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Abstract. Legalization is one of the most critical steps in modern place-
ment designs. Since several objectives like wirelength, routability, or tem-
perature are already optimized in global placement stage, the objective of
legalization is not only to align the cells overlap-free to the rows, but also
to preserve the solution of global placement, i.e., the displacement of cells
needs to be minimized. However, minimizing displacement only is not
enough for current timing-driven SoC designs. Blind displacement mini-
mization may increase the half-perimeter wirelength (HPWL) of nets sig-
nificantly that degrades the chip performance. In this paper, we propose
a fast legalization algorithm for standard cell placement with simultane-
ous wirelength and displacement minimization. The main contributions
of our work are: (1) a fast row selection technique by using k-medoid
clustering approach; (2) an exact linear wirelength model to minimize
both wirelength and total displacement; (3) a constant time approach
to determine the median in trial placement stage. Compared with the
state-of-the-art legalization algorithms, experimental results show that
our legalizer acquires much better achievement in terms of HPWL, total
and maximum displacements, and running time on legalized NTUplace3
global placement results on both ISPD 2005 and 2006 placement contest
benchmarks.
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1 Introduction

The conventional standard cell placement includes three stages: global place-
ment, legalization, and detailed placement. Typically, global placement gener-
ates an initial placement with minimum total half-perimeter wirelength (HPWL)
and tries to optimize some objectives such as routability, timing, temperature,
and etc. This results in few cell overlap and the cells are not aligned to the rows.
There has been several researches in the area of global placement in the past few
years [3, 5, 4, 11, 16, 18]. After global placement stage, legalization targets (1) to
remove overlaps between cell instances, (2) to put all instances on the rows in
the core area, and (3) to minimize the displacements of instances between the



initial placement and the legalized one. That is, legalization tries to make the
placement legal and to preserve the result from the global placement stage. After
legalization, detailed placement is used to improve the solution quality of the
legal placement. Legalization with only displacement minimization may signifi-
cantly induce the solutions with more HPWL than global placement stage. For
example, if cell a is to be legalized in Figure 1 (a), blind legalization with only
displacement minimization may increase the HPWL as shown in Figure 1 (b).
However, by taking HPWL into consideration, we can legalize cell a with both
displacement and HPWL minimization.
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Fig. 1. (a) Original placement before legalizing cell a. (b) Placement with larger HPWL
after legalizing cell a. (c) Placement with smaller HPWL after legalizing cell a.

1.1 Previous Work

Existing legalization techniques include network flow [2, 6], ripple cell move-
ment[8], dynamic programming [1], simulated annealing[17], single row optimiza-
tion[10], diffusion-based method [15], computational geometry [13], packing [7],
and quadratic programming [18]. Domino [6] partitions cells in subcells (all hav-
ing the same height and width) and rows in places, and assigns them by using a
min-cost-max-flow approach. Similar to Domino, [2] assigns sets of modules to



row regions. Mongrel [8] uses a greedy heuristic to move cells from overflowed
bins to under capacity bins in a ripple fashion based on total wirelength gain.
Fractional Cut [1] assigned cells to rows by dynamic programming and the cells
of each row are packed from left to right. Sarrafzadeh [17] uses simulated an-
nealing for legalization. The authors of [10] assigned cells to the rows by cell
juggling and the cells of each row are placed by finding a shortest path in a
graph. Diffusion-based placement migration is presented in [15] to remove cell
overlap incrementally. In [13], cells are spread and aligned to rows by compu-
tational geometry techniques. Sarrafzadeh [17] uses a cell shifting technique to
reduce the maximum bin density. HPWL-driven legalizers only target on HPWL
minimization within a row by dynamic programming approach [9, 10].

Tetris is a fast greedy heuristic which is widely used in industry [7]. Tetris
sorts the cells first, and legalizes one cell at a time then. The legalization of one
cell is done by moving the cell over the rows, and within a row by moving the
cell over free sites. This movement is done until the best free site is found. Once
a cell has been legalized, it will not be moved anymore. This results in a high
total cell displacement during legalization. Recently, Spindler et al. present a
similar approach, called Abacus [19], that it places a cell from row to row until
the location with the smallest displacement is found. However, as a cell is placed
into a row, the legalized cells in that row are re-placed by dynamic programming
technique to minimize the total displacement. Both Tetris and Abacus scan rows
with minimum cost vertically. Tetris scans all rows (see Figure 2 (a)). Abacus
sorts the rows by the y-position. A lower bound of the cost is computed by
assuming cells are only moved vertically. Abacus moves the cell to the best row
first, and then tries to move the cell to the rows with the lower bound not
exceeding the minimal cost of an already found legal position (see Figure 2 (b)).
In this paper, our legalizer constructs the binary index tree for the rows via
clustering techniques. By traversing the binary index tree, our legalizer only
scans some candidate rows then the running time is significantly reduced (see
Figure 2 (c)).

