From Assertion-based Verification to Assertion-based
Synthesis

Yann Oddos, Katell Morin-Allory and Dominique Borrione

TIMA Laboratory (CNRS/Grenoble-INP/UJF),
46 Av. Félix Viallet, 38031 Grenoble CEDEX, France
{yann.oddos, katell.morin-allory, dominique.borrione}@imag.fr
http://tima.imag.fr

Abstract. We propose a linear complexity approach to achieve automatic syn-
thesis of designs from temporal specifications. It uses concepts from the Assertion-
Based Verification. Each property is turned into a component combining classical
monitor and generator features: the extended-generator. We connect them with
specific components to obtain a design that is correct by construction. It shortens
the design flow by removing implementation and functional verification steps.
Our approach synthesizes circuits specified by hundreds of temporal properties
in a few seconds. Complex examples (i.e. conmax-ip and GenBuf) show the ef-
ficiency of the approach.

Key words: Assertion Based Verification, Assertion Based Synthesis, PSL, LTL,
High-level Automatic Synthesis, Monitors, Generators

1 Introduction

To guarantee the correct functionality of a System On Chip is a daunting challenge.
Over the past few years, design methods have started from higher description levels,
and have been supported by more efficient CAD tools. In contrast, validation methods
suffer from a growing lag, costing an increasing part of the overall design time.

Among all the proposed methods, the ABV [FKLO03] (Assertion Based Verification)
is widely used for its efficiency, both for static or dynamic verification, and is applicable
all along the design flow. Within this framework, two kinds of temporal properties are
of special interest:

— Assertions describe the correct behaviors of the design. They can be turned into
monitors which check if the corresponding property is violated.

— Assumptions constrain the inputs produced by the environment to comply with
the expected communication protocol of the Design Under Verification (DUV).
They can be turned into generators which provide an executable model for this
environment.

Two IEEE standards are mainly used to write temporal properties : PSL (Property
Specification Language) [FWMGO05] and S VA (System Verilog Assertions) [SMB*05].
In the following, all the properties are written in PSL, but our method applies to SVA
as well.

2 Lecture Notes in Computer Science: Authors’ Instructions

In our approach, we use the simple subset of PSL (denoted PSL g, p1¢). It conforms
to the notion of monotonic advancement of time and ensures that formulas within this
subset can be used easily in dynamic verification: simulation, emulation etc...

As an example, consider the following PSL property P1:

Property P1 : always(Start — Req until Ack)

Property P1 states: for each cycle where Start is *1°, a request Reg should be produced
and maintained active (Reg="1") as long as the acknowledge signal Ack is not active
(Ack="0").

The trace on Figure 1 satisfies property P1. Signal Start is active at cycle #1 and
Req is fixed to ° 1’ during the same cycle. Then Req remains active up to 7. At £8, signal
Ack takes value *1°. After this cycle, all the constraints have been satisfied and the trace
complies with P1.

In the case of an unbounded trace, the property should be permanently valid due to
the presence of the always operator. Each cycle when Start is active should initiate a
time sequence where Regq is active at least up to the cycle when Ackis ’1°.

Start J—‘

Req J

Ack m
8 9

1 2 3 4 5 6 7

Fig. 1. A trace satisfying property P1

Figure 2 shows this retriggering of the property evaluation due to successive activa-
tions of Start. Although not necessarily what one would expect, the trace of Figure 2
also satisfies property P1.

We have developed the Horus project which aims at providing methodologies and
tools for efficiently supporting property-based design all along the design flow. With
respect to previous works and existing CAD software, Horus exhibits new and compet-
itive advantages:

— The monitors and generators are built in a modular way, so that modules for sub-
properties can be reused in more complex ones.

— The modular construction is very efficient: it takes a fraction of a second for dozens
of complex properties.

— The method for building the monitors and the generators has been proven correct
with the PVS theorem prover [MABO6].

From Assertion-based Verification to Assertion-based Synthesis 3

Start ﬂ m ﬁ
Req _J
Ack W

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. Trace with several activations of Start

Another promising research domain is the automatic synthesis from temporal speci-
fications. It consists in automatically transforming a temporal specification into an HDL
description which is correct by construction. Figure 3 depicts a typical design flow
where the hand-coded design has to be verified to guarantee that the realized function-
nality complies with the specification.

RTL BACK-END
Write
Specification

Fig. 3. Design flow including the functional verification of a hand-coded RTL design

As shown on Figure 4, the main advantage of automatic synthesis is the elimination
of the implementation and functional verification steps from the design flow.

The problem of the automatic synthesis was first formulated by Church in 1982
by the following question: “Given a specification, is there a realization satisfying it?”.
Unfortunately, this problem has a solution triply exponential, resulting in three major
limitations:

— explosion of the memory size

4 Lecture Notes in Computer Science: Authors’ Instructions

S

SimuNgon
Model ing
E ecking

AUTOMATIC
SYNTHESIS

ARCHITECT

(Write Produce Correct by Construction
Specification Synthesizable HDL Description

Fig. 4. Design flow with automatic synthesis of the RTL from formal properties

— explosion of the synthesis time.
— the resulting design is too complex and not efficient (huge area and low frequency).

Up to now, all the proposed methods that have been explored reduce the complex-
ity by constraining the type of properties or designs that can be processed. It results
in exponential or polynomial complexities that still limit the approach to simple case
studies.

Whereas linear complexity approaches are available for Boolean specifications, no
such methods exist for complex temporal specifications.

We use concepts of Assertion-Based Verification and the property synthesis ap-
proach developed for Horus to define the method SyntHorus. It has a linear complexity
approach regarding the specification and automatically synthesizes a temporal specifi-
cation written in PSL ;¢ into a correct by construction HDL description.

We turn assertions and assumptions into a new kind of hardware components mixing
monitors and generators: the extended-generators. They are the basic components of the
synthesized design and have been proved correct with respect to the PSL semantics.
Combined with specific components called Solvers, the resulting circuit provides the
final design corresponding to a given specification.

The SyntHorus tool can process complex specifications, composed with hundreds
of properties, and produces the final circuit in a few seconds. The size of the circuit is
proportional to the size of the specification.

