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Abstract. This chapter describes a reconfigurable computing architecture based 
on clusters of regular matrices of fine-grain dynamically reconfigurable cells 
using double-gate carbon nanotube field effect transistors (DG-CNTFET), 
which exhibit ambivalence (p-type or n-type behaviour depending on the back-
gate voltage). Hierarchical function mapping methods suitable for the cluster of 
matrices structure have been devised, and various benchmark circuits mapped 
to the architecture. This work shows how circuit and architecture designers can 
work with emerging technology concepts to examine its suitability for use in 
computing platforms. 

Introduction 

Computing power recently broke the petaflop/s barrier within a single machine and is 
expected to continue to scale to exacomputing over the next decade [1] (fig. 1). The 
main hardware vectors behind this spectacular evolution have been a) increase in 
intrinsic chip functionality through scaling and b) massive parallelis m and 
increasingly effic ient interconnect topologies. While scaling has now for a few years 
been main ly limited to improving the number o f functions per chip rather than clock 
speed, other factors (such as cost, reliab ility, static power) render necessary the 
exploration of other technologies and computing paradigms to pursue the quest for 
performance. 
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Fig. 1. Best observed processing performance for a single machine [1] (a) and predictions for 
processing performance in a single chip [2] (b) 

Indeed, it is widely recognized that transistor scaling, as a vector for the pursuit of 
performance levels predicted by Moore's Law and required by future applications, 
will not last through the next decade. Alternatives must be found, be they at the 
architectural level (e.g. exp loring multiple core architectures) or at the device level 
(heterogeneous or nanoelectronic devices). In this context, the emergence of new 
research devices offers the opportunity to provide novel logic build ing blocks and to 
elaborate non-conventional techniques for dig ital design. Ult imately  it  will be 
possible to reconsider the paradigms of computing architectures to achieve orders of 
magnitude improvements in the conventional figure of merit (MIPS / volume*power). 
In this way, future computing platforms are likely to cover broad ranges of 
applications, from tradit ional number-crunching (counting and calculating) to 
emerging neuromorphic (recognizing and reasoning). These very different classes of 
algorithm will require suitable hardware plat forms, with the additional constraints of 
occupying small volume and low-power. 

It is also expected that the necessary structuring of the projected tens of billions of 
elementary, unreliable, nanometric devices to achieve the computing capacities 
necessary for future software applications will lead to the emergence of 
reconfigurable platforms as the principal computing fabric before the end of the next 
decade. The reconfigurable approach allows volume manufacturing and reduces the 
impact of the evolution of mask costs, projected to move above the $10M mark in 
2010. It can also effic iently cover a broad range of applications while exceeding 
performance levels of programmable systems, and couples naturally to fault-tolerant 
design techniques for robust architectures. Reliab ility is clearly an increasingly 
important issue given the lack of reliability at indiv idual device level: leading to the 
rise of self-x (self-configuration, self-repair …) at architectural and/or software levels 

However, the organization of such reconfigurable cells in a system is uncertain – 
integration density and switchbox overhead concerns are a growing issue. These point 
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to the rising probability of fixed interconnect topologies between individual cells 
organized into clusters, and the use of switchboxes or network approaches only 
between clusters of cells. In parallel, the unreliability of individual devices will lead 
to a loss of accessible functions in certain cells. This can be circumvented by 
reformulating cluster configurations based on the incomplete set of identified 
operators. In this context, the development of methods capable of mapping complex 
functions onto clusters of reconfigurable cells with incomplete sets of operators is a 
key milestone to explo iting the full potential o f future reconfigurable systems. 

In addition, recent technological breakthroughs have led to the proposal of area- 
and power-effic ient reconfigurable cells based on emerging devices such as double-
gate carbon nanotube transistors (CNTFET) with incomplete operator sets [3]. 
CNTFETs have attracted much attention in recent years, and benchmark figures 
against state-of-the-art planar and non-planar silicon log ic transistors are favourable. 
They have shown in particular that the high mobility, achievable current density, 
theoretical transition frequency and Ion/Ioff ratio place CNTFETs among the most 
promising nanodevices in line to succeed the MOS transistor from the standpoint of 
their integration into future nanoelectronic systems on chip [4]. Some work has been 
carried  out to exp lore the use of the unique properties of multip le diameter and 
ambipiolar CNTFETS with respect to CMOS for new computing paradigms ([5], [6]). 
The emergence of double gate devices, with four accessible terminals, also opens the 
way to solutions specifically exp loiting the additional terminal for reconfigurab ility 
purposes. In the case of the double gate CNTFET [7], completely new prospects for 
reconfigurability are possible due to its ambivalent (n- and p-type) behaviour. Using 
this property, logic cells can be built that offer fine-grain reconfigurability not 
available with MOSFET technology, at comparable or better speed and power figures, 
and improving over current reconfigurable systems in terms of the number of devices 
used to realize a single function. 