1.2 Our Contribution

The main contributions of our work are: (1) a fast row selection technique by
using k-medoid clustering approach; (2) an exact linear wirelength model to
minimize both total displacement and HPWL; (3) a constant time approach
to determine the median in trial placement stage. The remainder of this paper
is organized as follows. Section 2 details our algorithm. Section 3 shows the
experimental results. Finally, concluding remarks are given in Section 4.

2 Algorithm

Figure 3 shows the overview of our legalization algorithm. First, a binary index
tree for rows is constructed for fast row scanning (line 1). After that, cells are
sorted according to the sum of their x-position and the half of their width (line
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Fig. 2. (a) Tetris scans all rows. (b) Abacus scans the rows by y-position. (c) Our
legalizer only scans the rows when they are necessary.

2). Then, cells are legalized one by one according to the sorting order (line 3-8).
“DFS” (line 5) adopt depth-first search manner to search the best row for each
cell; i.e., the cost (the sum of HPWL and displacement of the cell) of the row is
minimum by using the binary index tree for row scanning (line 1). Then the cell
is inserted to the best row for HPWL and displacement minimization (line 6).

2.1 Binary Index Tree

Fast row scanning can be achieved by searching a binary index tree constructed
by top-down row clustering technique. In this paper, we adopt k-medoid [12]
clustering algorithm as the main method for clustering rows. Typically, k-medoid
algorithm clusters items by using their similarity. To cluster rows, we define the
similarity between rows as the distance between each row. If the distance between
each row is far, the similarity is small, and vice versa. Initially, all rows are in
a cluster, called root cluster. Then all rows are clustered into two clusters
by using k-medoid algorithm (k=2) where the centers are central rows of row
clusters. Iteration of clustering terminates until the number of rows in every



 
  

Algorithm 1: Overall Legalization Algorithm 
1    Construct a binary index tree for rows; 

2    Sort cells according to (x-position + width / 2); 

3    foreach cell do 

4           rowbest = null; 

5           rowbest = DFS(root_cluster,cell);   

6           Insert cell to rowbest;  

7    end 

Fig. 3. Overall algorithm of our legalizer.

cluster is less than 3. Finally, we construct a binary index tree for row clusters.
The relation between rows and binary index tree is shown in Figure 4.
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Fig. 4. Top-down clustering constructs a binary index tree for rows.

2.2 Row Scanning

Before placing cells into the rows, legalizers perform row scanning then do trial
placement for cells. Different from previous legalizers that scan all rows, our
legalizer can find the best row efficiently by searching on the binary index tree. As
mentioned earlier, the nodes in the binary index tree represent row clusters. The
edge cost in the binary index tree is the distance from a cell to the row cluster.
To compute the distance from a cell to the row cluster, we need to compute the



distance between rows first. Dmin(rowi, rowj) and Dmax(rowi, rowj) are two
kinds of the distance from rowi to rowj . We adopt Dmin(rowi, rowj) as the
distance for clustering rows by using k-medoid algorithm and Dmax(rowi, rowj)
as the distance used for computing the edge cost of the binary index tree. If
rowi overlaps rowj horizontally, Dmin(rowi, rowj) is the vertical distance from
rowi to rowj (see Figure 5 (a)). If rowi does not overlap rowj horizontally,
Dmin(rowi, rowj) is the sum of vertical and horizontal distance from rowi to
rowj (see Figure 5 (b)). Dmax(rowi, rowj) is the sum of the vertical distance
and maximum horizontal distance from the left of rowi to the left (see Figure
5 (c)) of rowj or from the right of rowi to the right of rowj (see Figure 5 (d)).
Moreover, the computation of distance from cells to row clusters is the same
with distance between rows.
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Fig. 5. (a) Dmin(rowi, rowj) with horizontal overlaps. (b) Dmin(rowi, rowj)
without horizontal overlaps. (c) Dmax(rowi, rowj) with horizontal overlaps. (d)
Dmax(rowi, rowj) without horizontal overlaps.

