
CROSSTALK FAULT TOLERANT

NOC - DESIGN AND EVALUATION

Alzemiro H. Lucas, Alexandre M. Amory, Fernando G. Moraes

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

Av. Ipiranga, 6681 - prédio 32 - Porto Alegre - Brazil - CEP 90619-900

{alzemiro.silva, alexandre.amory, fernando.moraes}@pucrs.br

Abstract. The innovations on integrated circuit fabrics are continuously

reducing components size, which increases the logic density of systems-on-

chip (SoC), but also affect the reliability of these components. Chip-level

global buses are especially subject to crosstalk faults, which can lead to

increased delay and glitches. This paper evaluates different crosstalk fault

tolerant approaches for Networks-on-chip (NoCs) links such that the network

can maintain the original network performance even in the presence of errors.

Three different approaches are presented and evaluated in terms of area

overhead, packet latency, power consumption, and residual fault coverage.

Results demonstrate that the use of CRC coding at each link is preferred, when

minimal area and power overhead are the main goals. However, each one of

the methods presented here has its own advantages and can be applied

depending on the application.

Key-words: Networks-on-Chip (NoCs); fault tolerance; reliability; error

correction and detection.

1 INTRODUCTION

NoCs has emerged as a candidate solution to interconnect IPs in

complex SoCs, due to its scalability and parallelism, compared to bus

architectures. A NoC can be defined as a set of routers responsible to

transmit data on the intra-chip domain, exploiting methods used in

general networks, decoupling communication from computation,

enabling the creation of protocols to grant reliability and quality of

service.

Besides the communication infrastructure, an important SoC design

challenge is the degradation of the signal integrity on long wires.

Coupling capacitances tends to increase with the reduced components

size. Faster clocks and lower operation voltage makes the delay

induced by crosstalk effects even more critical, being the major source

of errors in nanoscale technologies [1]. Another noise sources that can

produce data errors [2] are electromagnetic interference, radiation-

induced charge injection and source noise.

Compared to buses, NoCs provide more opportunities to implement

fault tolerance techniques for intra-chip communication. For instance,

a NoC has multiple paths for any pair of modules, which can be

exploited to improve the fault tolerance of the communication by

using adaptive routing algorithms. Techniques based on codification

for error detection/correction can also be applied for NoCs. Other

approaches include place and route techniques to avoid routing of bus

lines in parallel, changes in the geometrical shape of bus lines and

addition of shielding lines between two adjacent signal lines.

However, those techniques require advanced knowledge on electric

layout design, and they are executed later in the design flow.

Considering these issues, bus encoding techniques represents a

good tradeoff between implementation costs and design time to

minimize crosstalk effects [3], and it is a technology independent

mechanism to increase reliability on intra-chip communication. Even

though, designers should carefully choose the codification technique,

taking into account that the ideal codification should have minimal

area overhead while delivering the desired reliability [3], due to strict

performance and power constraints of NoC architectures.

This paper evaluates error recovery mechanisms to increase the

reliability of NoC links, making it resilient against crosstalk faults. As

a design constraint, the evaluated mechanisms must be able to keep the

NoC performance (latency, throughput, and bandwidth) in case of

errors. Additional design constraints include low area overhead, high

fault coverage, and minimum delay.

This paper is organized as follows. Section 2 presents related work

in fault tolerance for NoCs. Section 3 presents the design of the

crosstalk fault tolerant NoCs. Section 4 reports the fault modeling used

to simulate and validate the network. The fault tolerant NoCs are

evaluated and compared in Section 5. Finally, Section 6 concludes this

paper.

2 RELATED WORK

Several types of faults and fault tolerance techniques can be applied

to NoCs. Faults can be classified, according to the fault duration, as a

transient or permanent fault, or according to the moment the fault is

detected, as an on-line (self-checking) or off-line approach. The types

of fault tolerant solutions for NoCs range from adaptive routing

algorithms (used to find alternative paths for communication), coding

techniques (use redundancy codes to detect and/or correct bit flips),

retransmission in case of faults detected, and a combination of those

techniques. The retransmission approach can be further classified

according to the place where the retransmission takes place: router-to-

router or end-to-end.

