
Multiplierless Design of Linear DSP Transforms⋆

Levent Aksoy1, Eduardo Costa2, Paulo Flores3, and José Monteiro3

1 INESC-ID, Lisbon, Portugal,
2 Universidade Católica de Pelotas, Pelotas-RS, Brazil,

3 INESC-ID/IST TU Lisbon, Lisbon, Portugal

Abstract. The last two decades have seen tremendous effort on the
development of high-level algorithms for the multiplierless design of con-
stant multiplications, i.e., using only addition, subtraction, and shift
operations. Among the different types of constant multiplications, the
multiplication of a constant matrix by an input vector, i.e., the con-
stant matrix-vector multiplication (CMVM) operation, is the most gen-
eral case and occurs in many digital signal processing (DSP) systems.
This chapter addresses the problem of minimizing the number of addi-
tion and subtraction operations in a CMVM operation and introduces
a hybrid algorithm that incorporates efficient techniques. This chapter
also describes how the hybrid algorithm can be modified to handle a
delay constraint. The experimental results on a comprehensive set of in-
stances show the efficiency of the hybrid algorithms at both high-level
and gate-level, in comparison to previously proposed methods.

Key words: Constant matrix-vector multiplication, common subexpres-
sion elimination, difference method, area and delay optimization.

1 Introduction

The multiplication of data samples by constant coefficients is a ubiquitous op-
eration and performance bottleneck in DSP systems, and can be categorized in
four main classes:

1. Single constant multiplication (SCM): The SCM operation realizes the mul-
tiplication of a single coefficient c by a single variable x, i.e., y = cx. It is
frequently used in the design of fast Fourier transforms (FFTs) [1] and fast
discrete cosine transforms (DCTs) [2].

2. Multiple constant multiplications (MCM): The MCM operation computes
the multiplication of a set of m constants C by a single variable x, i.e.,
yj = cjx with 1 ≤ j ≤ m. It occurs for instance, in the design of finite
impulse response (FIR) filters in transposed form [3].

⋆ This work was partially supported by the Portuguese Foundation for Science and
Technology (FCT) research project Multicon - Architectural Optimization of DSP
Systems with Multiple Constants Multiplications PTDC/EIA-EIA/103532/2008 and
by FCT through the PIDDAC Program funds.

��� ���

����

� ���� �

� 	�� 	�

�
��
�

������

�
�
�

� 	

�

� �

�
�
�

��� 	� 	
�
�

 � � �
 � �� �
����

� 	

�

� �

�
�
�

� 	�� 		� 	
� 	
�

 � � �
 � 	�� �

�
�
�

�
��
	� 	
�

�

 � � �
 �
�� �

�����	� 	
��
�

 � � �
 ���� �

�� �

�� �

�� �

�� �

Fig. 1. Types of constant multiplications: (a) SCM; (b) MCM; (c) CAVM; (d) CMVM.

3. Constant array-vector multiplication (CAVM): The CAVM operation imple-
ments the multiplication of a 1×n constant array C by an n×1 input vector
X, i.e., y =

∑
k ckxk with 1 ≤ k ≤ n. It is used for instance, to compute

the output of an infinite impulse response (IIR) filter and of an FIR filter in
direct form [4].

4. Constant matrix-vector multiplication (CMVM): The CMVM operation re-
alizes the multiplication of an m × n constant matrix C by an n × 1 input
vector X, i.e., yj =

∑
k cjkxk with 1 ≤ j ≤ m and 1 ≤ k ≤ n. It occurs in the

design of linear DSP transforms, such as DCTs and discrete sine transforms
(DSTs), filter banks, and error correcting codes [5].

Figure 1 illustrates these four types of constant multiplications. Observe that
the CMVM operation is the most general case of constant multiplications and
it corresponds to an SCM operation when both m and n are equal to 1, to an
MCM operation when n is 1, and to a CAVM operation when m is 1.

Although area-, delay-, and power-efficient multiplier architectures, such as
Wallace [6] and modified Booth [7] multipliers, have been proposed, the full-
flexibility of a multiplier is not necessary for the constant multiplications, since
constant coefficients are fixed and determined beforehand by the DSP algo-
rithms. Hence, constant multiplications are generally replaced with addition,
subtraction and shift operations [8]. Note that shifts can be realized using only
wires which represent no hardware cost. Thus, an important optimization prob-
lem is defined as finding the minimum number of addition and subtraction op-
erations that implement the constant multiplications.

Over the years, many efficient high-level algorithms [2, 4, 5, 9–20] were intro-
duced for the multiplierless design of constant multiplications. Most of these
algorithms were designed for the MCM instances and little attention was given
to the multiplierless design of the CMVM operation, although it occurs in many
DSP systems. This is because a high-level algorithm designed for the MCM in-
stances can be used for the implementation of a CMVM operation or can be
modified to handle the CMVM instances. In the former, one can initially apply
an MCM algorithm to the constants of each column of the matrix C and then,

can utilize the sharing of the same constant multiplications in the rows of the
matrix [9]. In the latter, each constant cj and the variable x in an MCM instance
can be replaced with a constant vector Cj and a variable vector X, respectively.
While the former method yields poor results when compared to algorithms de-
signed for the CMVM instances, as shown in Section 2.2, the efficient MCM
algorithms [14–16] modified to handle the CMVM instances can only be applied
to small size matrices with small constants, as indicated in [19, 20].