These considerations have recently led to the emergence of the concept of 
nanofabrics [8], or nanoscale computing fabrics. A nanoFabric can be defined as an 
array of connected nanoscale logic blocks (nanoBlocks), where a nanoBlock is a 
circuit b lock containing programmable devices to compute boolean logic functions 
and means to route data. From a technological point of view, such systems are usually 
based on a hybrid approach (on a silicon die, or with CMOS compatibility). They are 
a combination of a bottom-up structure, using chemical self-assembly for dense and 
regular arrangement of elements, and a top-down structure, using conventional 
process options for interconnect or for computation. In this work, we do not consider 
memory issues but it is clear that memory integration is also paramount. 

This chapter begins by describing the structure and properties of a DG-CNTFET 
based dynamically reconfigurable logic cell to be used in a computing nanofabric. We 
then explore ways in which this cell can be used to form a regular and dense matrix 
structure, as well as a method to map function graphs to such matrices, and clusters of 
matrices, of reconfigurable cells for on-the fly and partial reprogrammability. The 
method is applied for various benchmarks in order to evaluate the capability of the 
architecture to execute complex functions. We finally conclude with a discussion on 
the insights of this work, and future challenges. 
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Carbon-based nanofabrics 

For high-performance FETs, short gate lengths and high channel mobility are 
required. Since nanotubes typically exhibit very small diameters (allowing excellent 
gate control) without suffering from mobility degradation, they are promising 
candidates to overcome the limitations of nanometric silicon devices. Fig. 2 shows the 
structure of a novel DG-CNTFET [7], fabricated with an aluminium front gate placed 
under the nanotube between the contacts of the source and the drain and controlling 
the electrostatics and switching of the nanotube bulk channel in region B. The 
Schottky barriers (SB) at the nanotube/metal contacts are controlled by the silicon 
back gate (substrate), which also prevents the electrostatics in region A from being 
influenced by the front gate. The SBs at the contacts are not affected by the front gate 
voltages. 

 
(a) 

 
(b) 

Fig. 2. Double-Gate CNTFET structure [7] (a) top view (b) cross-sectional view 

The behaviour of this DG-CNTFET device is strongly dependent on the potential 
of the silicon back gate, which we call Vgs-bg: 
• when Vgs-bg is sufficiently negative (some hundreds of mV), the device functions 

like a p-type FET with a negative threshold voltage.  
• when Vgs-bg is sufficiently positive (some hundreds of mV), the device functions 

like an n-type FET with a positive threshold voltage; 
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• when Vgs-bg is floating, the sub-bands with the contacts are not affected by the bias 
of the front gate, and the device is in the off state with a very weak current 
(Ioff<100fA). 
The impact of the back gate voltage polarity on the transistor channel transport 

characteristics opens up new opportunities for using CNTFETs in logic circuits. We 
have built a reconfigurable logic block which can be configured to any one of 
fourteen basic binary operation modes. This functionality is impossible to achieve in 
CMOS technology without resorting to far more complex circu itry (and therefore 
silicon real estate and system power) than the cell structure described here. The 
polarity (n-type or p-type) of each transistor is controlled by the back-gate bias 
voltage values. The dynamically reconfigurable logic cell (DRLC_7T) is shown in 
fig. 3; while tab. 1 describes the 3-input configuration, corresponding basic binary 
logic functions and power figures for operation at 4GHz and 250MHz extracted from 
transient simulations using a Verilog-A model adapted from [3] and parasitic 
capacitances extracted from layout estimations. 