This paper focuses on on-line self-checking fault-tolerance

techniques for transient faults on NoC links, employing coding

techniques and router-to-router retransmission. Our goal is to evaluate

different implementations, comparing metrics as silicon area, latency,

and power consumption. Although one of the presented architectures

can detect some faults in the router, our primary goal is to protect NoC

links. Other fault-tolerance techniques that deviate from our focus, as

adaptive routing, are not mentioned.

Table 1 summarizes the related work. Zimmer [4] proposes a fault

model notation, where faults can occurs simultaneously in multiple

wires, during multiple clock cycles. This fault model is used to

evaluate coding techniques on NoC buses. The goal of this work is to

present an accurate model to simulate the occurrence of faults in wide

data bit buses and to show the reduction of residual faults when the

bus is protected with coding techniques using single error correction

and a double error detection (two bits coverage).

Bertozzi [5] presents a NoC architecture with pipelined links,

pipelined arbitration and switching within the routers. The goal of this

architecture is to provide high-speed operation and reliable

communication. To achieve reliable communication, this architecture

provides error control using CRC codes on links.

Vellanki [6] addresses a NoC architecture with Quality of Service

(QoS) and error control techniques. This paper presents the evaluation

of the proposed architecture, considering latency and power

dissipation metrics. The two QoS methods addressed in this work are

guaranteed throughput and best effort, and the error control techniques

include single error detection and retransmission, and single error

correction.

Murali [7] explores different error recovery methods for NoCs,

evaluating for each one the energy, error protection, and latency

overhead. The methods include end-to-end error detection, router-to-

router error detection, at either at the flit-level and at the packet-level,

and a hybrid scheme with correction of single errors and detection of

multiple errors. This paper shown that packet storage is responsible for

the major part of the energy consumption, thus the end-to-end error

detection and retransmission has the higher cost in energy efficiency.

Using the hybrid scheme, it is possible to reduce the energy overhead

at lower error rates. Small errors are corrected and retransmissions are

avoided. However, in the presence of multiple errors its efficiency is

lower than error detection and retransmission schemes.

Grecu [8] proposed new metrics for performance evaluation of fault

tolerant NoC architectures. The metrics proposed in this paper includes

detection latency, recovery latency and message arrival probability.

Table 1 – Comparison of related works.

Reference Method
Implementation/
Evaluation

Metrics
Types of
Faults

ZIM03
- CRC/Hamming on links
- Fault Model
- QoS

Implementation
- Residual

error rate
Transient

BER04
- Source CRC
- Switch-to-switch

retransmission
Implementation Not presented Transient

VEL04
- Parity/Hamming on links
- QoS

Implementation
- Latency
- Power

Transient

MUR05

- End-to-end retransmission
- Switch-to-switch

retransmission:
 -Flit level
 -Packet level

- Correction + Detection

Evaluation

- Latency
- Power
- Residual

error rate

Transient

GRE07

- End-to-end retransmission
- Switch-to-switch

retransmission:
 -Flit level
 -Packet level

- Retransmission with and
without priority

Evaluation

- Message
arrival
probability

- Average
detection
time

- Average
correction
time

Transient

Proposed
work

- CRC/Hamming on links
- Source CRC
- Switch-to-switch
retransmission/ correction

Implementation/
Evaluation

- Latency
- Area
Overhead

- Power
- Residual
error rate

Transient

These metrics were analyzed in a simple simulation scenario taking

into account retransmission with and without priority. The Author

states that these metrics can better estimate the quality of a particular

fault tolerant implementation than just performance metrics such as

latency, throughput, and power consumption.

The contribution of this work is the development, validation, and

analysis of error detection and recovery techniques for NoCs.

Compared to [5] and [7] this work presents 3 different solutions to

apply fault tolerance on NoCs, considering the implementation

feasibility of each technique, concerning area overhead, power

consumption and residual fault analysis.

3 CROSSTALK FAULT TOLERANT NoC
ARCHITECTURES

This paper presents three different strategies for fault tolerance on

NoC links. All methods use as reference design the Hermes NoC [9].

Hermes is a configurable infrastructure, specified in VHDL at RT

level, aiming to implement low area overhead packet switching NoCs.

