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Abstract. The innovations on integrated circuit fabrics are continuously 

reducing components size, which increases the logic density of systems-on-

chip (SoC), but also affect the reliability of these components. Chip-level 

global buses are especially subject to crosstalk faults, which can lead to 

increased delay and glitches. This paper evaluates different crosstalk fault 

tolerant approaches for Networks-on-chip (NoCs) links such that the network 

can maintain the original network performance even in the presence of errors. 

Three different approaches are presented and evaluated in terms of area 

overhead, packet latency, power consumption, and residual fault coverage. 

Results demonstrate that the use of CRC coding at each link is preferred, when 

minimal area and power overhead are the main goals. However, each one of 

the methods presented here has its own advantages and can be applied 

depending on the application. 

Key-words: Networks-on-Chip (NoCs); fault tolerance; reliability; error 

correction and detection. 

1 INTRODUCTION 

NoCs has emerged as a candidate solution to interconnect IPs in 

complex SoCs, due to its scalability and parallelism, compared to bus 

architectures. A NoC can be defined as a set of routers responsible to 

transmit data on the intra-chip domain, exploiting methods used in 

general networks, decoupling communication from computation, 

enabling the creation of protocols to grant reliability and quality of 

service. 

 



Besides the communication infrastructure, an important SoC design 

challenge is the degradation of the signal integrity on long wires. 

Coupling capacitances tends to increase with the reduced components 

size. Faster clocks and lower operation voltage makes the delay 

induced by crosstalk effects even more critical, being the major source 

of errors in nanoscale technologies [1]. Another noise sources that can 

produce data errors [2] are electromagnetic interference, radiation-

induced charge injection and source noise. 

Compared to buses, NoCs provide more opportunities to implement 

fault tolerance techniques for intra-chip communication. For instance, 

a NoC has multiple paths for any pair of modules, which can be 

exploited to improve the fault tolerance of the communication by 

using adaptive routing algorithms. Techniques based on codification 

for error detection/correction can also be applied for NoCs. Other 

approaches include place and route techniques to avoid routing of bus 

lines in parallel, changes in the geometrical shape of bus lines and 

addition of shielding lines between two adjacent signal lines. 

However, those techniques require advanced knowledge on electric 

layout design, and they are executed later in the design flow.  

Considering these issues, bus encoding techniques represents a 

good tradeoff between implementation costs and design time to 

minimize crosstalk effects [3], and it is a technology independent 

mechanism to increase reliability on intra-chip communication. Even 

though, designers should carefully choose the codification technique, 

taking into account that the ideal codification should have minimal 

area overhead while delivering the desired reliability [3], due to strict 

performance and power constraints of NoC architectures. 

This paper evaluates error recovery mechanisms to increase the 

reliability of NoC links, making it resilient against crosstalk faults. As 

a design constraint, the evaluated mechanisms must be able to keep the 

NoC performance (latency, throughput, and bandwidth) in case of 

errors. Additional design constraints include low area overhead, high 

fault coverage, and minimum delay. 

This paper is organized as follows. Section 2 presents related work 

in fault tolerance for NoCs. Section 3 presents the design of the 

crosstalk fault tolerant NoCs. Section 4 reports the fault modeling used 

to simulate and validate the network. The fault tolerant NoCs are 

evaluated and compared in Section 5. Finally, Section 6 concludes this 

paper. 



2 RELATED WORK 

Several types of faults and fault tolerance techniques can be applied 

to NoCs. Faults can be classified, according to the fault duration, as a 

transient or permanent fault, or according to the moment the fault is 

detected, as an on-line (self-checking) or off-line approach. The types 

of fault tolerant solutions for NoCs range from adaptive routing 

algorithms (used to find alternative paths for communication), coding 

techniques (use redundancy codes to detect and/or correct bit flips), 

retransmission in case of faults detected, and a combination of those 

techniques. The retransmission approach can be further classified 

according to the place where the retransmission takes place: router-to-

router or end-to-end. 

This paper focuses on on-line self-checking fault-tolerance 

techniques for transient faults on NoC links, employing coding 

techniques and router-to-router retransmission. Our goal is to evaluate 

different implementations, comparing metrics as silicon area, latency, 

and power consumption. Although one of the presented architectures 

can detect some faults in the router, our primary goal is to protect NoC 

links. Other fault-tolerance techniques that deviate from our focus, as 

adaptive routing, are not mentioned. 