 

VbAA VbB B

EV1

PC1 EV2

PC2

VbC

Vdd

Y

C

 
 
Fig. 3. Dynamically reconfigurable logic cell (DRLC_7T) transistor-level 

schematic 
 

 
VbA VbB VbC Y Ptot@4GHz 

(nW) 
Ptot@250MHz 

(nW) 
+V +V +V A↓B 1.87 1.076 
+V +V -V A∨B 1.85 0.99 
+V 0 +V ¬A 1.83 0.84 
+V 0 -V A 1.81 0.82 
-V -V +V A∧B 1.84 0.9 
-V -V -V A ↑B 1.82 0.814 
+V -V +V B/A 1.86 1.05 



6      Ian O'Connor et al.  

+V -V -V B→A 1.84 0.96 
0 +V +V ¬B 1.82 0.8 
0 +V -V B 1.79 0.79 
0 0 0 1 1.12 0.04 
0 0 -V 0 1.82 0.2 

-V +V +V A/B 1.84 1.03 
-V +V -V A→B 1.82 0.95 

Table 1. 3-input configurations for reconfigurable cell with 3 logic levels (+V, 0, -V) and 
corresponding 14 basic binary logic functions 

DRLC_7T is made up of 7 CNTFETs arranged in two logic stages: the first stage 
performs an elementary logical operation and the second stage works either in 
follower or inverter mode. 
• A and B are boolean data inputs (voltages at A and B vary between 0V and 1V);  
• VbA, VbB, VbC are control inputs which configure the circu it according to tab. 1 

(control bias voltages may take one of three values at -1V, 0V and 1V);  
• PC1, PC2 (pre-charge) and EV1, EV2 (evaluation) are four non-overlapping 

clocking inputs with pre-charge and evaluation periods as in classical CMOS 
dynamic logic gates;  

• Y is the circuit output.  
We can see that Vc is evaluated between EV1 (evaluation of the first logical stage) 

and the next PC1 (p re-charge of the first logical stage) according to the value of inputs 
A and B; and Y is evaluated and maintained between EV2 (evaluation of the second 
logical stage) and the next PC2 (pre-charge of the second logical stage). This clocking 
scheme is illustrated in fig. 4. 
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Fig. 4. Two-stage dynamic logic clock signal scheme 

An example illustrates how this logic gate works. When VbA=VbB=VbC=1V, 
CNTFETs Tc1, Tc2 and Tc3 (shown in fig. 3) are all configured as n-type FETs, as 
indicated in the previous section. When PC1 is enabled, the first stage is pre-charged, 
and the voltage of the internal node C (Vc) is discharged to 0V. If for example either 
of the data inputs A or B=logic "1", then when EV1 is enabled, the first layer 
evaluates its output such that the internal node C is set to logic "1". Then PC2 is 
enabled (pre-charge of the second stage), and the output Y is charged to logic "1"; and 
when EV2 is enabled, the output is evaluated and Y is evaluated to logic "0". In fact in 
this configuration, the only situation where C is not set to logic "1" and Y therefore 
evaluates to logic "1" (since Tc3 is off) is when both A and B=logic "0". Th is shows 
that for VbA=VbB=VbC=1V, DRLC_7T is configured as a NOR operator, as specified 
in tab. 1. Simulat ion results of DRLC_7T in this configuration are shown in the left 
half of fig. 5 (up to 8ns) at 500MHz operation. A fter this point, VbA,VbB and VbC 
change to -1V, such that CNTFETs Tc1, Tc2 and Tc3 are all configured as p-type FETs. 
When PC1 is enabled, the first stage is pre-charged, and the voltage of the internal 
node C (Vc) is discharged to 0V. If for example either of the data inputs A or B=logic 
"0", then when EV1 is enabled, the first layer evaluates its output such that the internal 
node C is set to logic "1". Then PC2 is enabled (pre-charge of the second stage), and 
the output Y is charged to logic "1"; and when EV2 is enabled, the output is evaluated 
and Y is evaluated at logic "1". The only situation here where C is not set to logic "1" 
and Y therefore evaluates to logic "0" (since Tc3 is on) is when both A and B=logic 
"1". This shows that for VbA=VbB=VbC=-1V, DRLC_7T is configured as a NAND 
operator. 
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Fig. 5. Simulat ion results of dynamic reconfiguration of reconfigurable cell 

DRLC_7T from NOR operator to NAND operator 
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It is thus clear that this gate can realize several functions and can be dynamically 
reconfigured during the calculation.  

Tab. 1 also gives the power consumption when DRLC_7T (working with 2-logic-
stage control bias voltage) operates at 250MHz and 4GHz. 