This chapter focuses on the multiplierless design of CMVM operations and
introduces a high-level algorithm that targets the optimization of the number
of addition and subtraction operations. Moreover, the proposed algorithm in-
cludes some hardware optimization techniques that take into account the type
of the operation (addition or subtraction) and the size of input operands. Fur-
thermore, it is modified to handle a delay constraint, which is given in terms
of the number of adder-steps, i.e, the maximum number of operations in series.
The experimental results indicate that the solutions of the proposed algorithms
yield significant reductions in the number of operations, which consequently lead
to CMVM designs with less hardware complexity, when compared to previously
proposed algorithms.

The rest of this chapter proceeds as follows. Section 2 gives the background
concepts and the proposed algorithms are introduced in Section 3. Experimental
results are presented in Section 4, and, finally, Section 5 concludes the paper.

2 Background

This section presents the concepts related to the proposed algorithms, introduces
the problem definitions, and gives an overview on the algorithms designed for
the CMVM instances.

2.1 Number Representation

The binary representation decomposes a number in a set of additions of powers
of two. The representation of numbers using a signed digit system makes the
use of positive and negative digits. Thus, an integer number represented in the
binary signed digit (BSD) system using n digits can be written as

∑n−1
i=0 di2

i,
where di ∈ {1, 0, 1} and 1 denotes −1. The BSD system is a redundant number
representation system, e.g., both 0101 and 101 1 correspond to 5.

The canonical signed digit (CSD) representation [21], a subset of BSD, has
a unique representation for each number and verifies the following two main
properties: i) two nonzero digits are not adjacent; ii) the number of nonzero
digits is minimal. Any n digit number in CSD has at most ⌈(n+ 1)/2⌉ nonzero
digits, and on average, the number of nonzero digits is reduced by 33% when
compared to binary [22]. This representation is widely used in the multiplierless
design of constant multiplications since it reduces the hardware requirements
due to the minimum number of nonzero digits. An efficient conversion technique
from binary to CSD can be found in [23].

[
y1
y2

]
=

[
3 11
5 13

]
·
[
x1

x2

]
y1 = 3x1 + 11x2

y2 = 5x1 + 13x2

y1 = 3x1 + 11x2 = (11)binx1 + (1011)binx2

= x1 + x1 ≪ 1 + x2 + x2 ≪ 1 + x2 ≪ 3

= x1 + 2x1 + x2 + 2x2 + 8x2

y2 = 5x1 + 13x2 = (101)binx1 + (1101)binx2

= x1 + x1 ≪ 2 + x2 + x2 ≪ 2 + x2 ≪ 3

= x1 + 4x1 + x2 + 4x2 + 8x2

(a) (b)

Fig. 2. (a) A CMVM realizing y1 = 3x1 + 11x2 and y2 = 5x1 + 13x2; (b) Decom-
position of the constants in the linear transforms in binary.

As an example, consider the constant 23 defined in six bits. The representa-
tion of 23 in binary, 010111, includes 4 nonzero digits. The constant is represented
as 101001 in CSD using 3 nonzero digits.

2.2 Problem Definitions

Here, we initially present the problem of optimizing the number of operations
in a CMVM design and then, introduce the problem of optimizing the number
of operations under a delay constraint.

Optimization of the Number of Operations Given an m × n constant
matrix C with cjk ∈ Z and an n × 1 variable vector X with xk ∈ Z, the
multiplication of C by X is a linear transformation from Zn to Zm and each
linear transform can be computed as

yj =
n∑

k=1

cjk xk (1)

where j and k range from 1 to m and n, respectively. Thus, the problem of opti-
mizing the number of operations in linear transforms can be defined as follows:

Definition 1. cmvm problem. Given Y = {y1, . . . , ym}, a set of linear trans-
forms, find the minimum number of addition and subtraction operations that
generate the linear transforms.

Note that the CMVM problem is an NP-complete problem due to the NP-
completeness of the MCM problem proven in [24].