From Assertion-based Verification to Assertion-based Synthesis 5
2 State of the Art

2.1 Assertion-Based Verification

Many static verifiers, and the main commercial RTL simulators support PSL [CVKO04].
The European funded project “PROSYD” has published methodologies for the use of
PSL, and developed tools around PSL [PRO]. Notably, the RAT prototype, based on
SAT and bounded model checking, helps verify property consistency [BCE104].

The first industrial implementation of monitors is IBM FoCs [IBM]. The result of
FoCs is a cycle accurate simulation process that may be turned into a synthesizable
component with minor edition.

In the context of model checking, the usual technique translates a LTL formula
into a non-deterministic automaton that recognizes all the acceptable sequences of val-
ues [DGV99, GOO1]. The transformation into a deterministic automaton, needed for a
hardware implementation, is exponential in the number of non-deterministic decision
states [STO3]. A syntactically simple PSL formula can easily expand into a large LTL
formula, so the direct automata theoretic approaches are too inefficient.

Moreover, due to the always operator, the monitors generated for on-line observa-
tion must be retriggerable, and may be concurrently evaluating several instances of the
property for several starting points in the sequence of signal values. When a property
fails, for debug purposes, it is essential to identify the starting point of the subsequence
that caused the failure. The implementation principles for this feature have been de-
scribed either in terms of control graphs with colored tokens [MABO7], or as a multi-
plication of monitors [BCZ06]. A similar automata-based method [CRST06] is used in
model checking.

Another aspect is the use of properties to specify constraints on the design environ-
ment. Most industrial simulators provide software test vector generators based on the
generation of constrained pseudo-random numbers [ABC™].

Among the static methods, Calamé [Cal05] builds the product of the design automa-
ton and the property automaton to extract test vectors that may lead to a wrong execu-
tion. Another approach is based on slicing [YJC04]: the design is cut between registers
to extract constraints and produce test vectors for each slice, which are then composed
to get the test vector for the whole component. All these techniques are difficult to use
due to the complexity of their algorithms.

More efficient approaches rely on the property formulas, not the design under verifi-
cation, to generate test vectors. The concept of ”cando objects” [SNBEO7] is technically
very different, and oriented towards model checking rather than on-line execution; in
particular, they do not support arbitrary repetition "+’ and ’*’) operators.

2.2 Automatic Synthesis From Specifications

A large body of research was devoted to the synthesis of combinatorial operators from
untimed mathematical relations. We shall not discuss them, since the target of our work
is the synthesis of control-type sequential circuits, where the successive occurrence of
events is an essential aspect of the circuit behavior.

6 Lecture Notes in Computer Science: Authors’ Instructions

The specification of such sequences with regular expressions is not new [FUS82,
SB94]. These pioneer works use different kinds of BDDs (Free-BDDs and Reduced-
Ordered BDDs respectively) to support the synthesis process. The use of BDD-based
algorithms leads to the so called “state explosion problem” which confines the applica-
tion to simple designs.

Other specification methods have been proposed, focusing on communication pro-
tocols. From BNF grammars, Oberg synthesizes controllers using a directed acyclic
graph representation [Obe99]. Alternatively, Miiller [SM02] defined a dedicated Sys-
temC library to describe the specifications and uses automata-based methods to build
the final design.

Aziz et al. use logical S1S formulas (second order properties on naturals) to perform
automatic synthesis of sequential designs [ABBSV00]. Despite the application of a
variety of optimization techniques to reduce the complexity during the creation of the
design, the automata-based approach cannot apply to complex designs.

Taking as input a specification in a standard assertion language is a more recent
concern. Bloem et al. [BGJT07] defined a “Generalized Reactivity(1)” subset of PSL
from which properties are translated to automata; game theory algorithms are applied
to compute all the correct behaviors of the design under all admissible interactions with
the environment. The method is more powerful than the preceding ones. It is polynomial
in N3, where N is the sequential complexity of the specification.

Eveking et al. [SOSEOQ8] aim at generating verification-friendly circuits. This method
takes as input ITL, a proprietary dialect of interval temporal logic defined by OneSpin
Solutions. It is similar to the PSL simple subset, limited to finite traces. In contrast to
our approach, non deterministic behaviors assume additional inputs fed by an external
random source, and consistency is checked statically during the construction.

Our main objective is to quickly generate efficient circuits from complex sets of
properties. Instead of using an automata based approach, or restricting the application
to a specific type of designs, we use a modular construction. The complexity is then
encapsulated in different levels of basic components. The overall synthesis method was
proved to correctly generate circuits that comply with the PSL semantics.

3 Assertion-based Verification

3.1 Monitors

A monitor is a synchronous design detecting dynamically all the violations of a given
temporal property. We detail here the last release of our approach used to synthesize
properties into hardware monitors. It is based on the principles described in [MABO6].

The monitor synthesis is based on a library of primitive components, and an inter-
connection scheme directed by the syntax tree of the property. In particular, there is one
primitive monitor for each FL operator of PSL. We have defined two types of primitive
monitors: connectors and watchers. The first one is used to start the verification of a
sub-property. The watcher is used to raise any violation of the property.

The sets of connectors and watchers are given Table 1. The watcher mnt_Signal is
used to observe a simple signal.

From Assertion-based Verification to Assertion-based Synthesis 7

mnt_Signal, <, eventually!,never,
Watchers 9 v
next_e, next_event_e, before
—, and, or, always, next!,
Connectors .
next_a, next_event, next_event_a, until

Table 1. Primitive PSL monitors

Primitive monitors have a generic interface depicted Figure 5. It takes as input two
synchronization signals Clk and Reset_n, a Start activation signal, and the ports expr
and cond for the observed operands. The output ports are: trigger and pending for a
connector; pending and valid for a watcher.

Monitor Generator

3 in2" §in3

§ il

i
LFSR

Clk - Clk

Reset_n Reset_n

Start | Start |
| trigger
[cond

 |pending

|trigger

[expr]

pending

d
[cond] | valid

Fig. 5. Architectures and Interfaces for primitives monitors and generators

The overall monitor is built by post-fixed left to right recursive descent of the prop-
erty syntax tree. For each node of type connector, its Boolean operand, if any, is con-
nected to input cond. The output trigger is connected to input Start of its FL operand.
For the watcher type node, its Boolean operands are directly connected to the inputs
ezpr and cond of the current monitor. Its output valid is the valid output of the global
monitor.

