

application, is calling for higher video compression efficiency to save storage space 

and transmission bandwidth [1]. The most advanced standard is the H.264/AVC, 

currently at the commercial state-of-the-art, defined by the ITUT/ISO/IEC [2]. This 

standard defines a great set of tools, which act in different domains of image 

representation to get higher compression ratios, roughly doubling the ratio obtained, 

by the MPEG-2 compressors [2]. The H.264/AVC introduces many innovations in the 

techniques used to explore the elimination of the redundancies found in digital video 

sequences.  

The H.264/AVC standard specifies two alternative entropy methods: CAVLC 

(Context-Adaptive Variable Length Coding) and CABAC (Context-Adaptive Binary 

Arithmetic Coding) [1]. Both are based on the fact that the digital video sequences 

present non-stationary but predictable statistical behavior [3]. Moreover, this 



statistical behavior is highly dependent on the type of content that is being processed 

and on the video capture technique [1, 2]. To address this issue, the H.264/AVC 

adopts an innovative approach that provides dynamic adaptive probabilities 

estimation, which is introduced in the CAVLC and CABAC [3] coding schemes.  

The CABAC is the most important entropy encoding method defined by the 

H.264/AVC standard, allowing the H.264/AVC to reach 15% coding gain over 

CAVLC [2]. However, to obtain these coding gains a significant computational 

complexity is added in the coding hardware. Moreover, the coding algorithm is 

essentially sequential, as each step iteration produces only one bit and the next step 

depends on the values produced in the previous iterations [1]. The sequential nature of 

the CABAD leads to significant performance bottlenecks in the decoder. Many works 

found in the literature address these constraints trying to break data dependencies 

inherent to the nature of CABAC. 

The goal of this work is to present a new hardware architecture to improve the 

throughput of the CABAD arithmetic engines. The architectural design aims to 

achieve a very efficient implementation, based on our experiments for a detailed 

bitstream flow analysis.  

Next section presents an overview on context-adaptive binary arithmetic codec and 

the arithmetic engines are also detailed. Section 3 presents related works found in the 

literature. The bitstream flow analysis by simulation is discussed in Section 4. The 

architecture proposal is detailed in Section 5. The results of our architecture after 

synthesis are presented in Section 6. Section 7 the validation process applied in this 

case study are discussed. Finally, Section 8 addresses some conclusions and future 

work. 

2   Context Adaptive Binary Arithmetic Codec Overview. 

The context-adaptive binary arithmetic codec as defined by H.264/AVC standard is a 

framework for entropy encoding that transforms the value of a symbol in a word of 

code, with variable length near the theoretical limit of entropy [3]. It works with 

recursive interval divisions combined with context models that allow better coding 

efficiency [3]. Each subinterval represents a unique source symbol, and the size of the 

interval is proportional to that symbol probability of occurrence [3]. However, 

modeling occurrence probabilities of each symbol brings increasing computational 

complexity. One way to decrease this computational complexity is to use a binary 

alphabet [3]. 

The H.264/AVC standard, in its main and high profiles, supports the binary 

arithmetic coding/decoding, from the macroblock layer, to deal with information 

generated by the tools that act on the transform redundancies of the following kinds: 

spatial, temporal, and psycho-visual [2]. In the entropy methods of H.264/AVC 

standard the information that is arriving at the inputs of the encoding process or at the 

outgoing outputs in the decoding process are named Syntax Elements (SE) [3]. The 

SE is composed by the following information: i) type, used for codec control to 

determine the encoding process to be used; ii) and the value to be encoded based on 

the control information provided [2].  



The decoding process is named CABAD and the encoding is referred to as 

CABAC. The encoding process receives at the input SEs with its type and value. 

Considering the SE type, a binarization method is applied to convert the SE value into 

a binary alphabet [2]. Then, the context model selects the appropriate context and 

sends it to the stage of arithmetic coding, responsible for generating the output 

bitstream and updates the context models. In Fig. 1 the integrated encoding and 

decoding dataflow is presented. Both encoding and decoding processes are composed 

by three steps that can be organized into four modules, which are described in the 

following subsections. 