A straightforward way for the multiplierless realization of linear transforms,
generally known as the digit-based recoding method [25], is to define the con-
stants in binary, and for each 1 in the binary representation of the constant, is to
shift the variable and add up the shifted variables. As a simple example, consider
the multiplication of a constant matrix by a variable vector given in Figure 2(a).
The decomposed forms of linear transforms are given in Figure 2(b), where the
computation of each y1 and y2 requires 4 operations, a total of 8 operations, as

�� �

� �

���

�

�

� �

���

�

�
���

� �

� �

���

�

�
���

�

�

� �

���

� �

���

�

� �

�

� �
��� ���

� �

� � � �

� �
 �� �

� �
 � �

��

�� �

� �

� �

������

�

� �

� �

��

� �� �

�
 �

����� �

���

�� � �� �

��� � ��� �

���

Fig. 3. Shift-adds implementations of y1 = 3x1+11x2 and y2 = 5x1+13x2: (a) with
the technique of [25]; (b) with the method of [9]; (c) with our hybrid algorithm.

depicted in Figure 3(a). Note that a linear transform including n terms in its
decomposed form requires n−1 operations in the digit-based recoding technique.
For the linear transforms in Figure 2(a), the decomposition of constants in CSD
also yields the same result in terms of the number of operations as in binary.

The multiplierless design of linear transforms can also be realized by applying
an SCM algorithm to each element of the constant matrix or an MCM algorithm
on the elements of each column of the constant matrix [9]. Then, the sharing of
the same constant multiplications can be achieved in rows and columns of the
matrix in the former method and the sharing of the same constant multiplications
in rows of the matrix can be utilized in the latter technique. For our example in
Figure 2(a), the latter method [9] obtains a solution with 7 operations as shown
in Figure 3(b) when the exact algorithm of [18] is used as an MCM algorithm.

However, the sharing of partial products among the constant multiplications,
that significantly reduces the required number of operations and, consequently,
the area and power dissipation of the design at gate-level, is never utilized in
the digit-based recoding technique [25], as can be observed in Figure 3(a). In the
method of [9], this is achieved partially by an MCM algorithm on the CMVM
operation, i.e., only on the columns of the matrix, as can be seen in Figure 3(b).
For our example, the hybrid algorithm introduced in Section 3, that fully exploits
the partial product sharing, obtains a solution with 4 operations by finding the
common partial products x1 + x2 and x1 + 9x2, as shown in Figure 3(c).

Figure 4(a) presents the effect of partial product sharing on the number of
operations on m ×m matrices, where m varies in between 2 and 16 in steps of
2. We used 100 instances for each matrix type, with a total of 800 instances.
The constants were generated randomly from [27+1, 28−1]. In this experiment,
the results of the hybrid algorithm are compared with those of the digit-based
recoding technique [25] when constants are defined under CSD and with those of
the technique [9] when the exact algorithm [18] designed for the MCM problem is
applied to the elements of each column of a matrix. Observe from Figure 4(a) that
as the size of the matrix (m) increases, the impact of partial product sharing on
the number of operations increases. The maximum gain in terms of the average

2 4 6 8 10 12 14 16

100

200

300

400

500

600

Randomly Generated m × m Constant Matrices

Size of constant matrices (m)

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Digit−based recoding [23]
The method of [9]
Hybrid algorithm

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8
Randomly Generated m × m Constant Matrices

Size of constant matrices (m)

A
ve

ra
ge

 m
in

im
um

 n
um

be
r

of
 a

dd
er

−
st

ep
s Binary

CSD

(a) (b)

Fig. 4. (a) Effect of partial product sharing on the number of operations; (b) Effect of
number representation on the minimum number of adder-steps.

number of operations between the hybrid algorithm and the digit-based recoding
technique [25], which does not exploit any sharing, is 44.2% on 16×16 matrices.
The maximum gain between the hybrid algorithm and the technique [9] is 30%
on the same instances.

Optimization of the Number of Operations under a Delay Constraint
In many DSP systems, performance is also a crucial parameter and circuit area
is generally expandable in order to achieve a given performance target. Although
the delay parameter is dependent on several implementation issues, such as
placement and routing, the delay of a CMVM operation is generally consid-
ered in terms of the number of adder-steps which denotes the maximal number
of adders/subtracters in series [3]. As an example, the shift-adds designs of linear
transforms in Figures 3(a)-(c) have 4, 3, and 3 adder-steps, respectively.

The minimum adder-steps of a linear transform yj is computed by decom-
posing its constants cjk under a number representation, finding the number of
terms in its decomposed form, S(yj), and computing ⌈log2S(yj)⌉, as if all its
terms in the decomposed form were realized in a binary tree. Returning to the
linear transforms y1 and y2 in Figure 2(a), their decomposed forms under binary
consist of 5 terms (Figure 2(b)) and hence, the minimum adder-steps of both
linear transforms are computed as 3.

Given a set of linear transforms Y = {y1, . . . , ym}, the minimum adder-steps
of a CMVM operation [26] is computed as the maximum of the minimum adder-
steps of each linear transform:

min delayCMVM = max
yj

{⌈log2S(yj)⌉} (2)

Thus, the minimum adder-steps of the CMVM operation realizing y1 and
y2 in Figure 2(a) is computed as 3. Note that min delayCMVM of Eqn. 2 is
generally determined when constants are defined under CSD since the CSD
representation of a constant includes the minimum number of nonzero digits.
However, in the case of high-level algorithms that extract the implementations of

linear transforms when the constants are defined under a number representation,
the given number representation determines the minimum adder-steps of the
CMVM operation. Figure 4(b) presents the effect of a number representation
on the minimum number of adder-steps on the previously used benchmark set.
Observe that the use of binary representation may lead to greater minimum
adder-steps with respect to CSD since a constant is generally represented with
a larger number of nonzero digits in binary compared to CSD.