Table 1 summarizes the related work. Zimmer [4] proposes a fault 

model notation, where faults can occurs simultaneously in multiple 

wires, during multiple clock cycles. This fault model is used to 

evaluate coding techniques on NoC buses. The goal of this work is to 

present an accurate model to simulate the occurrence of faults in wide 

data bit buses and to show the reduction of residual faults when the 

bus is protected with coding techniques using single error correction 

and a double error detection (two bits coverage). 

Bertozzi [5] presents a NoC architecture with pipelined links, 

pipelined arbitration and switching within the routers. The goal of this 

architecture is to provide high-speed operation and reliable 

communication. To achieve reliable communication, this architecture 

provides error control using CRC codes on links. 

Vellanki [6] addresses a NoC architecture with Quality of Service 

(QoS) and error control techniques. This paper presents the evaluation 

of the proposed architecture, considering latency and power 

dissipation metrics. The two QoS methods addressed in this work are 

guaranteed throughput and best effort, and the error control techniques 



include single error detection and retransmission, and single error 

correction. 

Murali [7] explores different error recovery methods for NoCs, 

evaluating for each one the energy, error protection, and latency 

overhead. The methods include end-to-end error detection, router-to-

router error detection, at either at the flit-level and at the packet-level, 

and a hybrid scheme with correction of single errors and detection of 

multiple errors. This paper shown that packet storage is responsible for 

the major part of the energy consumption, thus the end-to-end error 

detection and retransmission has the higher cost in energy efficiency. 

Using the hybrid scheme, it is possible to reduce the energy overhead 

at lower error rates. Small errors are corrected and retransmissions are 

avoided. However, in the presence of multiple errors its efficiency is 

lower than error detection and retransmission schemes. 

Grecu [8] proposed new metrics for performance evaluation of fault 

tolerant NoC architectures. The metrics proposed in this paper includes 

detection latency, recovery latency and message arrival probability. 

Table 1 – Comparison of related works. 

Reference Method 
Implementation/ 
Evaluation 

Metrics 
Types of 
Faults 

ZIM03 
- CRC/Hamming on links 
- Fault Model 
- QoS 

Implementation 
- Residual 

error rate 
Transient 

BER04 
- Source CRC 
- Switch-to-switch 

retransmission 
Implementation Not presented Transient 

VEL04 
- Parity/Hamming on links 
- QoS 

Implementation 
- Latency 
- Power 

Transient 

MUR05 

- End-to-end retransmission 
- Switch-to-switch 

retransmission: 
   -Flit level 
   -Packet level 

- Correction + Detection 

Evaluation 

- Latency 
- Power 
- Residual 

error rate 

Transient 

GRE07 

- End-to-end retransmission 
- Switch-to-switch 

retransmission: 
   -Flit level 
   -Packet level 

- Retransmission with and 
without priority 

Evaluation 

- Message 
arrival 
probability 

- Average 
detection 
time 

- Average 
correction 
time 

Transient 

Proposed 
work 

- CRC/Hamming on links 
- Source CRC 
- Switch-to-switch 
retransmission/ correction 

Implementation/ 
Evaluation 

- Latency 
- Area 
Overhead 

- Power 
- Residual 
error rate 

Transient 

 



These metrics were analyzed in a simple simulation scenario taking 

into account retransmission with and without priority. The Author 

states that these metrics can better estimate the quality of a particular 

fault tolerant implementation than just performance metrics such as 

latency, throughput, and power consumption. 

The contribution of this work is the development, validation, and 

analysis of error detection and recovery techniques for NoCs. 

Compared to [5] and [7] this work presents 3 different solutions to 

apply fault tolerance on NoCs, considering the implementation 

feasibility of each technique, concerning area overhead, power 

consumption and residual fault analysis. 

3 CROSSTALK FAULT TOLERANT NoC 
ARCHITECTURES 

This paper presents three different strategies for fault tolerance on 

NoC links. All methods use as reference design the Hermes NoC [9]. 

Hermes is a configurable infrastructure, specified in VHDL at RT 

level, aiming to implement low area overhead packet switching NoCs. 

Routers have up to five bi-directional ports and each input port stores 

received data on a FIFO buffer. It uses the XY routing algorithm and a 

centralized round-robin arbitration grants access to incoming packets. 