 

 

Fig. 1. CABAC and CABAD dataflow diagram with the three stages and four modules that 

compose the encoder and decoder.  

As shown in Fig. 1 both encoding and decoding processes are composed by four 

modules can be organized into three stages that are described below: 

Binarization/Anti-Binarization: The binarization process consists of 

mapping SE values for a unique sequence of bits that represents the original 

value. This mapping is done to reduce the symbols in the encoding alphabet, 

thus simplifying the amount of elements to be modeled and minimizing the 

costs of the context modeling and facilitating the task of arithmetical 

coding. Each bit, generated through this process, is denoted as "bin" and the 

set of all "bins" (bits) is named "binstring". From a total of seven 

binarization methods, four are fundamental: unary; truncated unary; fixed 

length; and exponential Golomb [2, 3]. 

Probability modeling: A context is a probabilistic model that represents a 

statistical distribution of a particular symbol on the basis of the review of 

the symbols previously processed and the probability of occurrence of the 



current symbol. To adequately model all probabilities of occurrence of each 

symbol, CABAC defines 460 different contexts. Each bin of an SE can be 

associated with one or more contexts. During the encoding the probabilistic 

estimates must be kept updated to ensure the accuracy of the process. Each 

context model is composed by a pair of values, a 6-bit state value for the 

probability index (63 possible probability states), and a binary value for the 

most probable symbol "MPS". The state value is used as an index to the 

estimated probability value of the least probable symbol "LPS"[2, 3]. 

Binary Arithmetic Coder (BAC), or Decoder (BADE): It works based on 

the principle of recursive division of the interval of width R [3]. From the 

estimation of probability for LPS (pLPS) on a given range, two subintervals 

are obtained. The first is given by: rLPS = R * pLPS which is associated 

with LPS while the second (which is related to MPS) is given by: rMPS = R 

- rLPS. According to the encoded bin the rMPS or rLPS is chosen as new 

interval R. To simplify the computational complexity the value of R is 

quantized to 2 bits and the multiplication for rLPS values are pre-stored in a 

64x4 fixed 2-D table indexed by the 6-bit state coming from context model 

and by the 2-bit quantized value of R. During binary arithmetic coding 

process two registers (range "R" and offset "O") are needed to keep the 

interval updates. The first one saves the current interval range while the 

second marks the lower bound within this interval (offset) [2, 3].  

2.1   CABAD Algorithm Overview 

The CABAD process involves a set of actions that occur below the slice layer. Fig. 2 

shows the flow chart for these actions. For each new slice a new CABAD iteration 

happens. At the beginning of a slice a new context table is built from probability 

algorithm based on initial tables that depend on the slice type and of an index value 

(three possibilities) sent by the encoder. After that, CABAD initializes the variable 

CodlOffset getting the first nine bits reading from the encoded bitstream and the 

variable CodlRange  si set to default value [2].  

The CABAD decoding of macroblock layer of SE values are performed until an 

"End One Slice" (EOS) SE type is found. The first step in the SE decoding is the 

decision of its type and, based on this information it chooses an anti-binarization 

method [2]. After that, if the SE type is an EOS, then terminal decoding process is 

selected. Otherwise, for each bin of SE one of two other decoder processes, regular or 

bypass, must be chosen. For bins being decoded by regular process a context table 

address calculation must be done. The information retrieved from context table 

includes the MPS and its probability estimate index denoted by pState variable. The 

CABAD uses an offset fixed for each SE type combined with an increment defined by 

different possible forms, according to the SE type in conformance with [2] to generate 

context table addresses. For some SEs, obtaining increment index involves referring 

to SE from the left, top and current macroblock and, for others, the bin index is used 

for this purpose.  