Figure 6 gives the syntax tree of Property P1 defined in section 1:
Property P1 : always(Start — Regq until Ack)
The corresponding monitor for P1 is given Figure 7. The couple of signals (valid,

pending) gives the current state of the property at any cycle: failed, holds, holds strongly
or pending.

8 Lecture Notes in Computer Science: Authors’ Instructions

Until

Always ->

Star

Fig. 6. Tree Structure of PSL Property P1

cond

Start Trigl —=[1Start Trigl —

Fig. 7. Monitor for the PSL property P1

3.2 Generators

A generator is a synchronous design producing sequences of signals complying with
a given temporal property. Their synthesis follows the same global principle as for the
monitors: the overall generator is built as an interconnection of primitive generators,
based on the syntax tree of the property [OMABO6].

Primitive generators are divided into all the connectors (associated to all PSL oper-
ators) and the single type of producer to generate signal values: gnt_Signal.

The interface of primitive generators (Fig 5) includes:

— the inputs Clk, Reset_n, Start: same meaning as for monitors.

— the outputs trigger and cond used to launch the left and right operand (for connec-
tors).

— the output pending, to indicate if the current value on trigger and cond are con-
strained or may be randomly assigned.

Since many sequences of signals can comply with the same property, we need the
generators to be able to cover the space of correct traces. To achieve this goal, the
gnt_Signal embeds a random number generator (based on a Linear Feedback Shift
Register or a Cellular Automaton). By default, the outputs of an inactive complex gen-
erator are fixed to ’0’. It is possible to produce random values by switching the generic
parameter RANDOM to 1. If pending is inactive, the values on trigger and cond are
not constrained and produced by the random block.

From Assertion-based Verification to Assertion-based Synthesis 9
4 From Assertion-based Verification to Assertion-based Synthesis

A design specification involves signals to be monitored (inputs of the design), and to
be generated (outputs of the design). It is necessary to make a clear distinction between
these two kinds of signals, directly into the specification. PSL has been designed for
functional verification and not for the synthesis of temporal specifications. It does not
provide this distinction at the specification level. We have to adapt PSL for specification
synthesis.

Moreover, as a generated signal can be driven by several sources (i.e a signal gen-
erated in different properties), a resolution mechanism has to be designed to solve the
value of multi-source signals.

4.1 Example: the CDT design

The controller CDT is used to illustrate our synthesis approach of temporal specifica-
tions. It is a simple communication interface enabling to send data. If the controller is
idle and a data request is received on Regq, it transfers the value present on Cmd to an
external component via the output port Data.

The transfer ends when the signal Ack is received from the external component. The
controller needs 4 cycles to initiate a new transfer.

4.2 Annotations of PSL Properties

We have chosen to annotate each signal sig using the following convention:

— Sign: signal sig is monitored
— sigg: signal sig is generated

Consider the following specification Spec_cdt for the CDT design:

inputs={/Init,Req,Ack,Cmd}, outputs={ Data,Busy, Send}

F0 : always(Init,,— (!Send, && 'Busy, && Data,="0000"));

F1: always(!Init,, && Reg,,)— ((Send, && Data,=Cmd,,,)until Ack,,);
F2 : always((!Init,, && Send,,)— next_a[1:41(Busy,));

Property FO states that during the initialization (signal Init active), all the output
signals are fixed to ’0’ (Send, Busy and Data).

The two following properties are used when the design is not being initialized.

Property F1: if a request is submitted, the value Cmd is passed on output Data
until the transfer is ended by receiving *1’ on input Ack. Meanwhile the signal Send is
maintained to *1’ until the reception of Ack. It notifies the external component that the
transfer is currently being processed.

Property F2: for each request, the interface is busy during 4 consecutive cycles and
cannot receive any other request.

In our examples, properties only deal with input and output ports of the design. This
is not a limitation. In other cases, internal signals may be used as well.

10 Lecture Notes in Computer Science: Authors’ Instructions

A signal that is annotated “g” in several properties, or several times in a single
property, is called duplicated. For instance, signals Send, Busy and Data are duplicated
in Spec_cdt.

In the current status of our development, the annotation of signals is partially auto-
mated and may have to be complemented by the designer.

4.3 Consistency of the specification

Before engaging into the process of producing an implementation, it is a pre-requisite
that the specification be proven to be consistent. Two concepts must be distinguished:

Inconsistency A set of properties is inconsistent if the set of value traces for which they
are satisfied is empty. As an example, the following two properties are inconsistent:

— assert always (am, A c¢g)
- assert always (ap, A lcg)

Tools such as RAT (Requirement Analysis Tool) [BCET04] or the method on which
Cando objects are built [SNBE(O7] detect inconsistencies statically.

We shall call consistent a set of properties such that, whatever the input combina-
tion, all the outputs always can be given a valid value.

Realizability It may happen that one, two or more properties are satisfied under some
constraints on the input signals, and exhibit inconsistencies otherwise. Take the follow-
ing example:

- assert always (a,, = c;)
- assert always (b,, = !cy)

If a and b have different values, the specification is realizable. But if signals a and b are
both active at a given cycle, c is constrained to contradictory values.

Overcoming this problem is done by adding assumptions to the specification. In the
above example, the following assumption is added: assume never (a and b).

Synthesizing the specification In our approach, the specification is analyzed using RAT.
Assume properties may be added in the process to produce realizable specifications.

Methods described in pre-existing works statically enumerate all the possible re-
sponses of the design under all the possible actions of the environment, and hard-code
all the responses directly in the design. In contrast, our technique relies on the use of
special purpose “solver” components that compute the output values on the fly.

5 Assertion-based Synthesis

5.1 The Extended-Generator

An extended-generator component is a combination of a monitor and a generator. The
basic principle is to produce a predefined sequence of signals (generator part) when a
special sequence is recognized (monitor part).

From Assertion-based Verification to Assertion-based Synthesis 11

Primitive extended-generator Only binary operators OPb can have both a monitored
and a generated operand. Such operator has two corresponding primitive extended-
generators: OPDb,,, and OPb,,,, which respectively (monitor, generate) and (generate,
monitor) the left and right operands.