It should be noted that as this is prospective work, no technology as yet exists to 
build this circu it, although a single DG-CNTFET has been fabricated and 
characterized [7]. Further, significant technological advances have been made 
recently to achieve 95-98% horizontally aligned semiconducting CNTs [9] and, 
separately, hybrid integration with CMOS [10]. Th is enables us to envisage systems 
using "substrates" of many aligned semiconducting CNTs with conventional 
metallization and lithography techniques creating interconnections. In terms of device 
design, much work has focused on improving drive current (and therefore maximum 
frequency and insensitivity to noise) and reliability by using an array of parallel 
single-walled carbon nanotubes as multip le channels in a single t ransistor with good 
directional and spatial control [11]. This device can pass currents of up to 1.5mA and 
has achieved a record current gain cutoff frequency of 8GHz. These performances are 
still dominated by parasitics but recent advances project that this device should reach 
a current gain cutoff frequency of 31GHz. Double-gate transistors using the same 
principle for the channel should not pose any technological obstacle. 

 
Here we have given only one example of the family of dynamically reconfigurable 

logic cells. By changing the number of the transistors we have developed 3 other logic 
cells wh ich can realize d ifferent logic function sets [3]. 

Clusters of cell-matrices architecture 

Such fine-grain reconfigurable gates open the way towards structures which can be 
configured dynamically, for on-the-fly and partial system reprogrammability. In this 
section, the way elementary building blocks are connected and programmed is 
explored to achieve increased effic iency at the application level. 

Fixed intra-matrix interconnect topology strategy 

In a conventional architecture, each calculation cell wou ld be connected to the 
switch box d irectly. However, in the case of fine-grain logic cells, this approach 
would lead to a loss of effic iency due to a large overhead in terms of device 
complexity. In the case of DRLC_7T, 7 transistors are used in the cell, wh ile a similar 
number of transistors (at least 6) are used for a 1-bit switchbox. In order to avoid this 
overhead problem, we propose a cluster-based approach as shown in fig. 6, wh ich 
consists of assembling cells in a matrix pattern, with the use of fixed intra-matrix 
interconnect between layers of cells. Here, the identifier fxy corresponds to the 
configured function of the cell and the {x,y} coordinates of the cell within the matrix. 
Inputs A and B are shown, as is the output Y (duplicated); precharge and evaluation 
connections are not shown to avoid making the figure overly cumbersome. 
Considering the whole of this cluster set as a new coarse grain element, switchboxes 
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could be used for inter-matrix interconnect. It is interesting to note that matrix 
architectures are also particularly well-suited to CNTFET-based logic cells, since it is 
possible for single nanotubes to span several cells in the same column. 

L0-L1 connections
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(a) 
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(b) 

Fig. 6. Tile-based approach for the integration of regularly structured matrices of 
reconfigurable cells (a) conceptual schematic (b) layout for two tiles of 4d4w Modified-Omega 
topologies 

For intra-matrix interconnect, and taking wiring complexity into account, we 
eliminate any total interconnectivity topologies at the outset. Instead, and through 
analogy to computer networks, we adapt incomplete interconnection sets to the matrix 
architecture. In fact, Multistage Interconnection Networks (MIN) are designed to 
interconnect layers in an efficient way and can be applied in this context. 

Of course, there are many topologies or combinations, but we focus principally on 
4 typical permutations [12]: Banyan (fig. 7(a)), Baseline (fig. 7(b)), Flip (fig. 7(c)) 
and Modified-Omega (fig. 7(d)), where the modifications to standard Omega 
maximize the shuffling in this topology. In computer science, MINs are used to 
interconnect layers of switchboxes in order to route information packets only. In this 
application, the main difference is that switchboxes have been removed and replaced 
by logic cells, introducing computing directly inside the network. 
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(a)     (b) 

   
(c)     (d) 

Fig. 7. Matrix of 16 reconfigurable gates with various interconnect topologies: (a) Banyan (b) 
Baseline (c) Flip (d) Modified-Omega 

Matrix programming 

It is useful to combine such novel types of nanodevice-based reconfigurable cell 
with the explorat ion of new function mapping methods in anticipation of the 
deployment of incomplete-operator cluster-based systems. A primary objective is to 
analyze the limits of such architectures when mapping a complex software application 
onto it. Many parameters must be considered to program the nanodevice-based 
architectures: 
• the number of cells in matrix 
• the topology of cells interconnections 
• potentially, the faults present in the matrix 
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Moreover, several metrics have to be optimized (computation speed, area, etc). 
Therefore, new CAD tools meeting these requirements are mandatory in order to 
explore the potential of nanodevicebased architectures during the prototyping phase. 
One of the key issues is the automatic mapping of complex functions onto 
nanodevice-based architectures. Several mapping methods defined for conventional 
architectures have been proposed. However, these methods fail to reach the ultra-fine 
granularity specific to nanodevice-based architectures. Furthermore, they do not 
consider connectivity restrictions and dynamic reconfiguration opportunities. 