Thus, the problem of optimizing the number of operations in linear trans-
forms under a delay constraint can be defined as:

Definition 2. cmvm problem under a delay constraint. Given a set
of linear transforms, Y = {y1, . . . , ym}, and the delay constraint dc, where
dc ≥ min delayCMVM, find the minimum number of addition and subtraction
operations that generate the linear transforms with a delay not exceeding dc.

2.3 Related Work

The high-level algorithms designed for the multiplierless realization of constant
multiplications are generally categorized in two classes: common subexpression
elimination (CSE) [4, 9–13] and graph-based (GB) [2, 15, 17–20] techniques. Al-
though both CSE and GB algorithms aim to maximize the sharing of partial
products, they differ in the search space that they explore. The CSE algorithms
initially define the constants under a number representation. Then, all possi-
ble subexpressions are extracted from the representations of constants and the
“best” subexpression, generally, the most common, is chosen to be shared among
the constant multiplications. The GB algorithms are not limited to any partic-
ular number representation and consider a larger number of alternative imple-
mentations of a constant multiplication, yielding better solutions than the CSE
algorithms [17, 18]. Here, we only mention the algorithms applied to the CMVM
problem. However, the readers are referred to [10, 17] for further details on the
CSE and GB algorithms designed for the MCM instances.

The CMVM problem was formalized as a 0-1 integer linear programming
(ILP) problem in [11], where the possible implementations of linear transforms
are extracted after constants are defined under a number representation and
the decomposed forms of linear transforms are obtained. However, the CSE al-
gorithm [11] only considers the 2-term subexpressions due to the exponential
growth in the size of 0-1 ILP problems. Furthermore, the exact CSE algorithm
of [13] exploits all possible subexpressions and finds a solution with the mini-
mum number of operations by representing the CMVM problem as a 0-1 ILP
problem. It is shown in [13] that the exact CSE algorithm can be applied to
small size constant matrices with small constants. On the other hand, the CSE
heuristics of [5, 12, 27, 28] initially determine each linear transform by simply
multiplying each row of the constant matrix with the input vector, as given in
Eqn 1, define the constants under CSD representation, and obtain the decom-
posed forms of linear transforms. Then, the sharing of common subexpressions
is achieved based on heuristics. The algorithm of [12] selects the most common

2-term subexpression and eliminates its occurrences in the expressions in each
iteration until there is no subexpression with a number of occurrences greater
than 1. This algorithm is extended to handle a delay constraint in [27]. The
algorithm of [28] chooses its subexpressions based on a cost value which is com-
puted as the multiplication of the number of terms in the subexpression by the
number of its occurrences in the linear transforms. The algorithm of [5] relies on
an efficient CSE algorithm [29] that iteratively searches a subexpression with the
maximal number of terms and with at least 2 occurrences. In [5], the selection
of a subexpression is also modified by taking into account the conflicts between
the possible subexpressions.

In [19], the efficient techniques of [14, 15] proposed for the MCM instances
are modified to handle the CMVM problem. Keeping in mind that the input
variables x1, x2, . . . , xn and their shifted values are always available and the
input variables are stored in a fundamental set, the algorithm of [19] iteratively
finds all possible sums of elements of the fundamental set, chooses the one that is
the closest to any linear linear transform in terms of the adder cost distance [19],
and stores it in the fundamental set. If a possible sum of two elements in the
fundamental set equals to a linear transform, the adder cost distance is 0 at
this time, the linear transform is moved to the fundamental set. The algorithm
of [19] continues until all the linear transforms are synthesized. However, it is
computationally intensive for large size matrices and thus, can only be applied
to small size matrices. Moreover, the algorithm of [20] is based on the algorithm
of [16] designed for the MCM instances. It initially computes the differences
between each two linear transforms and determines their implementation cost
values. Then, it uses a minimum spanning tree (MST) algorithm to find the
realizations of linear transforms with differences, that have the minimum cost,
and replaces the linear transforms with these differences. The algorithm iterates
until all the linear transforms are synthesized. As stated in [20], the algorithm
is limited to the number of linear transforms and the bitwidth of constants due
to the application of the MST algorithm in each iteration.