Routers have up to five bi-directional ports and each input port stores

received data on a FIFO buffer. It uses the XY routing algorithm and a

centralized round-robin arbitration grants access to incoming packets.

The Hermes NoC architecture has been configured as an 8x8 2-D mesh

network, flit size equal to 16 bits, 8-flit buffer depth, without virtual

channels.

Two coding techniques are used for error detection/correction: CRC

and Hamming.

CRC codification is adopted for error detection, due its small

complexity on logic implementation, and small parity delay

calculation when using a parallel architecture to generate N parity bits

per clock cycle. The designed CRC circuit encodes 16 bits (flit width)

per clock cycle and generates four parity bits. Using this approach,

93.75% of all possible 16-bit error patterns can be detected [10].

Sequential and combinational designs may be used to implement the

CRC circuitry. The combinational design has been chosen because it

does not add latency to the network, and the extra delay of the

combinational logic is considered small. Considering the polynomial

generator is g = 1+X+X
4
, the resulting combinational circuit for the

CRC encoder is presented below:

�� = ��� ⊕ ��� ⊕ �� ⊕ �	 ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ �
 ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ ��� ⊕ �
 ⊕ �	 ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ ��� ⊕ ��� ⊕ �	 ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ ��

The decoder uses the same circuit of the encoder and compares the

received parity bits with the bits generated locally by this encoder. If

the values of received parity bits are different from the calculated bits,

the decoder signals an error.

The second coding technique used in this work is the Hamming

code, which enables the correction of flits with error in one bit at most.

The Hamming coder and decoder are based on the function hamgen()

provided by Matlab. The following equations define the Hamming

encoder:

�� = ��� ⊕ �12 ⊕ ��� ⊕ �
 ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ ��� ⊕ �
 ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ ��� ⊕ ��� ⊕ �
 ⊕ �� ⊕ �	 ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ ��� ⊕ ��� ⊕ �� ⊕ �	 ⊕ �� ⊕ �� ⊕ �� ⊕ ��

�� = ��� ⊕ ��� ⊕ ��� ⊕ �	 ⊕ �� ⊕ �� ⊕ �� ⊕ ��

The Hamming decoder has a similar design plus an additional logic

to correct the erroneous bit indicated by the syndrome.

3.1 NoC with link CRC

Figure 1 illustrates the first fault tolerant architecture implemented,

which protects only the NoC links. This strategy provides router-to-

router flit-level error detection and retransmission. This figure

represents two adjacent routers, the sender and the receiver routers,

and a link between them. Modifications compared to the non-fault

tolerant design are in grey. It includes a CRC encoder at the sender, a

CRC decoder and an error flip-flop at the receiver, additional signals

crc_in and error_out in the link, and slight modifications in the input

buffers.

When the sender sends a flit to the receiver, it encodes the CRC in

parallel due to its combinational logic. The CRC is sent through the

crc_in signal to the receiver, which decodes it and test for faults. If

there is no fault, the flit (not the CRC) is stored in the receiver buffer.

If some fault arrives, the flit is not stored into the buffer, and an error

is signaled, through the error_out signal, back to the sender, which

retransmits the last flit. This approach enables error recovery in one

clock cycle.

Figure 1 - Block diagram of the fault tolerant NoC design based on CRC for

links.

The benefit of this approach is that the buffers and the buses width

inside the router remain unchanged, saving silicon area. Only the

external router interface receives new signals for error detection and

recovery. The impact in silicon area, power, and delay is smaller.

There is no impact on the latency when the network has no faults.

Under a faulty condition the latency is incremented by one clock cycle

only, which is an advantage compared to an approach based on end-to-

end retransmission. This approach also provides the following

additional advantages:

• It is not necessary to store full packets at each router, enabling the

use of wormhole packet switching, reducing area, power and

latency compared to store-and-forward or virtual cut- through;

• This method is faster compared to full packet retransmissions,

since once an error is detected, the flit can be retransmitted in the

next clock cycle;

• Error detection occurs before routing decision, making the network

resilient against misrouting due to header flit errors;

• Flits to be retransmitted are available at the sender routers buffers,

inducing smaller area overhead.