We impose the following restriction for the PSL properties: a monitored operand
of an extended-generator must be Boolean. This limitation is just the adjustment of the
PSL simple subset in the context of the extended-generators. To clarify the problem
met in the monitoring of an FL operand, consider the following example:

Property P2: (sign, — (next[4]A,,) until B,)

Assume that sig is 1 at cycle 0 and the production of signal B="1" is planned at
cycle z. For all cycles j<t, the sub-property next[4] A,,, must be verified. The verification
will complete at cycle #+3. It is then impossible to ensure at cycle ¢ that the extended-
generator always fulfills the corresponding property.

The monitoring of an FL property that requires a knowledge of the future to pro-
duce signals at the present cycle is contrary to the principles of the PSL simple subset.
Our restriction applies these principles in the new context introduced by the extended-
generators, which combines the observation and generation concepts.

It follows that all the binary operators have at least one Boolean operand. This
avoids all the potential ambiguities concerning the choice of a primitive extended-
generator (OPb,,,, or OPb,,,,). As an example, it is possible to use untilgm since the
right operand is Boolean, but not untilmg as the left operand can be a FL property.

Primitive extended-generators have the same interface as the generators (cf. Fig-
ure 8). The only difference lies in the port cond which is an input for the extended-
generators. All the extended-generators are connectors. Their architecture is based on
the monitors.

Extended Generator

Clk+

Reset_n

Start

trigger

cond|
pending

Fig. 8. Primitive Extended Generator Interface

12 Lecture Notes in Computer Science: Authors’ Instructions

Complex extended-generator While a primitive extended-generator matches a binary
PSL operator, the complex extended-generator corresponds to a PSL property. It is
composed of three kinds of primitive components: monitors, generators and extended-
generators.

This feature raises the issue of using the appropriate primitive, and justifies the need
for property annotation discussed in section 4. The property (A until B) can be turned
into a monitor (A and B observed), a generator (A and B produced) or an extended-
generator(A produced, B observed). All these ambiguities are solved by annotating the
property before building the complex extended-generator.

A complex extended-generator has a generic interface taking as inputs the observed
and synchronization signals, and providing on its outputs the generated and associated
pending signals.

Building the complex extended-generator is performed in two steps, based on the
syntax tree.

Step1 - Selection of primitive components A node of the syntax tree that has genera-
tors or extended-generators as operands is defined as a generator. If it has one operand
of type generator and one of type monitor, it is an extended-generator. Two monitored
operands produce a primitive monitor.

Step2 - Interconnection The interconnection scheme is the same as the one used for
the monitors. All the basic elements are producers gnt_Signal. The extended-generator
for property F1 is given Figure 9.

F1: always(!Init,, && Req.,)— ((Send, && Data,=Cmd,,)until Ack,,);

[Implication

gnt_signal

>

pending_Send pending_data
Sen dat

Fig. 9. Complex Extended Generator Architecture for F1

From Assertion-based Verification to Assertion-based Synthesis 13

5.2 Building the Final Design

One extended-generator is produced for each property of the specification. The elabo-
ration of the final design is achieved by connecting the duplicated signals to Solvers,
one for each duplicated signal. As shown on Figure 10, properties FO and F1 have one
duplication of signal Send, which is input to component Solverg., 4. The correct final
value for Send is produced as output.

A solver has two input ports SIG and PENDING (N bits each). SIG takes the N
duplications sig(i) of sig. PENDING takes the corresponding N duplications pending(i)
indicating if sig(i) is constrained. The resolved value for sig is provided on the output
port Val.

Consider a consistent specification. If PENDING is all zeros, SIG is not constrained,
and Val is set to O (or to a random value if mode RANDOM is active). Otherwise, SIG
is constrained and all the constrained values are known to be identical. The first one is
assigned to Val.

If the consistency of the specification has not been verified, an enhanced release of
the Solvers is required. In this situation, it may happen that two duplications sig(i) and
sig(j) take different values. The Solver has an extra output port Err used to dynamically
notify this inconsistency.

Once the extended-generators have been interconnected to the Solvers, the result-
ing design is encapsulated into a top-level entity that takes as inputs signals Clk and
Reset_n and all the observed external signals. The outputs are the generated external
signals. Figure 10 gives the structure of the final design obtained for the specification
Spec_cdt defined in section 4.

r
|
|
|
|
|
|

Init l

pending sig pending sig pending sig
Solverg..q Solver g, Solverbllsy
val val val

Fig. 10. Synthesized Spec_cdt

14 Lecture Notes in Computer Science: Authors’ Instructions

5.3 Verification of the Approach

The initial verification of the synthesized circuits has been performed by model-checking
on a set of test cases: we used RuleBase Parallel Edition [HIL0O4] to check that all the
properties listed in the specification hold on the circuit synthesized from them.

Then, the overall construction scheme has been proved correct using the PVS theo-
rem prover following the method described in [MABO6].

6 Case Study: Wishbone crossbar controller

6.1 A Crossbar bus and the Wishbone specification

A crossbar switch is a bus-based architecture allowing to connect M masters to [NV
slaves simultaneously. It enables parallel communications and enhances the whole sys-
tem performances.

In this chapter, we illustrate the application of Horus on a Wishbone compliant
crossbar [Her02]. The Wishbone specification defines a generic interface and a commu-
nication protocol for the insertion of predefined IPs in a design. This context appears
particularly appropriate for demonstrating the use of Horus.

Figure 11 illustrates the generic interfaces of master and slave components. For each
signal sig that connects a master to a slave (directly or through a switch), we denote
M _sig_o the output port of the master and S_sig_i the input port of the slave connected
to it, S_sig_o and M _sig_i in the other direction. For readability M7 (S7) denotes the
j-th master (or slave). In the actual PSL properties, the indices are macro-generated as
constant values, and part of standard identifiers.