3 The Hybrid Algorithms

This section introduces the hybrid algorithm, called Hcmvm, designed for the
multiplierless realization of linear transforms. The Hcmvm algorithm combines
less-complex and time-efficient techniques from the CSE and GB algorithms to
take the advantages of both techniques. It iteratively finds alternative realiza-
tions of linear transforms using the GB difference method and applies a CSE
heuristic to further reduce the hardware complexity by sharing the common
subexpressions. Hence, in the hybrid algorithm, the main drawback of a CSE
algorithm, i.e., its limitation to a number representation, is partially eliminated
using a GB algorithm, and the main drawback of a GB algorithm, i.e., its time-
consuming search process, is partially decreased using a CSE heuristic. Although
the hybrid algorithm finds solutions with the fewest number of operations, lead-
ing to low-complexity designs at gate-level, its solutions can be realized in a

large number of adder-steps due to the partial product sharing, yielding CMVM
designs with large delay at gate-level. To overcome this disadvantage, we also
describe its modified version, called Hcmvm-dc, that can find a solution under
a delay constraint and enables us to find the optimal tradeoff between area and
delay in a CMVM design.

3.1 The Hcmvm Algorithm

The hybrid algorithm can handle the constants under binary and CSD where
there is a unique representation for each constant. In its preprocessing phase,
each linear transform is converted to an odd and positive expression, i.e., it is
divided by 2 until at least one of its constants is odd, and it is multiplied by -1 if
the sign of the first nonzero constant in the expression is negative. Then, these
expressions are stored in a set called Eset without repetition.

As done in GB algorithms designed for the MCM instances [15, 17, 18], the
linear transforms, that can be synthesized using a single operation (the inputs of
these linear transforms are: an element of the input vector; an implemented linear
transform; or their shifted versions), are found iteratively and moved from Eset
to Iset which will include the implemented expressions. As a simple example,
consider the linear transforms y1 = x1+x2, y2 = x1+x3, and y3 = 3x1+x2+2x3.
Observe that y1 and y2 can be implemented using a single operation, whose
inputs are the input variables, and y3 can be synthesized as y1 + y2 ≪ 1. This
is the optimal part of the hybrid algorithm, meaning that, when all the linear
transforms are realized in this part, the minimum solution is obtained.

If Eset is still not empty, Hcmvm switches to its heuristic part given as:

1. Find a solution on the expressions of Eset with the CSE algorithm, called
H2MC, that will be described next, and record its solution (considering also
the number of elements in Iset) as the best solution found so far (bs).

2. Compute the cost of each expression in Eset as the total number of nonzero
digits of each constant under the given number representation (binary or
CSD) used in H2MC.

3. Sort the expressions in a descending order based on their cost values.
4. For each expression in Eset, Eseti, with a cost value costi, where i < m and

m denotes the number of expressions in Eset,

(a) Find all the implementations of Eseti including an expression in Eset,
Esetj , as Eseti = Esetj ≪ l1 + dij ≪ l2, where i < j ≤ m and
l1, l2 ≥ 0 denote the left shifts. Then, compute all the differences of
Eseti as dij ≪ l2 = Eseti − Esetj ≪ l1.

(b) Determine the cost of each difference in terms of the total number of
nonzero digits of each constant under the given number representation
and find the difference with the minimum cost value (costd).

(c) If costd < costi − 1, then move Eseti from Eset to Iset and add the
difference dij with the minimum cost value into Eset, in place of Eseti.

5. If none of expressions is replaced with a difference (there are no promising
differences for an expression in Eset), return the best solution found so far.

Initial expressions:
y1 = 7x1 + 8x2 + 2x3 + 13x4

y2 = 12x1 + 11x2 + 7x3 + 13x4

y3 = 5x1 + 8x2 + 2x3 + 15x4

y4 = 7x1 + 11x2 + 7x3 + 11x4

Solution of H2MC on initial expressions: 19 operations, bs = 19

Iteration 1

Expressions of Eset and chosen differences:
Eset1(10) : 12x1 + 11x2 + 7x3 + 13x4 d12(3) : 5x1 + 2x4

Eset2(10) : 7x1 + 11x2 + 7x3 + 11x4 d23(5) : 3x2 + 5x3 − 2x4

Eset3(7) : 7x1 + 8x2 + 2x3 + 13x4 d34(2) : x1 − x4

Eset4(6) : 5x1 + 8x2 + 2x3 + 15x4

Expressions in Eset : Expressions in Iset :
5x1 + 2x4 12x1 + 11x2 + 7x3 + 13x4

3x2 + 5x3 − 2x4 7x1 + 11x2 + 7x3 + 11x4

x1 − x4 7x1 + 8x2 + 2x3 + 13x4

5x1 + 8x2 + 2x3 + 15x4

Solution of H2MC on Eset : 10 operations, Total: 10 + |Iset| = 13, bs = 13

Iteration 2

Expressions of Eset and chosen differences:
Eset1(6) : 5x1 + 8x2 + 2x3 + 15x4 d14(4) : 2x1 + 4x2 + x3 + 8x4

Eset2(5) : 3x2 + 5x3 − 2x4

Eset3(3) : 5x1 + 2x4

Eset4(2) : x1 − x4

Expressions in Eset : Expressions in Iset :
2x1 + 4x2 + x3 + 8x4 12x1 + 11x2 + 7x3 + 13x4

3x2 + 5x3 − 2x4 7x1 + 11x2 + 7x3 + 11x4

5x1 + 2x4 7x1 + 8x2 + 2x3 + 13x4

x1 − x4 5x1 + 8x2 + 2x3 + 15x4

Solution of H2MC on Eset : 9 operations, Total: 9 + |Iset| = 13

Fig. 5. Procedure of the Hcmvm algorithm.