After the distance between rows is computed, we defined radius of a row clus-
ter is the farthest distance between its central row to other rows. According to tri-
angle inequality, the distance from a cell to the row cluster, i.e.Dmin(cell, row cluster),
can be derived as shown in Figure 6.

A depth-first search (DFS) approach is used for finding the best row. Algo-
rithm 2 describes the function DFS. DFS starts from root cluster. The cell is
always moved into the nearer cluster for trial placement first (line 5-18). The cell
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Fig. 6. Illustration of the minimum distance computation between a cell and a
row cluster.

is not moved to cluster if Dmin(cell, row cluster) is larger than the current best
displacement. The cost of the row is the sum of both HPWL and displacement of
the cell after the cell is moved to the row (line 21). After DFS, the best row can
be found quickly, then cells will be inserted into it. For simultaneous wirelength
and displacement minimization, the cost of row for placing a cell depends on the
displacement and the HPWL of it. Since a cell may be connected by multiple
nets, the cost by simply adding the displacement and the HPWL of a cell may
not be precise. Furthermore, we not only target to minimize total displacement
but also to minimize maximum displacement, we consider both factors by a
combined cost function. The cost function is defined as follows:

Cost(i) = HPWL+Ni(α · (DPS) + β · (DPP )) (1)

where Ni represents the number of the net belongs to cell i. DPS is the
cell displacement between original position and legalized position. DPP is the
total increased displacement caused by inserting one cell into row. α, β are user-
specified parameters. An example of cost computation is shown in Figure 8.

2.3 Obstacle-Aware Cell Ordering

Modern chip designs often consist of many preplaced blocks, such as analog
blocks, memory blocks, and/or I/O buffers, which are fixed in the chip and
cannot overlap with other blocks. These preplaced blocks, i.e., obstacles, impose



more constraints on the legalization problem. A legalization algorithm without
considering obstacles may significantly induce increasing cell displacement or
inferior solutions. Different from all previous works that insert cell according
to its x-position in the global placement, we insert cell according to its central
position (i.e., x-position of cells + cell width/2). As illustrated in Figure 9, an
obstacle lies in the middle of the row shred the row into two subrows. If cells
are inserted by x-position, the larger cell 1 will be inserted first but cause larger
displacement for cell 2 and 3 since they are inserted to another subrow that
across the obstacle (See Figure 9 (a)). It is not worth because only cell 1 is
inserted into the left subrow with smaller displacement and cell 2 and 3 are
squeezed to right subrows with larger displacement. If cells are inserted by their
central position, most of the smaller cells that are capable of being inserted to
fragmentary subrows can reduce the total displacement significantly (See Figure
9 (b)). Moreover, it is capable of handling the relative order problem.

2.4 Cell Insertion

Most of previous works use simple quadratic wirelength model to measure cell
displacement. The drawback lies in the preciseness since the square of larger cell
displacement will have dramatically difference. Different from Abacus that uses
quadratic model, we adopt an exact linear wirelength model for measuring cell
displacement. Cells of one row are abutting in the legal placement and form a
cluster. Assume the row has c clusters and clusterc has n cells which are sorted
by their global x-position + width/2. To minimize the cell displacement, the
objective function is defined as follows:

min
n∑

i=1

|xci − x′ci | (2)

where x′ci and xci are initial and legalized position of cluster c. The constraint
(2) assures that there is no overlap between the cells and is defined as follows:

xci − xci−1 ≥ wc
i−1 i = 2, ..., n (3)

where wc
i is cell width. However, solving linear programs with “≥” constraints

is time consuming in general. If the same solution of the linear program is found
by “=” constraints, then the linear program is solved quite fast by solving one
linear equation. The situation that “=” constraints are sufficient is given if all
cells of one row are abutting in the legal placement and form a cluster. There, two
cells are “abutting” if there is no free space between them in the legal placement.
With only “=” constraints, (2) is transformed to:

xci = xc1 +
i−1∑
k=1

wc
k i = 2, ..., n (4)



By (3), we can transform (1) into (4) such that the optimal value only depends
on variable xc1.

min
n∑

i=1

|xc1 − [xci −
i−1∑
k=1

wc
k]︸ ︷︷ ︸

dc
i

| (5)

where dci is the candidate position of cluster c for cell i and all dci form a set
Dc. The optimal xc1 can be derived by finding the median m of all dci .