M _data-i |«

1 S_data-o
M _ack_i O 0 .S_ack_o
M _rtyit S _rty-o
M _err_it HS_err_o

b S_addr_i Slave
- S_data_i Interface

Master M _addr_oCl
Interface M _data_o Tt

M _sel_o & HS_selt
M _we_o & H S_we_i
M _cyc_o[0 S_cyc_t

M _stb_o O} B S_stb_i

Fig. 11. Interfaces for Wishbone Master and Slave components

The communication between a master and a slave is based on a hand-shake protocol.
To initiate the communication and hold the bus during the transfer, the master asserts a

From Assertion-based Verification to Assertion-based Synthesis 15

signal cyc (cycle valid). To transfer data, it asserts the signal stb (strobe) and indicates
the write/read operation with signal we (write enable). Both signals remain ‘1’ until the
slave sets either ack, busy, or err (transfer error).

In the last two cases, the master has to retry (rty). Signals data and addr represent
the data being sent and the address where it must be read or written. The four most sig-
nificant bits of addr represent the address of the slave. Since data is transferred through
a 32-bit bus, signal sel indicates where the valid data is expected. This protocol is clock
(clk) and reset (reset) synchonized.

0 1 2 3 4 5 6 7

M _data_i XXX

M_addr-o XXXXXXX' Y VALIDIX VALID2X xxXXxX VALID3 X XXXXXX

M _data_o XXXXXX VALIDLX VALID2{_ XXXXXXX__VALID3 XXXXXXX

M_sel.o XXXXXXXX X VALIDI X VALID2X XXXXXXY VALID3) XXXXXX

M _we_o

M _stb_o | / \ / \

M _cyc-o

M _ack_i

Fig. 12. Write Burst with the Wishbone Communication Protocol

Figure 12 illustrates a write burst. At cycle £1, the master asks for a transfer by
asserting M _cyc_o that remains asserted until the end of the communication (at 7).
At cycle #2, data is ready to be written (M _stb_o is asserted and M _we_o is set to
‘1°), ports M _data_o and M _addr_o are valid. The request is acknowledged at cycle
2 allowing a new request at cycle #3 which is acknowledged too. At cycle #i4, the bus
communication is maintained (M _cyc_o is ‘1’) but no data is transferred: a wait state
has been inserted by the master. At cycle 45, the master makes a new request, but the
slave does not acknowledge it immediately: it has inserted a wait cycle. The request is
acknowledged on the next cycle. At cycle §7, all control signals are negated.

For a read burst, the principle is the same, except that M _we_o keeps value ’0’ and
M _data_i receives the read data.

Two more remarks will help understand the communication protocol. When a slave
is being used, its S_cyc_i port is asserted: this signal is observed to test if it is busy.
Furthermore, a controller ensures the exclusive interconnection between a master and a
slave on a Wishbone crossbar switch.

16 Lecture Notes in Computer Science: Authors’ Instructions

The conmax-ip controller The conmax-ip controller [Uss02] allows the communi-
cations between up to 8 masters and up to 16 slaves on a crossbar switch with up to 4
levels of priority. The four most significant bits on M _addr_o address the slave. The
selection of the master that will own a slave is based on two rules:

— Priorities: Each master has a priority that is stored in an internal register CONF
of the controller. The master ¢ priority is given by CONF [21..21-1]. At each
cycle, the master with the greatest priority gets the slave.

— Round-Robin: Among masters of equal priority, a round-robin policy is applied.

6.2 Assertion-based Verification with Horus

The Horus flow The Horus software is based on two parts: the core implemented in
C and the graphic interface implemented in Java. The core implements a PSL parser,
generates the VHDL description of the property. It is approximately 10000 lines long.

The Horus environment helps the user build an instrumented design to ease debug-
ging: it can synthesize monitors and generators, connect them to the design under test
(DUT) and adds a device to snoop the signals of interest. It comes with the VHDL fla-
vor. The Horus system has a friendly graphical user interface for the generation of the
instrumented design in 4 steps.

Step 1 - Design selection: The DUT, with its hierarchy, is retrieved.

Step 2 - Generators and Monitors synthesis: Select properties or property files, define
new properties, select target HDL language, synthesize monitor or generator (verifica-
tion IP).

Step 3 - Signal interconnection: The user connects the monitors and the generators to
the design. All the signals and variables involved in the DUT are accessible in a hierar-
chical way. The user needs only select the signals to be connected to each verification
IP.

Step 4 - Generation: The design instrumented with the verification IPs is generated.
When internal signals are monitored, the initial design is slightly modified to make
these signals accessible to the monitors.

The outputs of the verification IPs are fed to an instance of a generic analyzer; this
component stores the monitors outputs and sends a global status report on its serial
outputs. It also incorporates counters for performance analysis.

The instrumented design has a generic interface defined for an Avalon or a Wish-
bone bus. If the FPGA platform is based on such a bus, the user can directly synthesize
and prototype the instrumented design on it.

Monitors Many aspects of the conmax-ip have been verified with the Horus platform.
A brief overview is given.

Property Reset_Mj For all masters, signals M _cyc_o and M _stb_o must be negated as
long as Reset is asserted (c.f. [Her02], rule 3.20):

Property Reset_Mj:assert always(Reset — (not M7 _cyc_o and not M7 _stb_o) until not Reset);

From Assertion-based Verification to Assertion-based Synthesis 17
Step 1 Step 2
Monitor ' Monitor __:{Generator | [Generator
‘ Assert0 ‘ ‘ Assertl H Assume(H Assumel
In In
Out Out
Step 3
e - aE - B R S . . T T, L T
‘Monitor ' M Generator | 'Generator {Monit ' |Moni ' Generator || Generator '
‘ Assert(‘ ‘ Assertl H Assume(H Assumel ‘ Assert(‘ ‘ Assertl H Assume(‘ Assumel r
LAl u L1k u
N " | I ' |m
= | = |
| | ‘ Out | | ‘ Out
[[11] 1
Assert2 H Assert3 H Cover0 ‘ Coverl ‘ Assert2 ‘ Assert3 H Cover0 ‘ Coverl ‘
Monitor __ | Monitor __Monitor Perf; Monitor Perf | {Monitor __ | [Monitor ___| Monitor Perf} Monitor Perf
] 1 [
Faill Fail2 Fail3 Fail4 Cptl Cpt2 End3 End4
Analyzer
|
Test Report |
i Errors Counters Finishes

Fig. 13. Instrumentation of a design with Horus

18 Lecture Notes in Computer Science: Authors’ Instructions

Property PrioMj_Mk Assume two masters M7 and M* have priorities p; and pj, such
that p;, > p;. If M7 and M * request the same slave simultaneously, M* will own it
first.