6. Otherwise, apply H2MC to the expressions of Eset and obtain a set of oper-
ations realizing these expressions.

7. If the number of operations in the solution of H2MC plus the number of
elements in Iset is less than bs, update the bs value. Note that each element
of Iset requires a single operation to be implemented.

8. Go to Step 2 and repeat the process.

The reason behind the application of H2MC in Step 1 of the heuristic part is
to determine an upper bound of the search space and also, to obtain a solution in
case the difference method cannot achieve any promising difference on the initial
Eset. This guarantees that a solution of Hcmvm always includes a number of
operations less than or equal to that of H2MC. Note also that in Step 4(a) of the
heuristic part, the left shifts are limited to the maximum bitwidth of constants
in the expressions while searching for the implementations of an expression.

Figure 5 illustrates the procedure of Hcmvm on the first example of [20]
when H2MC defines the constants under CSD. In this figure, the values between

parenthesis next to the expressions denote the respective cost values. Initially,
H2MC is applied to the linear transforms and a solution with 19 operations is
obtained. Then, in the first iteration, the linear transforms Eset1, Eset2, and
Eset3 are realized using a single operation whose inputs are an element of Eset
and a difference with the minimum cost. These expressions are synthesized as
Eset1 = Eset2+d12, Eset2 = Eset3+d23, Eset3 = Eset4+d34 ≪ 1. Then, these
linear transforms are moved from Eset to Iset and the associated differences are
added to Eset. In this case, H2MC finds a solution with 10 operations on Eset.
Thus, with 3 expressions in Iset, each requiring a single operation, a total of 13
operations are needed. Since this solution is better than the best solution found
so far (bs), i.e., 19, the bs value is updated. In the second iteration, Hcmvm
follows the same procedure, realizing Eset1 as Eset4 + d14 ≪ 1 and finding a
solution with a total of 13 operations again. The Hcmvm algorithm takes only
two iterations since there are no more promising differences for an expression.
As reported in [20], the algorithms of [19, 20] find a solution with 14 operations
on this instance.

H2MC - The CSE Heuristic The H2MC algorithm is based on the CSE heuris-
tics [4, 12] that iteratively compute the most common (MC) 2-term subexpres-
sions. Furthermore, we improved their subexpression selection heuristic (that
significantly affects the final solution due to the iterative decision making) by
choosing an MC 2-term subexpression such that its selection leads to the least
loss of subexpression sharing in the next iterations. These subexpressions are
called the most common minimum conflicting (MCmc) 2-term subexpressions.

In Hcmvm, H2MC takes Eset as an input and returns Sset, that includes the
subexpressions required to realize all the expressions of Eset, as an output. In
H2MC, for each element of Eset, the constants in expressions are defined under a
given number representation, and the decompositions of expressions are obtained
and stored in a set called Dset. The part of H2MC, where the MCmc 2-term
subexpressions are found and replaced in the decompositions of expressions, is
given as follows:

1. Form a set, called Sset, that will store the selected 2-term subexpressions.
2. For each 2-term subexpression, that is extracted from the decompositions

of expressions in Dset, convert the subexpression to positive and odd, find
its occurrences in the elements of Dset considering its negated and shifted
versions, and determine the MC 2-term subexpressions.

3. If the maximum number of occurrences of the MC 2-term subexpressions is
1, then return Dset and Sset.

4. Otherwise, find the minimum conflicting 2-term subexpressions in the MC
2-term subexpressions, i.e., the MCmc 2-term subexpressions. In this case,
for each MC 2-term subexpression, we compute the number of MC 2-terms
subexpressions it conflicts with.

5. Select one of the MCmc 2-term subexpressions, add it to Sset by labeling it
with a variable, replace its occurrences in Dset with its label, go to Step 2.

Figure 6 illustrates the procedure of H2MC when constants are defined under
CSD. In the first iteration, two MC 2-term subexpressions, that both occur in
y1 once and in y2 twice, with a total of 3 occurrences, are obtained. Note that
the occurrences can also be found in negated or shifted forms. However, the
occurrences of the MC 2-term subexpressions in the linear transforms conflict
with each other, indicating that selecting one of them will eliminate the other in
the next iteration. The MCmc 2-term subexpressions are determined as MC 2-
term subexpressions, and in this iteration, the subexpression x2+16x2 is chosen
and replaced in the expressions. In Figure 6, the occurrences of selected MCmc
2-term subexpressions in Dset are shown in bold. In the second iteration, there
are three MC 2-term subexpressions with two occurrences. The subexpressions
x1 + 4x2 and 2x1 + a occur only in y1 and y2, respectively. The subexpression
−x1 + 16x1 occurs in both expressions and its occurrences conflict with the
occurrences of both x1+4x2 and 2x1+a. Thus, the MCmc 2-term subexpressions
are determined as x1+4x2 and 2x1+a, and in this iteration, 2x1+a is chosen and
replaced in the expressions. Hence, in the third iteration, x1+4x2 is encountered
again, is selected, and replaced in the expressions. The resulting expressions do
not include 2-term subexpressions with a number of occurrence greater than 1.
Thus, H2MC finds a solution with a total of 7 operations, 3 operations for the
2-term subexpressions selected in each iteration (the elements of Sset) and 4
operations for the elements of the final Dset.