For bins that use the regular decoding process the CABAD obtains new rLPS from 

a look-up in a fixed pre-stored table indexed by pState and then one of four possible 



values is selected by value of quantized CodlRange (CodlRange>>6) [2]. Then, new 

value of CodlRange is calculated and the comparison between CodlRange and 

CodlOffset define if MPS or LPS happens. After that, the context table must be 

updated with new values for MPS and pState which are obtained from a fixed table 

with state transition with different values for MPS or LPS occurrence. Next, the 

CodlRange and CodlOffset registers are available for the normalization process. In 

this case one or more bits of bitstream can be consumed [2]. Finally, one step of 

regular decoding process is finished; the contexts model and decoding environment 

register are updated. For other bins the bypass decoding process is applied. The 

bypass mode is simpler than the regular mode. Then, anti-binarization module is 

performed and the results of this operation determine if the binstring produced by the 

decoding environment matches with the method expected or not. 

 

 

Fig. 2. CABAD algorithm flow diagram shows the action sequence released by CABAC 

Decoder to process each one SE inside of the slice layer. 

3   Related Work 

Techniques to reduce the latency and data dependency of CABAD have been widely 

discussed in the literature and they follow five basic approaches: pipeline; contexts 

pre-fetching and cache; elimination of renormalization loop; parallel decoding 

engines; and memory organization. The pipeline strategy is used in [4] to increase the 

bins/cycle rate. An alternative to solve the latency of renormalization process is 

presented in [5]. The speculative processing through the use of engines decoding 



parallel is explored first in [6], then in [7] and [8]. High efficiency in the decoding 

process using pre-fetching and cache contexts is discussed in [6] and [9], respectively. 

Memory optimization and reorganization are addressed in [4]. 

The work of [8] presents optimizations in the arithmetic engine through the parallel 

execution in speculative mode and the adoption of leading zero anticipation that 

allows counting of consecutives zeros in CodlRange. These two approaches bring 

reductions in the delay in the critical path.  

The hardware architecture proposed in [6] is based on analysis of the relationship 

between bins count for each SE type and the occurrence of each SE type in one 

macroblock. The usage rate imposed by each SE in each of the three decoder engines 

is a relevant aspect that is used to optimize the overall decoding process.  

An evaluation of the data dependencies in the regular mode of decoder arithmetic 

engine is presented in [7]. In this study, the frequency of changes to CodlRange and 

CodlOffset registers are considered for cases where renormalization process happens 

combined with the observation of MPS or LPS decision. 

Considering the various architectures proposed by different authors for the 

CABAD, a static characteristics analysis of constraints for decoding bitstream process 

was considered and some experiments were conducted by software simulations to 

extract the dynamic behavior of the decoder flow. This analysis is addressed in 

Section 4. 

4   Bitstream Flow Analysis for Decoder Process 

All our analyses were based on results obtained from statistical data collected by 

software routines that we introduced into the decoder module of the reference 

software (JM), version 10.2 [10]. To reach more representative data set in our analysis 

we decided to work with four different digital video resolutions, in YUV video format 

4:2:0, more often used in the reports found in the literature: QCIF, CIF, D1 and 

HD1080p. Moreover, we evaluated the impact of the quantization parameters on the 

bitstream behavior. For our statistics we selected all 18 QCIF, 17 CIF, 18 D1 video 

sequences available in [11], and also seven additional HD1080p video sequences. The 

last are designated as: rush-hour; riverbed; blue-sky; tractor; sunflower; station2; 

pedestrian area. In total, there were 60 digital video sequences in this analysis, each 

with 200 frames. Fig. 3 show one frame of the HD1080p video sequences used in this 

case study in additional to QCIF, CIF and D1 listed in Table 1. 

 

 

 

 

 

 

 

 

 



    

 

Fig. 3. Samples of HD1080 video sequence, that named: rush-hour; riverbed; blue-sky; tractor; 

sunflower; station2; pedestrian area, respectively.  

Table 1.  All video sequence used in this case study.  