Property PrioMj_Mk:assert always(M7 _cyc_o and M* _cyc_o
and CONF[2k..2k — 1] > CONF[2j..2] — 1]

and M7 _addr_0[0..3] = M*_addr_o[0..3])

— (M* _ack_i before M7 _ack_i);

Property LinkMj_Sk 1t checks the connection between the j-th master and k-th slave by
analyzing that each port is well connected.

Property LinkMj_Sk:assert always(M7 _cyc_o and S*_cyc_i and M7 _addr_o = S*_addr_i)
— (M7 _data_o = S*_data_i and M7 _data_i = S*_data_o

and M7 _sel_o = S* _sel_i and M7 _stb_o = S* _stb_i

and M7 _we_o = S*_we_i and M7 _ack_i = S*_ack_o

and M7 _err_i = S*_err_o and M7 _rty_i = S* _rty_o);

Modelling the environment of the conmax-ip To test the correctness of the conmax-
ip controller in isolation, without the overhead of simulating a complete set of masters
and slaves, we need to embed the controller in an environment that provides correct test
signals. To this aim, we model masters and slaves with generators that must comply
with the hand-shake protocol.

Property WriteMj_Sk A write request from the j-th master to the k-th slave is specified
by the following property, to which a generator is associated:

Property WriteMj_Sk:assume(
(M _cyc_o and M7 _we_o and M’ _sel_o and M7 _stb_oand
M _data_o = VAL_DATA and M’ _addr_o = VAL_ADDR k)
until_ M7 _ack_i)

Since we are interested in the communication action, but not in the particular data
value being written, the value VAL _DATA that is displayed on the port M*_data_o is a
randomly computed constant. The four most significant bits of VAL_ADDR are fixed to
select the j-th slave. This property is a simplified model of a master, it does not take
into account signals M*_rty_i and M*_err_i (they are not mandatory). These signals
would be present in a more realistic model. This property involves the acknowledgment
input signal M®_ack_i that stops the constrained generation.

Property GenLaunch The scenario GenLaunch illustrates the request of three masters
numbered 0, 1, 2 to the same slave numbered 1. Master O first makes a request; then be-
tween 16 to 32 cycles later, masters 1 and 2 simultaneously make their request. This sce-
nario is modeled using a property that generates the start signals for three instances

From Assertion-based Verification to Assertion-based Synthesis 19

of master generators (according to the previously discussed property), and one slave.
These different start signals are denoted start_WriteMO0_S1, start_ WriteM1_51,
start_WriteM?2_51.

assume eventually! (start_-WriteM0_S1
— next_e[16..32](start_WriteM1_.52 and start_ WriteM2_52));

A large number of scenarios of various complexity have been written, and imple-
mented with generators, in order to have a realistic self-directed test environment. Mod-
eling test scenarios for requests (i.e. read, burst, ...) is also performed with assumed
properties, from which generators are produced.

For a slave, the most elaborate action is the response to a read request: signal
S_ack_o is raised and the data is displayed on S_data_o. The following property ex-
presses this behavior, at some initial (triggering) time.

assume next_e[1..8](S7 _ack_o and S? __data_o = DATA));

The generator for property Read_S j must be triggered each time the slave receives
a read request: its start signal is connected to the VHDL expression not S7_we_i and
ST _cyc_i.

Performance analysis Monitors can be used to perform measurements on the behavior
of the system. To this aim, the Horus platform is instrumented to analyze the monitor
outputs, and count the number of times when a monitor has been triggered, and the
number of times when a failure has been found.

On the wishbone switch, and assuming that it is embedded in a real environment,
it may be useful to test on line the number of times the signal M _err_i of a slave is
asserted, or how often a slave is requested simultaneously by several masters.

Property CountError The following property is used to count the number of transfers
ending with an error:

Property CountError: assert never (M _err_ior ...or M7 _err_i);

Property ColliMj_Sk The property allows to know the number of times when more than
one master asks for the same slave:

Property ColliMj_Sk: assert never (57 _cyc_i and S*_cyc_i and S7 __addr_i = S*_addr_i);

6.3 Assertion-based Synthesis with SyntHorus

SYNTHORUS The SyntHorus tool aims at providing an environment to support au-
tomatic synthesis of HDL descriptions from PSL specifications, within the framework
described here. It represents 5000 lines of C source code and has been tested on a laptop
equipped with a dual core processor and 2Go of RAM. The SyntHorus process flow is
depicted Figure 14.

20 Lecture Notes in Computer Science: Authors’ Instructions

Horus —3> :
T 2 4 |
SYNTHORUS S »- circuit |

Fig. 14. The SyntHorus Tool

The idea consists in specifying control parts with PSL and synthesizing them with
SyntHorus to guarantee their functionnality, while operative parts must be validated
with other suitable methods.

SyntHorus takes as inputs the annotated specification file and a description for all
the signals involved in the specification (input, output, internal and type). It is inter-
faced with HORUS, which produces the extended-generators. Afterwards SyntHorus
interconnects all these components, adding Solvers if necessary. Finally it encapsulates
the result in a global enclosing component that constitutes synthesized design.

We fed SyntHorus with various complex specifications containing hundreds of
properties. For 700 properties, it produces an HDL description of 2,7 Mb within 16
seconds.

Synthesis Results All syntheses have been done with Quartus7.0 for a Cyclonell
EP2C35F672C6 FPGA-based platform. The synthesis optimization option “balanced”
has been used.

CDT Synthesis The annotation was complete for the Spec_cdt specification.

Table 2 gives the synthesis results for the CDT built by SyntHorus. The original
hand-coded design has 18 LCs, 6 FFs and a maximum frequency of 420Mhz. The design
obtained from SyntHorus is slightly bigger than the original one.

In the following examples, we shall see that the efficiency of a SyntHorus design
is greatly affected by the number of embedded solvers.

GenBuf Controller Our first complex case study is the GenBuf controller described
in [BGJT07]. GenBuf can connect N data senders to 2 data receivers.