3.2 NoC with source CRC

This section presents the second fault tolerant NoC architecture,

which is illustrated in Figure 2. This figure illustrates a path from the

source router to a given router located in the path to the destination

router. Modifications compared to the non-fault tolerant design are in

grey. It includes a CRC encoder at the sender node, a CRC decoder

and an error flip-flop at the receivers (intermediate routers and

destination node), additional signals crc_in and error_out in the links,

and a slight modification in the input buffers.

Figure 2 - Block diagram of the fault tolerant NoC design based on source CRC

coder.

The main modification compared to the design in Section 3.1is that

the CRC encoder is located only at the Network Interface (NI) of the

module connected on the router local port. The CRC bits became part

of the flit, increasing the width of all buffers of the network, as well as

the internal buses of the routers, so that the CRC bits are carried

through the network as part of the packet. As can be seen, the data_out

signal have now 20 bit instead of 16 as the previous network, because

this signal includes the crc_out signal, presented before in Figure 1.

This network has the advantage of using four less CRC modules at

each router (local port does not have CRC). On the other hand, it

increases the buffer width, which increases the silicon area, the power

consumption, and the delay of routers. This approach uses the same

mechanism to recover the corrupted data from the input buffers at the

previous router, thus, this network presents the same latency as the

previous network to retransmit corrupted flits (one clock cycle).

Another advantage of this approach is that it can not only protect

the links, but also protect certain internal logic of the router. It is

possible to detect transient or even permanent faults in certain internal

modules of the routers like the buffers and the crossbar, however, it

cannot detect faults in most of the router control logic. Another

limitation is that, if the fault is a bit-flip in a buffer, the error cannot be

recovered. Therefore, other techniques for fault tolerance should be

adopted.

3.3 NoC with Hamming on Links

Figure 3 presents a simplified structure of the network with

Hamming code on links. This figure represents two adjacent routers

(sender and receiver) where the link has been changed to carry

Hamming parity bits. The sender has a combinational Hamming

encoder at the output ports and the receiver has a combinational

Hamming decoder at the input ports. Unlike the previous networks,

none of the internal modules of the routers were changed.

Figure 3 - Block diagram of the fault tolerant NoC design based on Hamming

code.

The incoming flits of the receiver are first decoded and then saved

in to the buffer. If there is a single fault the Hamming decoder corrects

it transparently, without need of flit retransmission, thus, unlike the

previous networks, this approach does not add latency to the network

in a faulty situation. Note that there is no error signal from the receiver

to the sender like the previous networks.

4 FAULT MODELING AND FAULT INJECTION

This section describes the strategy used to simulate the network and

the fault injection technique used to evaluation the implemented error

recovery mechanism.

4.1 Crosstalk Effects

Crosstalk effect is observed at each interaction of two adjacent

wires running long distances in parallel. Each wire has its load

capacitance and resistance, and each pair of wires has its cross-coupled

capacitance that causes interferences during switch activity. Table 2

depicts the delay ratio factor g for a bus wire as a function of

simultaneous transitions on neighboring lines [11].

Symbols ↑, ↓ and – represent positive transition, negative transition

and no transition respectively. The factor r is a relation between inter-

wire capacitance and the relative capacitance of the wire and the

ground signal. In a usual situation, where these capacitances are the

same, the r factor is 1. Thus, in the worst-case scenario, where both

neighbors transit on the opposite direction of the victim wire, the delay

factor g is 5. Consequently, the wire delay can vary over 500%

between the worst and the best case, just as a function of the direction

of the transitions on neighboring wires [11].

Table 2 - Relation between transition directions and the delay factor g.

bit k-1 bit k bit k+1 Factor g

↑ ↑ ↑ 1

↑ ↑ – 1+r

↑ ↑ ↓ 1+2r

– ↑ – 1+2r

– ↑ ↓ 1+3r

↓ ↑ ↓ 1+4r

4.2 Maximal Aggressor Fault (MAF) Model

The MAF model simplifies the creation of test vectors to induce the

occurrence of crosstalk effects in integrated circuits. This model

reduces the fault set by considering worst-case combinations of

coupling capacitances between all possible aggressors. Therefore, the

MAF model considers all N-1 aggressors transitioning in the same

direction as a fault. This model considers that only one fault is

modeled for each error on a victim line Yi, and only one set of

transitions can excite that fault. Figure 4 shows the necessary

transitions to excite four types of fault for a victim wire Yi according

the MAF model.