The Hermes NoC architecture has been configured as an 8x8 2-D mesh 

network, flit size equal to 16 bits, 8-flit buffer depth, without virtual 

channels. 

Two coding techniques are used for error detection/correction: CRC 

and Hamming.  

CRC codification is adopted for error detection, due its small 

complexity on logic implementation, and small parity delay 

calculation when using a parallel architecture to generate N parity bits 

per clock cycle. The designed CRC circuit encodes 16 bits (flit width) 

per clock cycle and generates four parity bits. Using this approach, 

93.75% of all possible 16-bit error patterns can be detected [10]. 

Sequential and combinational designs may be used to implement the 

CRC circuitry. The combinational design has been chosen because it 

does not add latency to the network, and the extra delay of the 

combinational logic is considered small. Considering the polynomial 

generator is g = 1+X+X
4
, the resulting combinational circuit for the 

CRC encoder is presented below:
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The decoder uses the same circuit of the encoder and compares the 

received parity bits with the bits generated locally by this encoder. If 

the values of received parity bits are different from the calculated bits, 

the decoder signals an error. 

The second coding technique used in this work is the Hamming 

code, which enables the correction of flits with error in one bit at most. 

The Hamming coder and decoder are based on the function hamgen() 

provided by Matlab. The following equations define the Hamming 

encoder: 
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The Hamming decoder has a similar design plus an additional logic 

to correct the erroneous bit indicated by the syndrome. 

3.1 NoC with link CRC 

Figure 1 illustrates the first fault tolerant architecture implemented, 

which protects only the NoC links. This strategy provides router-to-

router flit-level error detection and retransmission. This figure 

represents two adjacent routers, the sender and the receiver routers, 

and a link between them. Modifications compared to the non-fault 

tolerant design are in grey. It includes a CRC encoder at the sender, a 

CRC decoder and an error flip-flop at the receiver, additional signals 

crc_in and error_out in the link, and slight modifications in the input 

buffers. 

When the sender sends a flit to the receiver, it encodes the CRC in 

parallel due to its combinational logic. The CRC is sent through the 

crc_in signal to the receiver, which decodes it and test for faults. If 

there is no fault, the flit (not the CRC) is stored in the receiver buffer. 

If some fault arrives, the flit is not stored into the buffer, and an error 

is signaled, through the error_out signal, back to the sender, which 



retransmits the last flit. This approach enables error recovery in one 

clock cycle. 

 

 
Figure 1 - Block diagram of the fault tolerant NoC design based on CRC for 

links. 

The benefit of this approach is that the buffers and the buses width 

inside the router remain unchanged, saving silicon area. Only the 

external router interface receives new signals for error detection and 

recovery. The impact in silicon area, power, and delay is smaller. 

There is no impact on the latency when the network has no faults. 

Under a faulty condition the latency is incremented by one clock cycle 

only, which is an advantage compared to an approach based on end-to-

end retransmission. This approach also provides the following 

additional advantages: 

• It is not necessary to store full packets at each router, enabling the 

use of wormhole packet switching, reducing area, power and 

latency compared to store-and-forward or virtual cut- through; 

• This method is faster compared to full packet retransmissions, 

since once an error is detected, the flit can be retransmitted in the 

next clock cycle; 

• Error detection occurs before routing decision, making the network 

resilient against misrouting due to header flit errors; 

• Flits to be retransmitted are available at the sender routers buffers, 

inducing smaller area overhead. 

3.2 NoC with source CRC 

This section presents the second fault tolerant NoC architecture, 

which is illustrated in Figure 2. This figure illustrates a path from the 

source router to a given router located in the path to the destination 

router. Modifications compared to the non-fault tolerant design are in 

grey. It includes a CRC encoder at the sender node, a CRC decoder 



and an error flip-flop at the receivers (intermediate routers and 

destination node), additional signals crc_in and error_out in the links, 

and a slight modification in the input buffers. 

 
Figure 2 - Block diagram of the fault tolerant NoC design based on source CRC 

coder. 