2.5 Find Median

As shown in Figure 10, a row has several clusters. The positions of these clusters
are determined by Xc. If the clusters are overlapped, they will be merged and
form a new cluster.

The intuitive method for finding the median is to sort n elements in Dc

while the time complexity of sorting for trial placement and insertion are both
O(nlogn). An efficient method for finding the median is to apply the determin-
istic partitioning algorithm from quicksort while the time complexity for trial
placement and insertion are both O(n). In this paper, we adopt red-black trees
for finding the median while the time complexity for trial placement and inser-
tion are both O(logn). Moreover, red-black trees can be used to record already
sorted Dc since Dc will not be changed after cells are placed. Thus, we can derive
the set of Xc as follows:

Xc = {xc(i)} i = 2, ..., n (6)

where xc(i) corresponds to the already sorted elements in Dc.
Since cells are not really placed on rows in trial placement stage, unnecessary

movement of cells can be pruned in this stage. By exploring all possible move-
ments of clusters, we found only the rightmost cluster (i.e., clusterc) will move
to the left and others will stay still. By this observation, we have 3 lemmas for
our trial placement stage. By these 3 lemmas, the time complexity of our trial
placement is only O(1) since we only need to compare 3 possible positions then
we can find the best position for all clusters. The comparison of time complexity
in listed in Table 1.

Lemma 1 If the number of the cells in clusterc is even, the cell i is placed to
the right of clusterc and the position of clusterc will not be changed.

Proof: Let c is the number of clusters in a row. Nc is the number of the cells
in clusterc. Wcis the width of clusterc. The candidate position for cell i is xi
which is the difference of Wc and the original x position of cell i. If cell i and
clusterc overlap horizontally, xi is less than the original x position of clusterc.



As shown in Figure 11, assume Nc is an even number. The original x position
of clusterc is the median of Xc (i.e., Nc

2 ). Therefore, there are Nc

2 − 1 elements

that are smaller than the original x position of clusterc, and Nc

2 elements that
are larger than the original x position of clusterc. After cell i and clusterc are
merged, xi is added into Xc. Since xi is smaller than the x position of cluster c,
the number of Xc which smaller than the original x position of cluster c is Nc

2 .
Therefore, the median of Xc does not changed. The new x position of clusterc
is the original x position of clusterc. ut

Lemma 2 If the number of the cells in clusterc is odd, the cell i is placed to
the right of clusterc and the position of clusterc will shift to the left.

Proof: As shown in Figure 12, assume Nc is a odd number and the original x
position of clusterc is the median of Xc (i.e., Nc+1

2 ). Therefore, the number of Xc

which smaller than the original x position of clusterc is Nc+1
2 − 1. The number

of Xc which larger than the original x position of clusterc is Nc+1
2 − 1. After

cell i and clusterc are merged, xi is added into Xc. Since xi is smaller than the
original x position of clusterc, the number of Xc which smaller than the original
x position of clusterc is Nc+1

2 . Therefore, the median of Xc will be changed. The

new x position of clusterc is Nc+1
2 of new Xc instead of the original x position of

clusterc. In other words, new x position of clusterc is the maximum one between
(Nc+1

2 − 1) of original Xc and xi). ut
By Lemma 2, clusterc may overlap with clusterc−1 when clusterc shifts to

the left. In this situation, clusterc−1 and clusterc are merged and then form a
new and bigger clusterc−1 and the number of the clusters of the row becomes
c− 1. Under this circumstance, we further observe that although clusterc shifts
to the left, the positions of other c−1 clusters will not be influenced by clusterc.
The details are described in Lemma 3.

Lemma 3 clusterc has no influence on other n− 1 clusters.