To illustrate the impact of selecting an MCmc 2-term subexpression, ob-
serve that if the MC 2-term subexpression −x1 + 16x1 had been selected in the
second iteration, there would not be any 2-term with a maximum occurrence
greater than 1 in the next iteration since this subexpression would remove the
occurrences of x1+4x2 and 2x1+a. In this case, 8 operations would be required.

Note that the realization of expressions in the final Dset is a trivial process.
However, as stated in [30], the high-level algorithms should also consider the
gate-level implementation of operations to further reduce the hardware com-
plexity. Hence, while synthesizing the expressions in the final Dset, we apply
some hardware optimizations without changing the number of operations. For
each expression in the final Dset including more than 2 terms, we separate the
terms into two sets, Pset and Mset, considering their sign. This comes from
the fact that although the cost of an adder and a subtracter is assumed to be
equal in high-level algorithms, a subtracter occupies larger area than an adder
at gate-level. Then, in each Pset and Mset, we iteratively select two terms, that
have the smallest bitwidth, i.e., the narrowest (require less hardware), to be the
inputs of an adder, generate the output of the adder, label it with a variable,
store it to Sset as a 2-term subexpression, remove these two inputs from the set,
and add the output of the adder to the set. This process is iterated until the
number of elements of each set is equal to 1. Note that if the initial Mset is not
empty, the final operation will be a subtracter to realize the expression. Thus,
in our example in Figure 6, Dset1 and Dset2 in the final Dset are respectively
implemented as 4c− (a+ c) and (32x1 + 4b)− b, with a total of 4 operations.

Initial expressions:
y1 = 15x1 + 43x2

y2 = 38x1 + 51x2

Initial expressions in Dset :
Dset1 = −x1 + 16x1−x2 − 4x2−16x2 + 64x2

Dset2 = −2x1 + 8x1 + 32x1−x2+4x2−16x2+64x2

Iteration 1

MC 2-terms: x2 + 16x2, −x2 + 4x2 (#occurrences = 3)
MCmc 2-terms: x2 + 16x2, −x2 + 4x2

Current expressions in Dset : Current expressions in Sset :
Dset1 = −x1 + 16x1 − 4x2 + 64x2 − a Sset1 = a = x2 + 16x2

Dset2 = −2x1+8x1 + 32x1−a+4a

Iteration 2

MC 2-terms: −x1 + 16x1, x1 + 4x2, 2x1 + a (#occurrences = 2)
MCmc 2-terms: x1 + 4x2, 2x1 + a

Current expressions in Dset : Current expressions in Sset :
Dset1 = −x1+16x1−4x2+64x2 − a Sset1 = a = x2 + 16x2

Dset2 = 32x1 − b+ 4b Sset2 = b = 2x1 + a

Iteration 3

MC 2-terms: x1 + 4x2 (#occurrences = 2)
MCmc 2-terms: x1 + 4x2

Current expressions in Dset : Current expressions in Sset :
Dset1 = −a− c+ 4c Sset1 = a = x2 + 16x2

Dset2 = 32x1 − b+ 4b Sset2 = b = 2x1 + a
Sset3 = c = x1 + 4x2

Fig. 6. Procedure of the H2MC algorithm.

Analysis of the Hybrid Algorithm Although the Hcmvm algorithm uses the
GB difference technique, that is not limited to any number representation, it also
includes a CSE heuristic whose solution depends on the number representation.
Figure 7(a) illustrates the impact of a number representation (binary and CSD)
on the solutions of Hcmvm on the benchmark set introduced in Section 2.2.
Observe from Figure 7(a) that as the size of the constant matrix (m) is increased,
the difference on the average number of operations between the solutions of
Hcmvm obtained under binary and CSD increases and reaches up to 12.43 on
16 × 16 matrices. This is primarily because a constant is represented with the
minimum number of nonzero digits under CSD, generating a linear transform
with much less number of terms with respect to those decomposed under binary.
We note that Hcmvm generally obtains better solutions when constants are
defined under CSD. However, there are solutions with less number of operations
obtained by Hcmvm under binary compared to those found under CSD.