Communications between senders and receivers use the handshake protocol. A round-
robin algorithm schedules the data transfers through the controller. The annotated spec-
ification is not given here for space reasons, but can be found on our web page [Odd09].

Figure 15 shows the area used by different instantiations of GenBuf containing a
number of slaves ranging from 1 up to 10, for the method of [BGIJ*T07] (higher fast

From Assertion-based Verification to Assertion-based Synthesis 21

Table 2. CDT produced by SyntHorus

SyntHorus LCs FFs Freq. (Mhz)

FO.q+ 1 0 -
Fl.q: 3 2 -
F2.q+ 6 6 -
Solvers 11 0 -
CDT 21 8 420,17

growing curve) and our tool SyntHorus (bottom two curves). The area of the circuit
produced by our approach grows linearly with the number of senders (actually with the
number of properties in the specification). In contrast, the best automata-based method,
that hardcode the enumeration of the correct behaviors of the circuits, has a polynomial
complexity on O(N?) [BGI*+07].

6000 ‘ :
[BGJ+07] (LCs);—»—/
5000
/
/
/
4000]
e
e
4
=
? 3000 ,
3 /
2000 - /
1000
- Synthorus (LCs)
- Synthorus (FFs) ——
— % ———————
0t——) j
: 2 3 5 6 7 8 9 10

Nb. senders

Fig. 15. GenBuf Synthesis Results : Method [BGIT07]/SYNTHORUS Method

In addition to producing efficient circuits, the construction time is also very small: a
dozen seconds to build GenBuf for 60 senders, compared to hours reported in [BGIT07].
Again, this is explained by the fact that no enumerative state space traversal is involved
in our construction. For SyntHorus, frequency results are good.

CONMAX-IP The conmax-ip annotated specification represents dozens of complex
temporal properties. It can be found on the following web page [Odd09].

22 Lecture Notes in Computer Science: Authors’ Instructions

The following property Master1ToSlave2 is an example of the used properties:
Master1ToSlave2: assert always((

(M*_cyc_i,y, and M _addr_i,,="0010") and

(NOt(MO_cye_i,y) or MO _addr_i,,/="0010") and

Not(S?_cyc-om,))= next[11((
SQ,addr,ogle _addr 4, and
(S?_data_o,=M"*_data_i,and S?_cyc_.o,=M*_cyc_i,,)and
(S?_sel_o,=M"_sel_i,, and S? we_o,=M"_we_i,,) and
(S%_stb_og=M"_stb_i,, and M* _data_o,=S*_data_i,,) and
(M _ack_0y4=S?_ack_i,, and M rty_o,=S?_rty_i,, and M _err_o,=52_err_i,,)
until (M*_ack_o,, or M rty_o,, or M _err_o.)));

This property models the connection between the first master and the second slave
when no other masters are trying to access the second slave. The connection is per-
formed by connecting each port of the master to the corresponding port of the slave
interface. The connection is maintained until the transfer is ended by the reception of
one of the three following signals: M ! _ack_o,, (transfer succeeded) or M _rty_op,
(transfer aborted because slave was busy) or M _err_o,. (transfer error).

Figure 16 compares the synthesis results obtained for the conmax-ip originally
designed by hand and by SyntHorus. Results are given for 4 masters using 2 priority
levels, connected to a number of slaves varying between 1 and 16.

40000 . . :
synth conmax (FFs) —+—
original conmax (FFs)
35000 synth conmax (LCs) % |
original conmax (LCs%,/ =
30000 *
A
25000 X
E3
20000 e ol
15000 o
kK
10000 o
5000 e . : - i o
o g a |
* 4 8 £
0 Qo S A A S S e R
0 2 4 6 8 10 12 14 16

Nb. slaves

Fig. 16. Synthesis Results: Original/SyntHorus Conmax-ip

From Assertion-based Verification to Assertion-based Synthesis 23

LCs overhead is clearly visible and remains linear when the number of slaves in-
creases. The main part of this overhead is due to the use of the Solvers. Notice that the
FFs overhead is noticeably less important.

If the specification contains just a few duplicated signals, then the resulting design
is efficient and its complexity is slightly higher than the same hand-coded design. If
there are lots of duplicated signals a significant overhead is introduced by SyntHorus.
The designer should consider rewriting the specification to minimize the number of
duplications.

7 Conclusion

A method to efficiently synthesize a test-bench from temporal properties has been pre-
sented. On one hand, the stimuli generation is carried out by hardware components
synthesized from assumptions: the generators. On the other hand, monitors support the
verification of the DUT behavior by on-line verifying that it complies with the corre-
sponding assertions.

By annotating PSL signals and developing a new kind of hardware component
called extended-generator, we went beyond Assertion-Based Verification to produce a
correct-by-construction module (at RTL) from its temporal specification. This “Assertion-
Based Synthesis” starts from a more abstract, formal and declarative specification than
the conventional “High-level Synthesis” that takes as inputs an algorithmic specifica-
tion. Assertion-Based Synthesis is best suited for control circuits.

The modularity of the approach encapsulates the high complexity of the specifica-
tion into a hierarchy of verified components. The formal proof of the whole approach
guarantees that the final circuit is correct by construction.

SyntHorus is a prototype tool that implements our Assertion-Based Synthesis method.
It takes as input PSL specifications and produces a RTL design in VHDL. To the best
of our knowledge, ours is the first approach with a linear complexity, able to process
the full simple subset of PSL. Compared to the state of the art previous approaches, the
resulting designs are very efficient (i.e small and fast). Despite the fact that they are in
general less efficient than the same hand coded designs, the automatically-synthesized
designs can still be used as a golden model. Our method has a distinct advantage: it can
be used to produce a reference model, correct by construction, from the very first logic
and temporal specifications. More efficient hand-coded designs can then be proved cor-
rect, by conventional equivalence checking with the reference produced by SyntHorus.
Otherwise, the design produced by SyntHorus can be directly taped-out.

Currently, annotating the specification is not fully automated. While it is obvious to
annotate the input ports with “m”, output ports may occur as “m” and “g” in different
properties (e.g. signal Send in Spec_cdt). More work remains to be done to complement
the set of annotation rules we developed so far.