While the application is quite close to logic synthesis and network routing, the fact 
that we have introduced computing inside the matrix means that we cannot use 
routing algorithms or synthesis algorithms directly. We present in this section a 
mapping method designed to map a logic function graph onto the architecture 
described above. First, we will describe the method, and then we will give an example 
to show how this method works. 

Functional description 
The described method inputs the function graph to map and the physical 

connectivity matrix and outputs the map of logic elements onto physical cells. The 
algorithms work using adjacency matrices. In such matrices, (i,j) refers to the 
intersection of the row i and column j. A 1 at the position (i,j) means that the point i is 
connected to the point j. These matrices are essential to subsequent processing steps, 
described in fig. 8. 

 
Matrix model Function graph

architectural adaptation

Reconfiguration code

Phase 1

Phase 2physical
connectivity

matrix graph exploration

Phase 3

graph assignment

 

Fig. 8. Mapping method functional stream 

Phase 1: Pre-processing of function graph 
In a first operation, we have to adapt the logic function to our architecture. Due to 

the layered structure, the system is pipelined. Function graphs have to be processed by 
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adding necessary synchronization elements (to extend input and output paths of data), 
as well as removing jumps over logic layers (to conform to the physical topology). To 
identify logic layers in function graphs, we d ivide the associated adjacency matrix 
into small matrices Cnm. Cnm is the adjacency matrix between the points in the logic 
layer n and those in the logic layer m. We therefore pay particular attention to 
matrices where m ≠ n+1 because the presence of any non-zero element in these three 
matrices identifies a connection which “jumps” at least one logic layer. Such a direct 
connection cannot be realized in the topology since the interconnect topology is 
physically fixed. The solution is to add synchronization elements (i.e. create a path 
instead of a jump), then repeat the process until no more connections jump logic 
layers. 

Phase 2: Recursive exploration 
The processed function graph is then analyzed in depth, meaning that for each node 

in the structure, child branches are identified and recursively exp lored. 

Phase 3: Node assignment 
Logic nodes are then assigned to cells. This is done according to the physical 

interconnections. Each layer's connections are compared to the relevant inter-layer 
connectivity matrix – allowing (or not) the assignment of functions to cells. 
Branching (i.e. the exp loration of the immediately preceding alternative) is used when 
the arbitrary choice leads to a dead-end, and the process is repeated until all functions 
are assigned to cells. The algorithm of th is step is shown in fig. 9. 
 

Current node = First node
LOOP

IF (children/parents of current node already placed) THEN
IF (empty cell connected to childs or parents) THEN
Map the node at the first empty position 
Store other solutions
IF (Remaining node to map) THEN
Current node = Next node

ELSE
MAPPING FINISHED - END LOOP

ELSE
IF (Previous node has a non explored solution) THEN
Try next solution

ELSE
NO SOLUTIONS - END LOOP

ELSE
IF (free cell at the corresponding stage) THEN
Map the node at the first empty position
Store other solutions
IF (Remaining node to map) THEN
Current node = Next node

ELSE
MAPPING FINISHED - END LOOP

ELSE

NO SOLUTIONS - END LOOP

 
Fig. 9. Mapping algorithm (pseudo-code) 
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The algorithm has been implemented in Matlab, and executes in under 0.1s for a 
complete 16-node mapping operation using a standard 2GHz PC. While this approach 
enables the mapping of simple functions to the fixed-interconnect matrix based on the 
reconfigurable cells, function partition ing and merg ing methods will be required to 
map more complex functions over several matrices. 

Mapping example 
As an example, we consider a matrix which is 4 cells deep and 4 cells wide (4d4w) 

using a Banyan interconnect topology (fig. 7(a)). Individual cross-connectivity 
matrices Xnm (X01, X12 and X23) between logic cell stages of depth n to m are shown 
in eq. 1. 
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The function to map is represented by a graph, generated by a random graph 

generator for test purposes. During the graph adaptation step, we pay particular 
attention to the matrices C02, C03 and C13 containing 1's. As mentioned previously, 
such matrices represent connections which “jump” at least one logic layer, and are 
impossible to realize. In this example, the connections between points (2, 6), (5, 8) 
and (4, 9) are the three connections to be adjusted.  