The main modification compared to the design in Section 3.1is that 

the CRC encoder is located only at the Network Interface (NI) of the 

module connected on the router local port. The CRC bits became part 

of the flit, increasing the width of all buffers of the network, as well as 

the internal buses of the routers, so that the CRC bits are carried 

through the network as part of the packet. As can be seen, the data_out 

signal have now 20 bit instead of 16 as the previous network, because 

this signal includes the crc_out signal, presented before in Figure 1. 

This network has the advantage of using four less CRC modules at 

each router (local port does not have CRC). On the other hand, it 

increases the buffer width, which increases the silicon area, the power 

consumption, and the delay of routers. This approach uses the same 

mechanism to recover the corrupted data from the input buffers at the 

previous router, thus, this network presents the same latency as the 

previous network to retransmit corrupted flits (one clock cycle). 

Another advantage of this approach is that it can not only protect 

the links, but also protect certain internal logic of the router. It is 

possible to detect transient or even permanent faults in certain internal 

modules of the routers like the buffers and the crossbar, however, it 

cannot detect faults in most of the router control logic. Another 

limitation is that, if the fault is a bit-flip in a buffer, the error cannot be 

recovered. Therefore, other techniques for fault tolerance should be 

adopted. 

3.3 NoC with Hamming on Links 

Figure 3 presents a simplified structure of the network with 

Hamming code on links. This figure represents two adjacent routers 



(sender and receiver) where the link has been changed to carry 

Hamming parity bits. The sender has a combinational Hamming 

encoder at the output ports and the receiver has a combinational 

Hamming decoder at the input ports. Unlike the previous networks, 

none of the internal modules of the routers were changed. 

 
Figure 3 - Block diagram of the fault tolerant NoC design based on Hamming 

code. 

The incoming flits of the receiver are first decoded and then saved 

in to the buffer. If there is a single fault the Hamming decoder corrects 

it transparently, without need of flit retransmission, thus, unlike the 

previous networks, this approach does not add latency to the network 

in a faulty situation. Note that there is no error signal from the receiver 

to the sender like the previous networks. 

4 FAULT MODELING AND FAULT INJECTION 

This section describes the strategy used to simulate the network and 

the fault injection technique used to evaluation the implemented error 

recovery mechanism. 

4.1 Crosstalk Effects 

Crosstalk effect is observed at each interaction of two adjacent 

wires running long distances in parallel. Each wire has its load 

capacitance and resistance, and each pair of wires has its cross-coupled 

capacitance that causes interferences during switch activity. Table 2 

depicts the delay ratio factor g for a bus wire as a function of 

simultaneous transitions on neighboring lines [11].  

Symbols ↑, ↓ and – represent positive transition, negative transition 

and no transition respectively. The factor r is a relation between inter-

wire capacitance and the relative capacitance of the wire and the 

ground signal. In a usual situation, where these capacitances are the 

same, the r factor is 1. Thus, in the worst-case scenario, where both 



neighbors transit on the opposite direction of the victim wire, the delay 

factor g is 5. Consequently, the wire delay can vary over 500% 

between the worst and the best case, just as a function of the direction 

of the transitions on neighboring wires [11]. 

 

Table 2 - Relation between transition directions and the delay factor g. 

bit k-1 bit k bit k+1 Factor g 

↑ ↑ ↑ 1 

↑ ↑ – 1+r 

↑ ↑ ↓ 1+2r 

– ↑ – 1+2r 

– ↑ ↓ 1+3r 

↓ ↑ ↓ 1+4r 

4.2 Maximal Aggressor Fault (MAF) Model 

The MAF model simplifies the creation of test vectors to induce the 

occurrence of crosstalk effects in integrated circuits. This model 

reduces the fault set by considering worst-case combinations of 

coupling capacitances between all possible aggressors. Therefore, the 

MAF model considers all N-1 aggressors transitioning in the same 

direction as a fault. This model considers that only one fault is 

modeled for each error on a victim line Yi, and only one set of 

transitions can excite that fault. Figure 4 shows the necessary 

transitions to excite four types of fault for a victim wire Yi according 

the MAF model. 

 

 
Figure 4 - Required transitions for MAF model [1]. 

The fault model has four error conditions for each N-line wide set 

of interconnects to be tested: (i) gp: positive glitch error; (ii) gn: 

negative glitch error; (iii) df: falling delay error; (iv) dr: rising delay 

error. 