Video Sequences 

QCIF 

(176×144) 

CIF 

(352×288) 

D1 

(720×480) 

HD1080 

(1920×1080) 

Akiyo Bridge-close Abstract Bluesky 

Bridge-close Bridge-far Artant Pedestrian 

Bridge-far Bus Chips Riverbed 

Carphone Coastguard Concert Rush-hour 

Claire Container F1 Station2 

Coastguard Flower Football Sunflower 

Container Foreman Ice Tractor 

Foreman Hall Leaves  

Grand-mother High Way Letters  

Hall Mobile Mobile  

Highway Mother-daughter Parkrun  

Miss-america News Rafting  

Mobile Paris Rugby  

Mother-daughter Silent Seawall  

News Stefan Suzie  

Salesman Tempete Tempete  

Silent Waterfall Toweres  

Suzie  Waterfall  

 

The encoding parameters employed for coding all sequences were: Profile IDC = 

77, Level IDC = 40, SymbolMode = CABAC, GOP=IPBB and RDO=ON. Our 

experimental procedure was to perform, for all the video sequences, six different 

encoding processes, varying the parameters of quantization QPISlice and QPPSlice in 

pairs; namely the pairs were: 0:0, 6:0, 12:6, 18:12, 24:18, and 36:26, resulting in a 

total of 420 digital video sequences encoded. The decoding process was done for all 

encoded sequences using the JM v.10.2 decoder, to collect the statistics data and to 

obtain feedback for the validation process. The relations and statistical behavior were 

studied and synthesized, and they will be presented next.  

One of the problems of CABAD is to determine the actual throughput needed for 

the decoding process to occur in real-time. This happens because the length of 

codeword generated by CABAD is variable and may change significantly between 



iterations, since the coding method is context

types it can be difficult to determine the binstring length and the SE sequence, as they 

vary according to the slice type and the macroblock type. However, H.264/AVC 

standard in its level 4.0 defines the upper

bit count at the input and output of the CABAD, before quantization, and the ratio 

between them varies between 1.3 and 2.1 times. Then, we can consider that, in the 

worst case, the architecture has to process at nearly 42Mbps, to reach throughput 

enough for real-time decoding at 30 frames per second in the 1080 x 1920 format

(1080p).  

The Binary Arithmetic Decoder Engines (BADE) are the CABAD kernels. They 

are responsible for regenerating the binstring since of the bitstream and internal 

variables. Each bin is produced by one of three BADE kinds. Considering that the 

decoding process is done bin by bin, it requires high performance because inside this 

module resides the CABAD critical path. The BADE basic

Fig. 4. 

 

Fig. 4. The three kinds of Binary Arithmetic Engines present into CABAC core, its 

organization and they connection with the internal registers
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software profiling, the BADE engine utilization by each SE type was observed to 

determine the better strategy for the dedicated architecture design.  

By analyzing the bins count occurrence in the bitstream we observed that just four 

SE types (coded_block_flag, coeff_level, sig_coeff_flag and last_sig_flag) account 

for more than 93% of all bins, in average, for all types of macroblocks. Thus, a deeper 

analysis of the behavior of these SE types was performed to improve the gain in the 

BADE. In the first study we investigated the bins distribution for different SE types in 

each one macroblock types. In the Table 2 the results obtained are summarized.  

Table 2.  Distribution of bins by different SE types for each macroblock type.  

 Information 
Code Block 

Flag (%) 

Sig & Last 

Flags (%) 

Coefficient 

Levels (%) 

Other SEs 

(%) 

I MB 

Total occurs 2.32 60.38 34.30 3.00 

Bins generated 0.67 17.62 80.00 2.31 

Regular Process 0.86 22.31 74.68 2.15 

Bypass Process 0 0 100 0 

P MB 

Total occurs 2.51 58.50 37.07 1.92 

Bins generated 1.47 34.21 62.05 2.27 

Regular Process 1.76 40.95 54.90 2.39 

Bypass Process 0 0 98.33 1.67 

B MB 

Total occurs 2.61 57.58 38.56 1.25 

Bins generated 1.80 39.75 46.29 12.16 

Regular Process 2.17 47.98 37.46 12.39 

Bypass Process 0 0 98.97 1.03 

Average 

Total occurs 2.55 58.07 37.65 1.73 

Bins generated 1.54 35.14 61.10 2.22 

Regular Process 1.86 42.41 53.30 2.43 

Bypass Process 0 0 98.78 1.22 

 

The results show that there are, on the average, seven significant coefficient flag 

(SE_SIG) and five least significant coefficient flag (SE_LAS) for each 4x4 residual 

blocks. The utilization of arithmetic engines shows that regular engines produce 

80.8% of bins count while the bypass produced 19.2% of them. Another interesting 

fact is that many bins produced by regular and bypass is generated in a consecutive 

way, 84.92% and 29.35%, respectively.  