Proof: As shown in Figure 13, X ′c is the difference between Xc and Wc−1. If a
new cell added to the row, it will cause clusterc overlapped with clusterc−1, then
clusterc−1 and clusterc will be merged together. After clusterc−1 and clusterc
are merged, the position of the new clusterc−1 is found by the median of new
Xc−1 (i.e., original Xc−1 merged with X ′c). The median of original X ′c (i.e.,
X ′c(Nc/2 + 1)) is larger than the median of Xc−1 (i.e., Xc−1((Nc−1 + 1)/2)),
because clusterc−1 and original clusterc are not overlapped. Once a new cell
added to the row, it will cause clusterc overlaps clusterc−1, the median of new
X ′c (i.e., X ′c(Nc/2)) will be smaller than the median of Xc−1 (i.e., Xc−1((Nc−1 +
1)/2)). Therefore, after clusterc−1 and clusterc are merged, the median of new
Xc−1 is unchanged (i.e., Xc−1(Nc−1 +1)/2). It means that the x position of new
clusterc−1 is unchanged, and the position of cell is the sum of (Xc−1(Nc−1 +
1)/2), Wc−1, and Lc.

In trial place step, the position of the cell on the row can be calculated by
finding the maximum of the following three numbers: x’, the sum of the Nc+1

2 -1)



of Xc and Wc, and the sum of the x position of clusterc−1 (i.e., (Xc−1((Nc−1 +
1)/2))), Wc−1, and Lc. ut

3 Experimental Results

We have implemented our legalizer in the C++ language on a 2-GHz 64-bit Linux
machine with 16GB memory. For fair comparison, we evaluate NTUplace3 [5],
Tetris [7], Abacus [19], and Kahng [9] on the same platform. Furthermore, to
verify the efficiency and effectiveness of our legalizer, we perform experiments
on two benchmark suites, such as ISPD 2005 and 2006 placement contest bench-
marks [22]. The global placement results are obtained from NTUplace3 [5]. Ex-
tensive experiments demonstrate that in terms of HPWL, total and maximum
displacements, and running time, we acquire much better achievement than all
the state-of-the-art algorithms such as Tetris [7], Abacus [19], and Kahng [9] in
any aspect.

3.1 Benchmarks

The cell numbers of the ISPD 2005 benchmarks range from 210K to 2169K, the
fixed macro numbers range from 543 to 23084, and the row numbers range from
890 to 2694. The cell numbers of the ISPD 2006 benchmarks range from 330K to
2507K, the fixed macro numbers range from 337 to 26582, and the row numbers
range from 930 to 4182. The benchmark information is listed in Table 2.

3.2 HPWL

In the first experiment, we evaluate the HPWL of our legalizer on the both
benchmarks. On legalized NTUplace3 [5] global placements on ISPD 2005 place-
ment contest benchmarks, the HPWL is 1.92X, 1.19X and 1.92X of our legalizer
compared to Tetris [7], Abacus [19], and Kahng [9], respectively. It should be
noted that Kahng [9] only focusing on HPWL minimization. Moreover, we also
compare the HPWL after our legalizer with the original HPWL of NTUplace3
global placement results [5], we can further reduce HPWL by 18%. The details
of HPWL experiments on ISPD 2005 benchmarks are listed in Table 3.

On legalized NTUplace3 [5] global placements on ISPD 2006 placement con-
test benchmarks, the HPWL is 1.44X, 1.25X and 1.43X of our legalizer compared
to Tetris [7], Abacus [19], and Kahng [9], respectively. Compare the HPWL after
our legalizer with the original HPWL of NTUplace3 global placement results [5],
we can further reduce HPWL by 19%. The details of HPWL experiments on
ISPD 2006 benchmarks are listed in Table 4.

3.3 Displacement

In the second experiment, we report the total and maximum displacement on
both ISPD benchmarks. On legalized NTUplace3 global placements on ISPD



2005 placement contest benchmarks, the total displacement is 25.76X, 1.09X, and
27.16X, the maximum displacement is 1.88X, 1.04X, and 2.40X of our legalizer
compared to Tetris [7], Abacus [19], and Kahng [9], respectively. The details of
displacement experiments on ISPD 2005 benchmarks are listed in Table 5.

On legalized NTUplace3 global placements on ISPD 2006 placement contest
benchmarks, the total displacement is 5.27X, 1.15X, and 5.43X, the maximum
displacement is 1.51X, 1.35X, and 1.51X of our legalizer compared to Tetris [7],
Abacus [19], and Kahng [9], respectively. The details of displacement experi-
ments on ISPD 2006 benchmarks are listed in Table 6. It should be noted that
Abacus [19] achieved the best published results in displacement but our legalizer
still get better results due to the exact linear wirelength model.