The graph exp loration is then launched and we obtain the following sequence (p* 
represents synchronization nodes): 

 
p1-p4-p*-p9-p5-p7-p3-p*-p*-p*-p 8-p2-p*-p6-p* 
 
Finally, the graph assignment is performed. In the example, the first point p1 is 

assigned to the cell f00. According to the path defined in the previous step, p4 is the 
next point to assign to a cell in the matrix. Since f00 is physically connected to f10 and 
f12, the cell with lower y-index (here f10) is arb itrarily chosen for p4 assignment, and 
the other possibility is memorized. In our example, the final programmed matrix is 
shown in fig. 10. In this figure, we can see the nodes of the logic function graph and 
the nodes added for synchronization purposes (circles with no names) correct ly placed 
on the cell matrix. 
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p1p1 p2p2 f02f02 p*p*

p4p4 p*p* p 5p 5 p3p3

p*p* p6p6 p 7p 7 p*p*

p9p9 p*p* p*p* p8p8

 

Fig. 10. Matrix after function mapping 

Evaluation methodology 
The aim of this part of our work was to evaluate and compare performance metrics 

for the 4 interconnect topologies. Our study was made on a 4d4w matrix using the 
previously mentioned intra-matrix interconnection topologies. 4d4w matrices have 
been chosen because of a good balance between complexity and simulat ion time. We 
evaluated various metrics: the success rate of mapping function graphs, the fault 
tolerance and the average interconnection length. We have carried out detailed 
analyses to compare the efficiency of the different intra-matrix interconnect 
topologies. We use a random graph generator to generate static sets of function graphs 
containing 6-16 points, in order to have fixed comparison criteria between topologies. 
No graphs contain isolated nodes, as here we focus on fixed interconnect layers, 
which are severely penalized by isolated nodes. We consider therefore these cases to 
be an overload issue to be solved by specific architectural customizat ion. Each set, 
corresponding to a given number of points in the function graph, contains 1000 
samples. Using the previously described mapping method, each function is 
programmed onto the 4d4w matrix using the various intramatrix interconnect 
topologies, ideal or faulty, and metrics are calculated. Fig. 11 summarizes the 
evaluation methodology and the associated parameters. 
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Fig. 11. Evaluation method 
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Fig. 12. Programmability success rates for Banyan, Omega, Flip and Baseline interconnect 
topologies within 4d4w matrices 

Applying static sets to ideal interconnect topologies, we can test the ability of the 
matrix-topology ensemble to have complex functions mapped onto it. Considering the 
percentage of function graphs successfully mapped onto matrix with respect to the 
number of samples in the set, we obtained the success rate. Fig. 12 shows the 
comparison of success rates for 4d4w Banyan, Omega, Flip and Baseline topologies. 
For Banyan, Flip and Baseline interconnect topologies, the success rate is about 80% 
when the function graphs have 6 points. At 12 points, the success rate is about 25%. 
The difference between these two topologies is thus relatively small. However for the 
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Omega interconnect topology, the success rate is about 90% for 6-point function 
graphs and about 40% for 12-point graphs. This clearly shows that the Omega 
interconnect topology is more suitable for this type of matrix.  

This is because this topology is has less symmetric redundancy than the other 
topologies and spreads calculations over cells occupying less width, which seems to 
correspond better to typical function graphs. In fact in the matrix, there are pairs of 
cells which have the same inputs. For two cells which have the same inputs, the sum 
of the number of functions they can achieve is 14. For two cells which do not have the 
same inputs, the sum of the number of functions they can implement is 14+14 = 28. In 
the Banyan topology for example, there are 6 pairs of cells which have the same 
inputs, while in the Omega topology, there are only 2. This is the main reason why the 
Omega topology has the potential to realize more functions than other topologies.  

It is worth noticing that the use of a MIN reduces the number of mapped logic 
functions, compared to traditional LUT approaches. Such a problem is managed at a 
higher hierarchical level. For example, if a function graph cannot be mapped onto a 
single matrix, we can split it and map the subgraphs onto different matrices. 