24 Lecture Notes in Computer Science: Authors’ Instructions

References

[ABBSVO00] A. Aziz, F. Balarin, R-K. Brayton, and A-L. Sangiovanni-Vincentelli. Sequen-

[ABC™T]

[BCET04]

[BCZ06]

[BGIT07]

[Cal05]

[CRSTO06]

[CVKO04]
[DGV99]
[FKLO3]

[FU82]

tial synthesis using S1S. IEEE Trans. on CAD of Integrated Circuits and Systems,
19(10):1149-1162, 2000.

T. Anderson, J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale. Systemverilog
reference verification methodology: Introduction. EE Times, 27/3/2006.

R. Bloem, R. Cavada, C. Eisner, I. Pill, M. Roveri, and S. Semprini. Manual for prop-
erty simulation and assurance tool (deliverable 1.2/4-5). Technical report, PROSYD
Project, Jan. 2004.

M. Boulé, J-S. Chenard, and Z. Zilic. Adding debug enhancements to assertion
checkers for hardware emulation and silicon debug. In Proceedings of the 24th
International Conference on Computer Design: ICCD’06, Oct 2006.

R. Bloem, S. Galler, B. Jobstman, N. Piterman, A. Pnueli, and M. Weiglhofer. Spec-
ify, compile, run : Hardware from PSL. Electronic Notes in Theoretical Computer
Science (ENTCS), 190, 2007.

J.R. Calamé. Specification-based test generation with TGV. Technical Report
R0508, Centrum voor Wiskunde en Informatica, May 2005.

A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA: a Modular
Symbolic Encoding. In IEEE Formal Methods for Computer Aided Design FM-
CAD’06, November 11-12, 2006, Proceedings, pages 125-133, 2006.

B. Cohen, S. Venkataramanan, and A. Kumari. Using PSL/Sugar for Formal and
Dynamic Verification. VhdlCohen Publishing, 2004.

M. Daniele, F. Giunchiglia, and M. Vardi. Improved Automata Generation for Linear
Temporal Logic. In Proc. CAV’99, volume 1633. LNCS, Springer, July 1999.

H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design. Kluwer Academic
Publishers, Jun. 2003.

R-W. Floyd and J. D. Ullman. The compilation of regular expressions into integrated
circuits. J. ACM, 29(3):603-622, 1982.

[FWMGO5] H. Foster, Y. Wolfshal, E. Marschner, and IEEE 1850 Work Group. IEEE standard

[GOO1]
[Her02]
[HILO4]
[IBM]
[MABO06]

[MABO7]

[Obe99]

[Odd09]

for property specification language PSL. pub-IEEE-STD, pub-IEEE-STD:adr, Oct
2005.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In Proc. CAV
2001, volume 2102. LNCS, Springer, July 2001.

R. Herveille. WISHBONE system-on-chip (SoC) intercon-
nection architecture for portable IP cores. Technical report,
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf, Sept 2002.
Haifa-IBM-Laboratories. RuleBase Parallel Edition. IBM, Nov. 2004.

IBM. PSL/Sugar-based Verification Tools. Web page.
http://www.haifa.il.ibm.com/projects/verification/sugar/tools.html.

K. Morin-Allory and D. Borrione. Proven correct monitors from PSL specifications.
In DATE 2006, Jan. 2006.

K. Morin-Allory and D. Borrione. On-line monitoring of properties built on regular
expressions sequences. In Applications of Specification and Design Languages for
SoCs. A. Vachoux editor, Springer, 2007.

J. Oberg. ProGram : A Grammar-Based Method for Specification and Hardware
Synthesis of Communication Protocols. PhD thesis, Royal Institue of Technologoy
- Department of Electronics, Eletronic System Design, Sweden, 1999.

Y. Oddos. PSL Specification for the WISHBONE Interconnect Matrix IP Core:
http://tima.imag.fr/vds/horus/synthorus_specs/, 2009.

From Assertion-based Verification to Assertion-based Synthesis 25

[OMABO6] Y. Oddos, K. Morin-Allory, and D. Borrione. On-line test vector generation from

[PRO]
[SBY4]

[SMO02]

[SMBT05]

[SNBEO7]

[SOSEO08]

[STO3]

[Uss02]

[YICO04]

temporal constraints written in PSL. In Proc. VLSI SoC’06, 2006.

PROSYD. Tools and techniques for property verification. Web page.
http://www.prosyd.org/twiki/view/Public/DeliverablePageWP3.

A. Seawright and F. Brewer. Clairvoyant: A synthesis system for production-based
specification. IEEE Trans. on VLSI, pages 172—185, Jun 1994.

R. Siegmund and D. Miiller. Automatic synthesis of communication controller hard-
ware from protocol specifications. IEEE Design & Test of Computers, 19(4):84-95,
2002.

J. Srouji, S. Mehta, D. Brophy, K. Pieper, S. Sutherland, and IEEE 1800 Work
Group. IEEE Standard for SystemVerilog - Unified Hardware Design, Specification,
and Verification Language. pub-IEEE-STD, pub-IEEE-STD:adr, Nov 2005.

M. Schickel, V. Nimbler, M. Braun, and H. Eveking. Advances in Design and
Specification Languages for Embedded Systems, chapter An Efficient Synthesis
Method for Property-Based Design in Formal Verification: On Consistency and
Completeness of Property-Sets, pages 179—196. Number 978-1-4020-6149-3 (On-
line). Springer Netherlands, Jul. 2007.

M. Schickel, M. Oberkonig, M. Schweikert, and H. Eveking. A case-study in
property-based synthesis: Generating a cache controller from property-set. In Eu-
genio Villar, editor, Embedded Systems Specification and Design Languages, pages
271-275. Springer Netherlands, 2008.

R. Sebastiani and S. Tonetta. More Deterministic vs Smaller Biichi Automata for
Efficient LTL Model Checking. In Proc. CHARME 2003, pages 126—140. Springer,
Oct 2003.

R. Usselman. WISHBONE Interconnect Matrix IP Core, 2002.
http://www.opencores.org/projects.cgi/web/wb_conmax/overview.

C. Yen, J. Jou, and K. Chen. A divide-and-conquer-based algorithm for automatic
simulation vector generation. IEEE Design & Test of Computers, 21(2):111-120,
2004.