3.4 Running time

In the third experiment, we evaluate the running time on both ISPD bench-
marks. On legalized NTUplace3 global placements on ISPD 2005 placement con-
test benchmarks, the running time is 5.79X, 36.18X, and 5.94X of our legalizer
compared to Tetris [7], Abacus [19], and Kahng [9], respectively. The details of
running time experiments on ISPD 2005 benchmarks are listed in Table 7.

On legalized NTUplace3 global placements on ISPD 2006 placement con-
test benchmarks, the running time is 6.28X, 26.15X, and 6.49X of our legalizer
compared to Tetris [7], Abacus [19], and Kahng [9], respectively. The details of
running time experiments on ISPD 2006 benchmarks are listed in Table 8. It
should be noted that Tetris [7] achieved the fastest published results but our
legalizer still get better results due to the row indexing and fast trial placement
techniques.

Figure 14 (a) shows the global placement result of “adaptec1” obtained from
NTUplace3. To further reveal the difference of Tetris, Abacus, Kahng, and ours,
we plot the movement pictures during legalization in Figure 14 (b), (c), (d), and
(e).

4 Conclusions

In this paper, we proposed a fast legalization algorithm with simultaneous dis-
placement and HPWL minimization. The main contributions of our work are:
(1) a fast row selection technique by using k-medoid clustering approach; (2) an
exact linear wirelength model to minimize both wirelength and total displace-
ment; (3) a constant time approach to determine the median in trial placement
stage. Compared with the state-of-the-art algorithms, experimental results have
shown that our legalizer obtains very high-quality results on legalized NTUplace3
global placements on both ISPD 2005 and 2006 placement contest benchmarks.
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Algorithm 2: Function DFS 

1 Function DFS(cell, row_cluster) 

2 if row_cluster is not a leaf then 

3    DR = Dmin(row_cluster.RightChild, cell); 

4    DL = Dmin(row_cluster.LeftChild, cell); 

5    if (DR < DL) then 

6       if rowbest is null or displacementbest > DR then 

7          DFS(cell, row_cluster.RightChild); 

8          if rowbest is null or displacementbest > DL then 

9             DFS(cell, row_cluster.LeftChild); 

10          end 

11       end 

12    else 

13       if rowbest is null or displacementbest > DL then 

14          DFS(cell, row_cluster.LeftChild); 

15          if rowbest is null or displacementbest > DR then 

16             DFS(cell, row_cluster.RightChild); 

17          end 

18       end 

19    end 

20 else 

21    foreach row in row_cluster do 

22       displacementcandidate = TrialPlace(row, cell); 

23       if displacementcandidate < displacementbest then 

24          displacementbest = displacementcandidate; 

25       end 

26    end 

27 end 

Fig. 7. The algorithm of function DFS.
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Table 1: Time complexity for trial placement and cell insertion

Trial InsertTrial Insert
Sorting algorithm O(nlogn) O(nlogn)
SELECT algorithm O(n) O(n)
Red‐Black tree O(logn) O(logn)Red Black tree O(logn) O(logn)

Ours O(1) O(logn)

Nc is a even Original position of clusterc

Xc:{xc(1) , xc(2), xc(3), …, xc(Nc/2), xc(Nc/2+1), …, xc(Nc‐2), xc(Nc‐1), xc(Nc)}

Original position of clusterc

Nc/2 Nc/2

New position of clusterc

Xc:{xc(1) , xc(2), …, x, …, xc(Nc/2‐1) , xc(Nc/2) , xc(Nc/2+1), …, xc(Nc‐2), xc(Nc‐1), xc(Nc)}

Nc/2 Nc/2

Fig. 11. Nc is an even number.



Nc is an odd Original position of clusterc

Xc:{xc(1) , xc(2), xc(3), …, xc((Nc‐1)/2), xc((Nc+1)/2), xc((Nc+1)/2+1), …, xc(Nc‐2), xc(Nc‐1), xc(Nc)}
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(Nc+1)/ 2 (Nc+1)/ 2
oror
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Fig. 12. Nc is an odd number.