4.3 Saboteur Module 

A module named saboteur is developed to control the fault 

injection during the simulation process. This module is responsible for 

monitoring the data transmitted in each channel of the network, and 

according to its patterns, changes the value of some data bits to 

simulate the crosstalk effect. The Maximal Aggressor Fault (MAF) 

model, described in [1], is used as a reference for the implementation 

of the saboteur module (see Section 4.2). 

Each NoC link is connected to a saboteur module as illustrated in 

Figure 5. Besides fault injection, each saboteur module counts the 

amount of data transmitted in the link during a full simulation and the 

amount of errors injected on each link, enabling to generate statistics 

related to the fault injection on each channel. 

 
Figure 5 – Saboteur located between two routers. 

In this work, it is considered every 5 bits in parallel, on each 16 bits 

data buses, to check MAF model conditions. If one of them is meet, 

the victim value changes. This module can also be parameterized to 

check individual conditions of MAF model as shown in Section 4.2. 

The amount of errors injected into the network allows the validation of 

the architecture. Note that the fault injection considers worst-case 

situations, and in real circuits, the rate of errors due to crosstalk is 

smaller, since not all true MAF conditions generate faults. 

5 RESULTS  

This section presents area, power, latency and residual fault 

analysis, comparing the reference NoC to fault tolerant NoCs 

developed in this work. 



5.1 Area Overhead 

Four networks have been implemented and synthesized using 

Cadence Encounter RTL Compiler (0.35um standard cells library) to 

evaluate the silicon area. Table 3 shows the results for a router with 5 

ports and for an 8x8 network. 

 

Table 3 - Area results for an 8x8 network (FT means Fault Tolerant). 

 

Original 
network 

FT NoC 

Link CRC 

FT NoC 

Source CRC 

FT NoC 

Hamming 

# of Cells # of Cells % # of Cells % # of Cells % 

Router w/ 5 ports 3537 4025 13.8 4145 17.2 4149 17.3 

   - Buffer 547 590 7.8 630 15.3 547 0 

   - FT Logic 0 256 - 144 - 612 - 

Total NoC cells 208864 236672 13.3 243968 16.8 243136 16.4 

 

The total standard cell area increased 13.3% for the FT NOC with 

CRC in the links. This area overhead is due to the addition of CRC 

encoders and decoders at each router port. 

The area overhead of the NoC with CRC computed at the source 

router is 16.8%. The area overhead for this NoC comes from the 

increased buffer size (flit + CRC bits). As previously mentioned, this 

network can also provide some protection to transient faults on 

internal modules of the routers, justifying its use in designs where 

router fault tolerance is required. 

The network with Hamming on links presented an area overhead of 

16.4% compared to the original network. This overhead is due to the 

higher complexity of the Hamming decoding circuitry. The advantage 

of this technique is the error correction without retransmission, not 

interfering in the network latency in the presence of faults. 

In conclusion, these results point out that a more complex code 

would probably not be an affordable fault tolerance technique for a 

NoC similar to Hermes [9]. Perhaps, more complex NoCs could afford 

complex codes. 

5.2 Latency Impact 

Latency is evaluated using the following test scenario: (i) spatial 

traffic distribution: random destination; (ii) temporal traffic 

distribution: normal distribution, with an average injection rate of 20% 

and 10% of the available link bandwidth. 



Table 4 presents results for the first scenario, with an average 

injection rate equal to 20% of the available link bandwidth. Each 

router sends 100 48-flits packets, resulting in 6,400 transmitted 

packets. Two error injection rates are adopted: 0.0717% (1,181 

injected errors) and 2.03% (33,323 injected errors). As expected, both 

CRC architectures do not add extra latency in the absence of faults, 

and present the same average latency. The average latency increases 

1.8% and 13% for a 1,181 and 33,323 injected faults respectively. The 

network with Hamming code does not add extra latency for error 

protection, however with higher error injection rates some faults are 

not corrected (residual faults).  

 

Table 4 - Average latency, in clock cycles, for an injection rate equal to 20%. 