Figure 4 - Required transitions for MAF model [1].

The fault model has four error conditions for each N-line wide set

of interconnects to be tested: (i) gp: positive glitch error; (ii) gn:

negative glitch error; (iii) df: falling delay error; (iv) dr: rising delay

error.

4.3 Saboteur Module

A module named saboteur is developed to control the fault

injection during the simulation process. This module is responsible for

monitoring the data transmitted in each channel of the network, and

according to its patterns, changes the value of some data bits to

simulate the crosstalk effect. The Maximal Aggressor Fault (MAF)

model, described in [1], is used as a reference for the implementation

of the saboteur module (see Section 4.2).

Each NoC link is connected to a saboteur module as illustrated in

Figure 5. Besides fault injection, each saboteur module counts the

amount of data transmitted in the link during a full simulation and the

amount of errors injected on each link, enabling to generate statistics

related to the fault injection on each channel.

Figure 5 – Saboteur located between two routers.

In this work, it is considered every 5 bits in parallel, on each 16 bits

data buses, to check MAF model conditions. If one of them is meet,

the victim value changes. This module can also be parameterized to

check individual conditions of MAF model as shown in Section 4.2.

The amount of errors injected into the network allows the validation of

the architecture. Note that the fault injection considers worst-case

situations, and in real circuits, the rate of errors due to crosstalk is

smaller, since not all true MAF conditions generate faults.

5 RESULTS

This section presents area, power, latency and residual fault

analysis, comparing the reference NoC to fault tolerant NoCs

developed in this work.

5.1 Area Overhead

Four networks have been implemented and synthesized using

Cadence Encounter RTL Compiler (0.35um standard cells library) to

evaluate the silicon area. Table 3 shows the results for a router with 5

ports and for an 8x8 network.

Table 3 - Area results for an 8x8 network (FT means Fault Tolerant).

Original
network

FT NoC

Link CRC

FT NoC

Source CRC

FT NoC

Hamming

of Cells # of Cells % # of Cells % # of Cells %

Router w/ 5 ports 3537 4025 13.8 4145 17.2 4149 17.3

 - Buffer 547 590 7.8 630 15.3 547 0

 - FT Logic 0 256 - 144 - 612 -

Total NoC cells 208864 236672 13.3 243968 16.8 243136 16.4

The total standard cell area increased 13.3% for the FT NOC with

CRC in the links. This area overhead is due to the addition of CRC

encoders and decoders at each router port.

The area overhead of the NoC with CRC computed at the source

router is 16.8%. The area overhead for this NoC comes from the

increased buffer size (flit + CRC bits). As previously mentioned, this

network can also provide some protection to transient faults on

internal modules of the routers, justifying its use in designs where

router fault tolerance is required.

The network with Hamming on links presented an area overhead of

16.4% compared to the original network. This overhead is due to the

higher complexity of the Hamming decoding circuitry. The advantage

of this technique is the error correction without retransmission, not

interfering in the network latency in the presence of faults.

In conclusion, these results point out that a more complex code

would probably not be an affordable fault tolerance technique for a

NoC similar to Hermes [9]. Perhaps, more complex NoCs could afford

complex codes.

5.2 Latency Impact

Latency is evaluated using the following test scenario: (i) spatial

traffic distribution: random destination; (ii) temporal traffic

distribution: normal distribution, with an average injection rate of 20%

and 10% of the available link bandwidth.

Table 4 presents results for the first scenario, with an average

injection rate equal to 20% of the available link bandwidth. Each

router sends 100 48-flits packets, resulting in 6,400 transmitted

packets. Two error injection rates are adopted: 0.0717% (1,181

injected errors) and 2.03% (33,323 injected errors). As expected, both

CRC architectures do not add extra latency in the absence of faults,

and present the same average latency. The average latency increases

1.8% and 13% for a 1,181 and 33,323 injected faults respectively. The

network with Hamming code does not add extra latency for error

protection, however with higher error injection rates some faults are

not corrected (residual faults).

Table 4 - Average latency, in clock cycles, for an injection rate equal to 20%.