Cluster programming 

At the cluster level, an extra layer of parameters and additional flexib ility is 
introduced. It is possible to consider clusters of varying matrix size, as well as the 
execution of functions in parallel, and the dynamic (potentially cycle-level) 
reconfiguration of each matrix to achieve highly optimized graph execution. In order 
to exp lore these aspects, a cluster-level mapping model is proposed. This mapping 
model places applications onto the complete architecture composed of several 
matrices, such that multip le metrics are optimized. These metrics are: 
• communicat ion cost 
• configuration cost 
• execution time 
• number of unused logical cells. 

The objective of the mapping model is to optimize the placement of a complex 
function onto the architecture. It considers the structure of the architecture, the 
scalability requirement as well as the dynamic reconfigurat ion implying a h igh-level 
of pipelining and parallelis m. It combines GA and partitioning approaches. 

Model Description 
The proposed model is shown in fig. 13. It takes as inputs a function graph and the 

architecture model and generates the reconfigurable code of the mapping as output. In 
general, complex functions cannot be mapped onto a single matrix. For this purpose, 
functions are partitioned into sub-functions. Thus, in order to map a complex function 
onto a cluster of matrices, two mapping levels are performed: 
• Firstly, each sub-function is mapped onto a matrix using the method described in 

the previous section; 
• Then, the dependency graph of sub-functions is also mapped onto the cluster of 

matrices. 
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Fig. 13. Mapping model 

The function to map is represented as a Direct Acyclic Graph (DAG) Gf = (Ef, Vf) 
where Vf is a set of nodes representing logic operations, and Ef a set of direct edges 
dependency relations between nodes. 

Phase 1: Partitioning and matrix mapping 
The aim of the first step is to partition a function graph into smaller sub-graphs so 

that each sub-graph fits in a single matrix. For this purpose, partitioning and matrix 
mapping methods are processed. To be valid, a partit ioning result must respect the 
following constraints: 
• The total number of operation in the sub-graphs is the same as the one in the initial 

graph 
• There is no cyclic dependency. 

Each sub-graph obtained during partitioning is mapped onto the matrix using the 
matrix mapping method defined previously. An exhaustive research is performed to 
ensure that the best mapping is found. If the matrix mapping fails, the partitioning is 
modified and new matrix mappings are performed. This exp loration loop, represented 
in fig. 13 through a feedback arrow, is performed until the sub-graphs fit in a single 
matrix. The result of the first step is a new graph composed of subgraphs and a set of 
mapping solutions associated to each subgraph. 

Phase 2: Global mapping 
The second phase maps the set of sub-graphs obtained during the phase 1 onto the 

cluster of matrices. The objective is to find a mapping and an execution order 
minimizing the communication cost, the configuration cost, the number of cells non-
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used and the execution time. A Fast Elit ist Non-Dominated Sorting Genetic 
Algorithm (NSGA II) [13] is used to minimize these metrics. 

A mapping solution is encoded as a two part chromosome (fig. 14): the first part 
represents the execution order of the subgraphs; the second part gives the matrix on 
which sub-graph are executed. For example, in fig. 14, the set composed of subgraphs 
Sb0, Sb1, Sb2, Sb3 and Sb4 is executed on matrices Gm1 and Gm2. Thus, Sb1 and 
Sb4 are executed in parallel on matrix Gm1 respectively Gm2 at cycle 0. The 
execution of sub-graphs Sb0, Sb 2 and Sb 3 is pipelined on Gm2. For this purpose, 
Gm2 is dynamically reconfigured two t imes. 
 

4 0 5 06 Gm2 Gm1 Gm2 Gm2Gm2

order of execution matrix for mapping
 

Fig. 14. Global mapping solution encoding 

Experimental results 
To evaluate the efficiency of the proposed approach, we used Xilinx-Virtex-4 [14] 

schematic designs. Each circuit is characterized by the number of operations, the 
number of dependencies and the depth (i.e. the length of the longest path in the 
circuit ). The designs are modified to reach the granularity required for the logic cell 
(two 1-b it inputs and two 1-bit outputs). The target architecture is based on Modified-
Omega clusters of 4d4w matrices. The experimental results are given in tab. 2, in 
terms of the number of sub-functions obtained after the partitioning phase, the number 
of dependencies between sub-functions, the ratio between the number of logic 
operations and the number of sub-functions (fill factor) and finally the number of 
failures for matrix mapping during partitioning. 

These results depend on the following factors: 
• the size of the circuit: In the partitioning, no cyclic dependency is allowed between 

sub-functions. Moreover, the restriction of connectivity must be respected in order 
to route data coherently in matrices. So, part itioning results depend on number of 
dependences and the size of the circuit. 