Network 
Transmitted 
Packets 

Error Injection  
Rate (%) 

Injected 
Errors 

Average Packet 
Latency 

(clock cycles) 

Latency  
Variation 
 (%) 

Original 6,400 0 0 839.39 0 

Link CRC 6,400 

0 0 839.30 0 

0.0717 1,181 854.77 1.8 

2.0300 33,323 948.47 13.0 

Source 
CRC 

6,400 

0 0 839.30 0 

0.0717 1,181 854.77 1.8 

2.0300 33,323 948.47 13.0 

Hamming 6.400 
0.0717 1,181 839.39 0 

2.0300 33,323 839.39 0 

 

The previous scenario with 20% of injection rate corresponds to a 

worst-case scenario where the network is congested. An injection rate 

of 10% of the available bandwidth, the second simulation scenario, 

corresponds to a more realistic NoC traffic behavior. In this 

simulation, each router sends 200 48-flits packets, resulting in 12,800 

transmitted packets. Two error injection rates are adopted: 0.113% 

(3,689 injected errors) and 2.23% (72,392 injected errors). The results 

presented in Table 5 shows smaller latency values, due to the smaller 

congestion inside the network (such average value is near to the 

minimal latency value, 70 clock cycles). The average latency is in 

practice the same, with or without error injection at lower injection 

rates. 

 

 



Table 5 - Average latency, in clock cycles, for an injection rate equal to 10%. 

Network 
Transmitted 
Packets 

Error Injection  
Rates (%) 

Injected 
Errors 

Average 
Packet  
Latency 

(clock cycles) 

Latency  
Variation 
 (%) 

Original 12,800 0 0 101.08 0 

Link CRC 

12,800 0 0 101.08 0 

12,800 0.113 3,689 101.11 0 

12.800 2.230 72.392 101.77 0 

 

Table 6 shows the latency for some individual packets (worst, best 

and typical cases), in clock cycles, for packets with retransmitted flits 

(simulation with injection rate equal to 10%). The worst-case latency 

overhead is 17.4%. It is important to note that this is a worst-case 

scenario, where the same crosstalk fault is repeated and recovered at 

each link in the path between the source and target router. 

 

Table 6 - Latency of packets with and without fault recovery. 

Packet ID 
Latency without  
Fault Recovery 
(clock cycles) 

Latency with  
Fault Recovery 
(clock cycles) 

Latency  
Variation 
 (%) 

11767 299 351 17.4 

6800 297 298 0.3 

968 278 291 4.7 

5.3 Residual Fault Analysis 

This section shows the effectiveness of both methods to protect the 

network against crosstalk faults. To analyze residual faults using CRC 

and Hamming codes, the saboteur module is parameterized to inject 

faults varying the number of MAF model conditions to increase the 

error injection rate. The simulated scenario considers a 5x5 network, 

with each IP sending 200 packets to a random destination, using 15% 

of the link available bandwidth. Table 7 shows the results of these 

simulations. 

 

Table 7 – Residual fault analysis. 

MAF 
Conditions 

Transmitted 
flits 

Injected 
errors 

CRC Residual 
Faults 

Hamming 
Residual Faults 

dr 806,021 341 0 0% 0 0% 

dr, df 808,716 444 0 0% 0 0% 

dr, df, gn 794,816 896 0 0% 0 0% 

dr, df, gn, gp 809,575 16,727 14 0.08% 389 2.32% 



 

As expected, the CRC coding presents a lower residual fault rate, 

since its fault coverage is higher than the Hamming code. When all 

conditions of the MAF model are verified, a 2.32% and 0.08% residual 

fault rate is observed for the Hamming and CRC codes, respectively. 

5.4 Power Consumption 

The power consumption is measured using VCD analysis, with 

Synopsys Prime Time tool. The network is synthesized with the 

TSMC25 library, and simulated to generate the VCD files. A 5x5 

network is used to generate the VCD files, with the same traffic 

scenario used to evaluate residual faults. 

Table 8 shows the average power consumption for routers at 

different locations of the network (routers at the borders of the 

network may have 3 or 4 ports, and the central router has 5 ports). The 

power of the entire NoC is roughly the sum of the power of each 

router. The power consumption overhead of the network with CRC 

coding on links is small (1.9%), compared to the original network. On 

the other hand, the power consumption overhead of the network with 

source CRC reaches 18.9% since the buffer size increases (more 4 bits 

to store CRC values), confirming that most of the NoC power 

consumption is due to the buffers. The network with Hamming on 

links presented 5.4% power consumption overhead due to increased 

logic and the additional parity bit, but it can be considered an 

acceptable cost for this implementation. 