Nc‐1 is an odd

X { (1) (2) ((N 1)/2) ((N 1)/2) ((N 1)/2 1) (N 1) (N ) }

Original position of clusterc‐1

Xc‐1:{ xc‐1 (1) , xc‐1 (2), …, xc‐1 ((Nc‐1‐1)/2), xc‐1 ((Nc‐1+1)/2), xc‐1 ((Nc+1)/2+1), …, xc‐1 (Nc‐1‐1), xc‐1 (Nc‐1) }

(Nc‐1‐1)/2 (Nc‐1‐1)/2( c 1 )/ ( c 1 )/

Nc is an even

X’c:{ x’c (1) , x’c (2), x’c (3), …, x’c (Nc/2), x’c (Nc/2+1), …, x’c (Nc‐2), x’c (Nc‐1), x’c (Nc) }

Nc/ 2 Nc/ 2

∵ x’c (Nc/2) <xc‐1 ((Nc‐1+1)/2)< x’c (Nc/2+1)c ( c/ ) c 1 (( c 1 )/ ) c ( c/ )

∴ Xc‐1 merge X’c:{:{ … , xc‐1 ((Nc‐1+1)/2), … }

(Nc‐1‐1 +Nc)/ 2 (Nc‐1‐1 +Nc)/ 2
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Fig. 13. Merge process of clusterc−1.



Table 2: Statistics of two benchmark suites of the ISPD placement contest

ISPD 2005 Benchmarks ISPD 2006 Benchmarks

N # C ll # Fi d M # R N # C ll # Fi d M # RName # Cells # Fixed Macros # Rows Name # Cells # Fixed Macros # Rows

adaptec1 210904 543 890 adaptec5 843128 646 1944

adaptec2 254457 566 1170 newblue1 330073 337 930

adaptec3 450927 723 1944 newblue2 441516 1277 1925

d t 4 494716 1329 1944 bl 4 646139 3422 1524adaptec4 494716 1329 1944 newblue4 646139 3422 1524

bigblue1 277604 560 890 newblue5 1233058 4881 2130

bigblue2 534782 23084 1566 newblue6 1255039 6889 2316

bigblue3 1093034 1293 2316 newblue7 2507954 26582 3258

bigblue4 2169183 8170 2694bigblue4 2169183 8170 2694

Table 3: Wirelength comparison between NTUplace3, Tetris, Abacus, Kahng, and
ours on ISPD 2005 benchmarks

ISPD 2005 Benchmarks NTUplace3 [5] Tetris [7] Abacus [19] Kahng [9] Ours

Name HPWL HPWL HPWL HPWL HPWL

adaptec1 9.56E+07 1.20E+08 9.50E+07 1.19E+08 8.00E+07

adaptec2 9 98E+07 1 39E+08 1 01E+08 1 39E+08 8 80E+07adaptec2 9.98E+07 1.39E+08 1.01E+08 1.39E+08 8.80E+07

adaptec3 2.43E+08 2.61E+08 2.40E+08 2.61E+08 2.00E+08

adaptec4 2.14E+08 2.53E+08 2.09E+08 2.52E+08 1.80E+08

bigblue1 1.10E+08 5.00E+08 1.10E+08 4.98E+08 9.40E+07

bigblue2 1 65E+08 1 79E+08 1 64E+08 1 78E+08 1 30E+08bigblue2 1.65E+08 1.79E+08 1.64E+08 1.78E+08 1.30E+08

bigblue3 4.15E+08 5.86E+08 4.67E+08 5.85E+08 3.60E+08

bigblue4 8.97E+08 1.04E+09 9.09E+08 1.03E+09 7.60E+08

AVG. 1.18 1.92 1.19 1.92 1

Table 4: Wirelength comparison between NTUplace3, Tetris, Abacus, Kahng, and
ours on ISPD 2006 benchmarks

ISPD 2006 Benchmarks NTUplace3 [5] Tetris [7] Abacus [19] Kahng [9] Ours

Name HPWL HPWL HPWL HPWL HPWL

adaptec5 4.01E+08 4.95E+08 4.07E+08 4.94E+08 3.14E+08

newblue1 6.42E+07 1.03E+08 6.40E+07 1.03E+08 5.74E+07

newblue2 2.16E+08 2.46E+08 2.20E+08 2.45E+08 2.02E+08

newblue4 2.89E+08 3.20E+08 2.84E+08 3.19E+08 2.32E+08

newblue5 5.06E+08 5.34E+08 5.01E+08 5.32E+08 4.23E+08

newblue6 5.09E+08 6.15E+08 6.18E+08 6.15E+08 4.25E+08

newblue7 1.13E+09 1.30E+09 1.25E+09 1.30E+09 9.24E+08

AVG. 1.19 1.44 1.25 1.43 1



Table 5: Displacement comparison between NTUplace3, Tetris, Abacus, Kahng, and
ours on ISPD 2005 benchmarks