Network
Transmitted
Packets

Error Injection
Rate (%)

Injected
Errors

Average Packet
Latency

(clock cycles)

Latency
Variation
 (%)

Original 6,400 0 0 839.39 0

Link CRC 6,400

0 0 839.30 0

0.0717 1,181 854.77 1.8

2.0300 33,323 948.47 13.0

Source
CRC

6,400

0 0 839.30 0

0.0717 1,181 854.77 1.8

2.0300 33,323 948.47 13.0

Hamming 6.400
0.0717 1,181 839.39 0

2.0300 33,323 839.39 0

The previous scenario with 20% of injection rate corresponds to a

worst-case scenario where the network is congested. An injection rate

of 10% of the available bandwidth, the second simulation scenario,

corresponds to a more realistic NoC traffic behavior. In this

simulation, each router sends 200 48-flits packets, resulting in 12,800

transmitted packets. Two error injection rates are adopted: 0.113%

(3,689 injected errors) and 2.23% (72,392 injected errors). The results

presented in Table 5 shows smaller latency values, due to the smaller

congestion inside the network (such average value is near to the

minimal latency value, 70 clock cycles). The average latency is in

practice the same, with or without error injection at lower injection

rates.

Table 5 - Average latency, in clock cycles, for an injection rate equal to 10%.

Network
Transmitted
Packets

Error Injection
Rates (%)

Injected
Errors

Average
Packet
Latency

(clock cycles)

Latency
Variation
 (%)

Original 12,800 0 0 101.08 0

Link CRC

12,800 0 0 101.08 0

12,800 0.113 3,689 101.11 0

12.800 2.230 72.392 101.77 0

Table 6 shows the latency for some individual packets (worst, best

and typical cases), in clock cycles, for packets with retransmitted flits

(simulation with injection rate equal to 10%). The worst-case latency

overhead is 17.4%. It is important to note that this is a worst-case

scenario, where the same crosstalk fault is repeated and recovered at

each link in the path between the source and target router.

Table 6 - Latency of packets with and without fault recovery.

Packet ID
Latency without
Fault Recovery
(clock cycles)

Latency with
Fault Recovery
(clock cycles)

Latency
Variation
 (%)

11767 299 351 17.4

6800 297 298 0.3

968 278 291 4.7

5.3 Residual Fault Analysis

This section shows the effectiveness of both methods to protect the

network against crosstalk faults. To analyze residual faults using CRC

and Hamming codes, the saboteur module is parameterized to inject

faults varying the number of MAF model conditions to increase the

error injection rate. The simulated scenario considers a 5x5 network,

with each IP sending 200 packets to a random destination, using 15%

of the link available bandwidth. Table 7 shows the results of these

simulations.

Table 7 – Residual fault analysis.

MAF
Conditions

Transmitted
flits

Injected
errors

CRC Residual
Faults

Hamming
Residual Faults

dr 806,021 341 0 0% 0 0%

dr, df 808,716 444 0 0% 0 0%

dr, df, gn 794,816 896 0 0% 0 0%

dr, df, gn, gp 809,575 16,727 14 0.08% 389 2.32%

As expected, the CRC coding presents a lower residual fault rate,

since its fault coverage is higher than the Hamming code. When all

conditions of the MAF model are verified, a 2.32% and 0.08% residual

fault rate is observed for the Hamming and CRC codes, respectively.

5.4 Power Consumption

The power consumption is measured using VCD analysis, with

Synopsys Prime Time tool. The network is synthesized with the

TSMC25 library, and simulated to generate the VCD files. A 5x5

network is used to generate the VCD files, with the same traffic

scenario used to evaluate residual faults.

Table 8 shows the average power consumption for routers at

different locations of the network (routers at the borders of the

network may have 3 or 4 ports, and the central router has 5 ports). The

power of the entire NoC is roughly the sum of the power of each

router. The power consumption overhead of the network with CRC

coding on links is small (1.9%), compared to the original network. On

the other hand, the power consumption overhead of the network with

source CRC reaches 18.9% since the buffer size increases (more 4 bits

to store CRC values), confirming that most of the NoC power

consumption is due to the buffers. The network with Hamming on

links presented 5.4% power consumption overhead due to increased

logic and the additional parity bit, but it can be considered an

acceptable cost for this implementation.