 

Table 8 – Power consumption overhead for the proposed architectures. 

 
Original 
network 
(mW) 

Link CRC 
(mW) 

% 
Source 
CRC 
(mW) 

% 
Hamming 
(mW) 

% 

3-port 
router 

4.80  4.88 1.6 5.90 18.6 5.02 4.4 

4-port 
router 

6.34 6.46 1.9 7.82 18.9 6.70 5.4 

5-port 
router 

7.88 8.04 2.0 9.74 19.1 8.31 5.2 

5x5 NoC 166.20 169.37 1.9 205.01 18.9 175.72 5.4 



6 CONCLUSIONS AND FUTURE WORK 

The goal of this paper was to evaluate different crosstalk fault 

tolerant methods for network links such that the network can maintain 

the original network performance even in the presence of errors. 

Among the three evaluated architectures, the CRC applied at each link 

is the recommend method to protect the network against crosstalk 

effects. The source CRC penalizes area and power. On the other hand, 

the source CRC enables to protect some internal router components, 

since data transmitted through the router is protected. The assumed 

advantage of the Hamming codification, no retransmission required, 

presented a smaller fault coverage and higher area overhead compared 

to CRC, however it can be an interesting alternative for some 

applications, where a small number of data errors can be tolerated and 

the latency needs to be minimal. 

It is possible to enumerate the following future works: (i) explore a 

source Hamming architecture, verifying the feasibility to use it for 

internal router protection; (ii) develop new methods to protect the 

router, minimizing the use of classical redundant approaches (TMR); 

(iii) evaluate and propose adaptive routing algorithms for faulty 

routers. 

7 ACKNOWLEDGMENTS 

This research is supported partially by CNPq (Brazilian Research 

Agency), projects 300774/2006-0, 471134/2007-4 and by CAPES 

PNPD project 02388/09-0. 

8 REFERENCES 

[1] Cuviello M.; et al. “Fault Modeling and Simulation for Crosstalk 

in System-on-Chip Interconnects”. In: IEEE/ACM Int. Conf. on 

Computer-Aided Design (ICCAD’99), pp. 297-303, 1999. 

[2] H. H. K. Tang, K. P. Rodbell, “Single-event upsets in 

microelectronics fundamental physics and issues”. In: Materials 

Research Society Bulletin, vol. 28, pp. 111–116, 2003. 



[3] Bertozzi D.; “The Data-Link Layer in NoC Design”. In: Micheli 

G., Benini L.; Networks on chips: Technology and Tools. Ed. 

Morgan Kaufmann, 408 p, 2006. 

[4] Zimmer H.; Jantsch A. “A Fault Model Notation and Error-

Control Scheme for Switch-to-Switch Buses in a Network-on-

Chip”. In: Hardware/Software Codesign and System Synthesis 

(CODES+ISSS’03), pp. 188-193, 2003. 

[5] Bertozzi D.; Benini L. “Xpipes: A Network-on-chip Architecture 

for Gigascale Systems-on-Chip”. IEEE Circuits and Systems 

Magazine, vol. 4, no. 2, pp. 18-31, 2004. 

[6] Vellanki P.; et al. “Quality-of-Service and Error Control 

Techniques for Network-on-Chip Architectures”. In: Great 

Lakes Symposium on VLSI (GLSVLSI’04), pp. 45-50, 2004. 

[7] Murali S.; et. al. “Analysis of Error Recovery Schemes for 

Networks on Chips”. IEEE Design and Test of Computers, vol. 

22, no.5, pp. 434-442, 2005. 

[8] Grecu, C.; et al. “Essential Fault-Tolerance Metrics for NoC 

Infrastructures”. In: IEEE International On-Line Testing 

Symposium (IOLTS 2007), pp 37-42, 2007. 

[9] Moraes F.; et al. “HERMES: an Infrastructure for Low Area 

Overhead Packet-switching Networks on Chip”. Integration, the 

VLSI Journal, vol. 38, pp. 69-93, 2004. 

[10] Koopman P., Chakravarty T.; “Cyclic redundancy code (CRC) 

polynomial selection for ebedded systems”, In: The International 

Conference on Dependable Systems and Networks, pp. 1-10, 

2004. 

[11] Rabaey J. “Digital Integrated Circuits”. Ed. Prentice Hall, 792 p, 

2003. 

 