ISPD 2005 Benchmarks Tetris [7] Abacus [19] Kahng [9] Ours

Name TOTAL MAX TOTAL MAX TOTAL MAX TOTAL MAX

adaptec1 7.91E+07 2490 5.89E+06 1247 8.10E+07 2490 6.00E+06 1211

adaptec2 1 31E+08 3432 1 90E+07 3485 1 32E+08 3432 1 90E+07 3239adaptec2 1.31E+08 3432 1.90E+07 3485 1.32E+08 3432 1.90E+07 3239

adaptec3 1.22E+08 4581 5.11E+07 5419 1.23E+08 4577 4.80E+07 5733

adaptec4 1.56E+08 2197 2.74E+07 1702 1.58E+08 3161 2.60E+07 1736

bigblue1 7.38E+08 9319 4.63E+06 1304 7.90E+08 9319 4.80E+06 1342

bigblue2 6 25E+07 1143 1 31E+07 871 6 77E+07 3757 9 20E+06 718bigblue2 6.25E+07 1143 1.31E+07 871 6.77E+07 3757 9.20E+06 718

bigblue3 8.01E+08 5886 4.20E+08 6729 8.02E+08 5886 3.50E+08 6756

bigblue4 8.21E+08 2115 6.56E+07 5701 8.36E+08 2115 6.00E+07 5203

AVG. 25.76 1.88 1.09 1.04 27.16 2.40 1 1

Table 6: Displacement comparison between NTUplace3, Tetris, Abacus, Kahng, and
ours on ISPD 2006 benchmarks

ISPD 2006 Benchmarks Tetris [7] Abacus [19] Kahng [9] Ours

Name TOTAL MAX TOTAL MAX TOTAL MAX TOTAL MAX

adaptec5 4.65E+08 5117 9.12E+07 3617 4.68E+08 5117 8.79E+07 4920

newblue1 1.44E+08 3639 1.37E+07 2990 1.45E+08 3639 1.31E+07 1459

newblue2 2.17E+08 6162 1.05E+08 4535 2.18E+08 6162 7.37E+07 2131

newblue4 2.17E+08 2214 4.24E+07 2808 2.30E+08 2214 4.16E+07 2327

newblue5 1.55E+08 4030 3.52E+07 1527 1.61E+08 4030 3.31E+07 1777

newblue6 8.97E+08 2609 2.68E+08 7485 9.07E+08 2609 2.23E+08 7514

newblue7 1.22E+09 4248 3.99E+08 10527 1.34E+09 4248 3.20E+08 7246

AVG. 5.27 1.51 1.15 1.35 5.43 1.51 1.00 1.00

Table 7: Runtime comparison between NTUplace3, Tetris, Abacus, Kahng, and ours
on ISPD 2005 benchmarks

ISPD 2005 Benchmarks Tetris [7] Abacus [19] Kahng [9] Ours

Name TIME (s) TIME (s) TIME (s) TIME (s)

adaptec1 32 101 34 16

adaptec2 44 321 47 11adaptec2 44 321 47 11

adaptec3 163 647 169 24

adaptec4 213 682 218 47

bigblue1 38 110 40 18

bigblue2 360 601 365 72bigblue2 360 601 365 72

bigblue3 1453 15033 1465 82

bigblue4 1272 4456 1304 304

AVG. 5.79 36.18 5.94 1



Table 8: Runtime comparison between NTUplace3, Tetris, Abacus, Kahng, and ours
on ISPD 2006 benchmarks

ISPD 2006 Benchmarks Tetris [7] Abacus [19] Kahng [9] Ours

Name TIME (s) TIME (s) TIME (s) TIME (s)

adaptec5 304 2225 312 51

newblue1 32 123 35 24

newblue2 389 1032 395 53

newblue4 274 1327 281 49

newblue5 598 1869 612 116

newblue6 839 4917 854 188

newblue7 5163 16844 5245 365

AVG. 6.28 26.15 6.40 1



(a)
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Fig. 14. (a) Global placement result of adaptec1. (b) Cell movement during Tetris [7].
(c) Cell movement during Abacus [19]. (d) Cell movement during Kahng [9]. (e) Ours.