Table 8 – Power consumption overhead for the proposed architectures.

Original
network
(mW)

Link CRC
(mW)

%
Source
CRC
(mW)

%
Hamming
(mW)

%

3-port
router

4.80 4.88 1.6 5.90 18.6 5.02 4.4

4-port
router

6.34 6.46 1.9 7.82 18.9 6.70 5.4

5-port
router

7.88 8.04 2.0 9.74 19.1 8.31 5.2

5x5 NoC 166.20 169.37 1.9 205.01 18.9 175.72 5.4

6 CONCLUSIONS AND FUTURE WORK

The goal of this paper was to evaluate different crosstalk fault

tolerant methods for network links such that the network can maintain

the original network performance even in the presence of errors.

Among the three evaluated architectures, the CRC applied at each link

is the recommend method to protect the network against crosstalk

effects. The source CRC penalizes area and power. On the other hand,

the source CRC enables to protect some internal router components,

since data transmitted through the router is protected. The assumed

advantage of the Hamming codification, no retransmission required,

presented a smaller fault coverage and higher area overhead compared

to CRC, however it can be an interesting alternative for some

applications, where a small number of data errors can be tolerated and

the latency needs to be minimal.

It is possible to enumerate the following future works: (i) explore a

source Hamming architecture, verifying the feasibility to use it for

internal router protection; (ii) develop new methods to protect the

router, minimizing the use of classical redundant approaches (TMR);

(iii) evaluate and propose adaptive routing algorithms for faulty

routers.

7 ACKNOWLEDGMENTS

This research is supported partially by CNPq (Brazilian Research

Agency), projects 300774/2006-0, 471134/2007-4 and by CAPES

PNPD project 02388/09-0.

8 REFERENCES

[1] Cuviello M.; et al. “Fault Modeling and Simulation for Crosstalk

in System-on-Chip Interconnects”. In: IEEE/ACM Int. Conf. on

Computer-Aided Design (ICCAD’99), pp. 297-303, 1999.

[2] H. H. K. Tang, K. P. Rodbell, “Single-event upsets in

microelectronics fundamental physics and issues”. In: Materials

Research Society Bulletin, vol. 28, pp. 111–116, 2003.

[3] Bertozzi D.; “The Data-Link Layer in NoC Design”. In: Micheli

G., Benini L.; Networks on chips: Technology and Tools. Ed.

Morgan Kaufmann, 408 p, 2006.

[4] Zimmer H.; Jantsch A. “A Fault Model Notation and Error-

Control Scheme for Switch-to-Switch Buses in a Network-on-

Chip”. In: Hardware/Software Codesign and System Synthesis

(CODES+ISSS’03), pp. 188-193, 2003.

[5] Bertozzi D.; Benini L. “Xpipes: A Network-on-chip Architecture

for Gigascale Systems-on-Chip”. IEEE Circuits and Systems

Magazine, vol. 4, no. 2, pp. 18-31, 2004.

[6] Vellanki P.; et al. “Quality-of-Service and Error Control

Techniques for Network-on-Chip Architectures”. In: Great

Lakes Symposium on VLSI (GLSVLSI’04), pp. 45-50, 2004.

[7] Murali S.; et. al. “Analysis of Error Recovery Schemes for

Networks on Chips”. IEEE Design and Test of Computers, vol.

22, no.5, pp. 434-442, 2005.

[8] Grecu, C.; et al. “Essential Fault-Tolerance Metrics for NoC

Infrastructures”. In: IEEE International On-Line Testing

Symposium (IOLTS 2007), pp 37-42, 2007.

[9] Moraes F.; et al. “HERMES: an Infrastructure for Low Area

Overhead Packet-switching Networks on Chip”. Integration, the

VLSI Journal, vol. 38, pp. 69-93, 2004.

[10] Koopman P., Chakravarty T.; “Cyclic redundancy code (CRC)

polynomial selection for ebedded systems”, In: The International

Conference on Dependable Systems and Networks, pp. 1-10,

2004.

[11] Rabaey J. “Digital Integrated Circuits”. Ed. Prentice Hall, 792 p,

2003.