• failures on matrix mapping: During partitioning when a sub-graph cannot be 
mapped onto a matrix, the sub-graph has to be partitioned until it can be mapped. 
This case occurred twice for CMP8, i.e. the corresponding graph was reduced three 
times. 

 
Benchmk 
circuit 

No. 
operations 

No. 
dependencies 

Logical 
depth 

No. sub-
functions 

No. 
dependencies 

Fill 
factor 
(%) 

No. hw 
placement 
failures 

ALU2 45 64 14 6 9 46.9 1 
CMP8 59 75 11 9 14 40.6 2 
ADD8 101 132 22 11 18 57.4 0 
ADSU8 133 180 25 18 30 45.8 0 
CMP16 142 189 22 19 41 46.7 2 
ADD16 197 260 38 21 36 58.6 0 
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ADSU16 261 356 41 27 49 60.5 1 

Table 2. Experimental cluster mapping results for Xilinx-Virtex-4 benchmark functions 

Insights and future challenges  

In this work, we have firstly exp lored some of the opportunities opened up by the 
electrical behaviour of the double-gate CNTFET. We focused primarily on a specific 
property, namely the enabling of p-type or n-type device behaviour to be achieved in 
the same CNTFET according to the voltage applied to the back-gate. We have 
developed a family of dynamically reconfigurable logic cell, based on these devices 
and configured by the set of back gate bias voltages. These fine-grain reconfigurable 
cells have been considered as a universal reconfigurable cell enabling the synthesis of 
any Boolean function. 

We then introduced a cluster-based matrix architecture useful for fine-grain 
reconfigurable logic cells based on emerg ing devices. This cluster-based architecture 
uses fixed interconnection topologies in order to reduce the overhead induced by 
conventional approaches. We have proposed a method to map specific functions to 
the matrices of reconfigurable cells. This method has been used to analyze intra-
matrix topologies with respect to various metrics and shown that the mapping success 
rate is about 90% for 6-point function graphs and about 40% for 12-point graphs 
when using the Modified-Omega interconnect topology in a 4x4 matrix. This new 
function mapping method is a key step towards using fine-grain reconfigurab le cells 
for the on-the fly and partial reprogrammability. 

Finally, we proposed a methodology for mapping applications onto the cluster-
based architectures. This model enables the exploration of the potential of this type of 
architectures for future applications and was used successfully to map complex 
benchmark functions onto the architecture. The model consists of two main steps 
accomplished through three complementary methods: partitioning, matrix mapping 
and cluster mapping. 

The experience gained through this work lead us to believe that carbon-based 
computing fabrics can be a suitable support for pervasively deployment in many 
industries such as communications, energy, transport and healthcare. Tomorrow's 
computing platforms must achieve high computing throughput at very low power, 
while maintain ing a level of robustness and capacity to be redeployed to new 
applications via software programming on very flexible hardware. In this way, 
engineers and scientists can benefit from almost unlimited computing power and can 
concentrate on developing imaginative and high added-value applicat ions, while 
seamlessly supported by highly flexible and automatically configurable hardware and 
software programming models. 

Such design of nanofabrics is at the interface between two scientific communities: 
that of nanoscience and nanotechnology on one hand, and that of data processing and 
embedded systems on the other. Critical challenges from the design point of view are 
to be able to understand how such devices can best be used in architectures and 
indeed if they can be expected to deliver significant benefits at this level, and to 
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extend existing design and simulat ion approaches to take into account the 
nanoelectronic approach. Close collaboration between designers and technologists is 
key to the strengthening of mutual design approaches necessary for the development 
of nanoelectronic systems and the generation of truly original designs explo iting the 
specific properties of nanodevices. The outcome of such collaboration is a clearer 
understanding of choices among the broad spectrum of potential devices and possible 
technologies capable of challenging conventional approaches in future nanoscale 
applications. 

In our view, technology is evolving at such a rate that it is necessary to break the 
traditional technology – device – compact model – circuit – architecture development 
cycle by focusing on the fast-track integration of new devices into many-core 
computing platforms, through the implementation of a vert ical and integrated research 
approach. In this way, circuit and architectural design activities are based on 
reasonable hypotheses issuing from device and technology work, and the 
development of the aforementioned devices and technology is focused towards the 
needs of high-level architectures. 
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