The occurrence of bins related to the SEs of the significance map (SE_SIG and 

SE_LAS) also deserve emphasis, since together they represent between 27% and 36% 

of all bins processed by the CABAD. Moreover, they have special interest for 

decoding engines since they usually occur in sequence, i.e. each SE_SIG is followed 

by a SE_LAS. However, this does not occur when the value of SE SE_SIG is zero, in 

this case the next SE decoded should be another SE SE_LAS. Fig. 5 illustrates the 

relationship between bins occurrence of the significance map for each of the 

resolutions discussed, highlighting the percentage difference occurrences between 

SE_SIG and SE_LAS. 

 



Fig. 5. Bin occurrences for Significance Map SE in each resolution used. 

5   Design Architecture

The proposed architecture development 

behavior of the bitstream for many coding scenarios and on few previous works found 

in the literature. The bitstream flow analyses have shown that for some specific 

situations using an approach with specialized process

in the decoding process. As presented in section 2, 3 and 4, the exploration of the 

parallel speculative execution of BADE engines is a good alternative to reach greater 

throughput without excessive area increase.

Our design is based on the work presented in [12] which applies multiple parallel 
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Fig. 6. Significance Map generation for a 4x4 coefficients block.  

As shown in Fig. 6 for each SE_SIG with value equal to one there is one SE_LAS, 

but when the SE_SIG is equal to zero then the SE_LAS element does not occur. 

Based on the results analysis, summarized in the Fig. 5, it is possible to identify that 

this mismatching between SE_SIG and SE_LAS pair happens, in average, for roughly 

30% of the cases in the HD1080 video sequences that we tested. This fact opens the 

opportunity to explore decoding optimizations, specifically as to when one specialized 

process to supply the correct context for BADE can be used. 

The proposed architecture employs multiple engines instances for the case of 

variable number of bins per cycle, and also adopts specialized mechanism for context 

selection. Our design basic structure is shown in Fig. 7.  

 

 

Fig. 7. BADE core with arrangement.  

As Fig. 7 shows, the three kinds of engines present in CABAD are organized in 

one hierarchical arrangement, namely: one terminate engine, two regular engines and 



four bypass engines. The BADE block (in Fig. 7) receives three context pairs (STATE 

and MPS) and the bitstream buffer (BS). According to the SE kind, one of its engines 

is used. The Regular and Bypass engine instances are organized into two distinct 

branches. Inside the Regular branch two bins can be produced in one cycle while in 

the Bypass branch at most four bins can be produced in a single cycle. The Regular 

engine is more complex than the other engines, and contains the critical path of this 

module. We used optimizations to reduce the delay of this block. 

Initially an operations reordering is made by the regular engine, as the approach 

presented in [7]. This results in two parallel paths inside the regular engine, one to 

treat the occurrence of the MPS and another for the LPS. Another important aspect is 

the access to static memories to retrieve information about the next state (access the 

MPS_TABLE, and the LPS_TABLE) and the rLPS estimate probabilities 

(RLPS_TABLE). These memories are addressed by pState, which is provided from 

the context model stored in the context memory. The fact that these memories are 

inside the regular engine affects the critical path. Furthermore, when we concatenate 

two regular engines, two accesses to these memories in the same cycle is required. To 

solve this problem we apply an approach similar to that adopted in [13], in which the 

memories are concatenated and combine the information about current, the next MPS 

states, the next LPS states and rLPS estimate probabilities. Thus, we can obtain all 

information needed to decode two bins that reference the same context with just one 

access to the static memory. 

Finally, we applied the first one detect (FOD) strategy to solve the renormalization 

problem in an approach similar to [5]. The special approach used to resolve the 

renormalization allows it to save between 2 to 8 cycles, because the loop is eliminated 

and the renormalization always happens in only one cycle. To reduce the FOD delay, 

the FOD is broken in two segments, one for the low interval part and another for the 

high interval part, as illustrated by Fig. 8. Then, adding just one multiplexer we can 

select the renormalization part between the low and high ranges. To finish, the Range 

first bit is used to choose between new and old register values for the renormalization 

process. 

 



Fig. 8. Renormalization b

 

Considering that the regular engine is responsible for most of the bins produced by 
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Fig. 9. Regular engines interconections inside the Regular Branch.  

6   Experimental Results 

The developed architectures were described in VHDL and synthesized to 0.18 um 

CMOS standard cells based on the IBM cell library using the Cadence RTL compiler. 

The Modelsim tool, version 6.01a, was used during the simulation and architectural 

validation process. The architecture development presents a new arrangement for 

binary arithmetic decoders of CABAD that is able to generate up to 4 bins per cycle, 

in the best case. The utilization of four decoding bypass engines inside the BADE 

increases the hardware resources required, while providing more efficiency compared 

to the BADE architecture with just two decoder bypass engines. Table 3 shows the 

hardware synthesis results for the architecture proposed. It compares the solutions 

with two and four decoder bypass engines in the architecture and our design.  

Table 3.  Distribution of bins by different SE types for each macroblock type.  

Information 

Architectures for multi bin BADE engines  

[6]1 [12] 
Our 

Proposal 

Differences (percent) 

Gates 3671 3928 4022 94 (+2.4%) 

Max. Frequency 191.86 190.25 187 -3,25 (-1.7%) 

Max. Bins/Cycle 3(2R1B) 4(4B) 4(4B) 0 
1 Our implementation of the author´s proposal. 

 

The results in Table 3 indicate that the increase in the hardware costs is around 

2.4% for our design and the maximum frequency decreases 1.7%, both when 

compared to the design proposed in [12]. A large number of test-benches were 
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In the first step, the blocks of lower abstraction level were validated as standalone 

block. This was accomplished by generating the intermediate data from the 

specifications given in the H.264/AVC standard. These stimuli were used in each of 

the blocks and the verification was done by comparing the waveforms in the simulator 

to the functional definition of that block.  

In the second step, the blocks were grouped according to their function and the 

validation was done for the entire group. In this step a software implementation of the 

norm was used to produce the input stimuli and the expected output. The software 

model used to generate the stimuli and the expected results was based on the 

reference software of the H.264/AVC (Surking, 2009). Modifications were done in 

this software to get the right data for the hardware validation. Fig. 11 illustrates the 

data extraction process for validation. 

 

 

Fig. 11. Data extraction process for functional validation of the individual blocks and 

the complete architecture. 

The data extraction process for the production of input stimuli and the results for 

comparison were done using the same standard video sequences of the section 4. 

Actually these stimuli were produced at the same time the data for static and dynamic 

analysis were produced. This approach allowed us to significantly reduce the time 

spent, once we had to process all the video sequences only once. It also made the data 

used for analysis and validation consistent with each other. 

The second step followed the flow showed in Fig. 12. Inside a test-bench file, the 

input stimuli were injected into the validating block (Design Under Test - DUT). The 

outputs of the DUT were stored for later comparison to the expected outputs. 

 



 

Fig. 12. Processo de extração de dados para a validação funcional dos blocos 

individuais e da arquitetura completa. 

8   Conclusions and Future Work 

This work presented a novel dedicated hardware architecture for the BADE of the 

CABAD block that supports the decoding of up to four bins per cycle. The 

architectural decisions were supported by a detailed analysis of the bitstream flow 

generated by a software video decoder. The results show that, with a hardware cost 

increase of just 2.4%, we obtain 5% efficiency gain in the utilization rate of the 

BADE module. The analysis of the bitstream flow shows that it is possible to explore 

the dynamic behavior of CABAD algorithms to develop novel hardware solutions. 

The next step in this development will be to integrate this BADE module inside the 

CABAD top-level hardware architecture and to evaluate performance and throughput 

of the entire H.264/AVC decoding hardware with the same digital video sequence 

inputs. Given that in our simulation experiments we used a limited length for the 

search area for the motion vector calculations, one needs to analyze the behavior of 

the bitstream flow when the search area for motion estimation is increased. 
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