Moreover, the CSE heuristic used in Hcmvm has a significant impact on
its solutions. Figure 7(b) presents the effect of a CSE heuristic (the heuristic
of [12] and H2MC) on the solutions of Hcmvm on the benchmark set introduced
in Section 2.2 when constants are defined under CSD. Note that this experiment
explicitly presents the effect of using the MCmc 2-term subexpressions instead of
the MC 2-term subexpressions which is the main difference between H2MC and

2 4 6 8 10 12 14 16

50

100

150

200

250

300

350

Randomly Generated m × m Constant Matrices

Size of constant matrices (m)

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Binary
CSD

2 4 6 8 10 12 14 16

50

100

150

200

250

300

350

Randomly Generated m × m Constant Matrices

Size of constant matrices (m)

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

The heuristic of [12]
H

2MC

(a) (b)

Fig. 7. Analysis of the Hcmvm algorithm: (a) Effect of number representations; (b) Ef-
fect of CSE heuristics.

the heuristic of [12]. As can be observed from Figure 7(b), Hcmvm with H2MC

obtains better solutions in terms of the number of operations than those of
Hcmvm including the heuristic of [12]. The maximum difference on the average
number of operations between the solutions of Hcmvm with the heuristic of [12]
and Hcmvm with H2MC is 7.33 on 16× 16 matrices. This is simply because the
use of the MCmc 2-term subexpressions increases the possibility of subexpression
sharing in later iterations with respect to the MC 2-term subexpressions. Note
also thatHcmvm can incorporate any CSE algorithm and hence, as more efficient
CSE heuristics are developed, they can be adapted to Hcmvm.

3.2 The Hcmvm-dc Algorithm

The preprocessing phase of Hcmvm-dc is similar to that of Hcmvm, but in
Hcmvm-dc, we also compute the minimum adder-steps of each linear transform
as described in Section 2.2. Then, given the delay constraint, dc, that is greater
than or equal to the minimum adder-steps of the CMVM operation computed
as in Eqn. 2, in its optimal part, we synthesize the linear transforms using a
single operation if their realizations do not exceed dc. While searching for the
promising differences, we compute the minimum adder-steps of each difference
and accept the synthesis of an expression only if its realization does not violate
dc. For our example in Figure 5, given dc = 4, that is the minimum adder-steps of
the CMVM operation, the realization of Eset1 = Eset2+d1 in the first iteration
is not possible in Hcmvm-dc because the realizations of both Eset1 and Eset2
require minimum 4 adder-steps. Thus, any implementation of Eset1 with Eset2
always violates dc = 4.

Moreover, we modified the H2MC algorithm, called H2MC−DC, to handle the
delay constraint. In H2MC−DC, we initially find the MC 2-term subexpressions,
whose selections will not lead to a realization greater than dc, and then, we
obtain the MCmc 2-term subexpressions among the MC 2-term subexpressions.
In H2MC−DC, we also apply the same hardware optimizations considered in H2MC

by taking into account dc.

2 4 6 8 10 12 14 16
10

−2

10
−1

10
0

10
1

10
2

10
3

Randomly Generated m × m Constant Matrices

Size of constant matrices (m)

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
)

H
2MC

H
CMVM

2 4 6 8 10 12 14 16
10

−2

10
−1

10
0

10
1

10
2

10
3

Randomly Generated m × m Constant Matrices

Size of constant matrices (m)

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
)

H
2MC−DC

H
CMVM−DC

(a) (b)

Fig. 8. Run time of algorithms: (a) H2MC and Hcmvm; (b) H2MC−DC and Hcmvm-dc.

Thus, with these modifications, Hcmvm-dc can find a solution under a delay
constraint. We note that Hcmvm-dc presents a similar behavior as Hcmvm
under different number representations and CSE heuristics.

3.3 Time Complexity of the Hybrid Algorithms

The run time of the hybrid algorithms depends on the number of iterations they
take and the performance of the CSE heuristics, H2MC and H2MC−DC, which are
used in each iteration of Hcmvm and Hcmvm-dc, respectively. Hence, finding
a solution with a hybrid algorithm will always take longer time than a CSE
heuristic. Note that the number of iterations of Hcmvm depends heavily on the
linear transforms. Also, the computational complexity of the H2MC algorithm
is related to the number of expressions (m) and the number of terms in the
decomposed form of each expression (ti, where 1 ≤ i ≤ m). The number of 2-term
subexpressions to be considered in a decomposed form of an expression including
t terms is t(t− 1)/2. As a simple example, consider the decomposed form of an
expression x1+x2+x3. There exist three 2-term subexpressions, x1+x2, x1+x3,
and x2 + x3. Thus, the maximum number of 2-term subexpressions considered
in one iteration of H2MC is simply

∑m
i=1 ti(ti − 1)/2.

Figure 8 presents the average run time of the hybrid and CSE algorithms
in seconds on the benchmark set introduced in Section 2.2 when constants are
defined under CSD. In H2MC−DC and Hcmvm-dc, the delay constraint was set
to the minimum adder-steps of the CMVM operation. These algorithms were
implemented in matlab and were run on a PC with Intel Xeon at 2.33GHz.

As can be observed from Figure 8, whileHcmvm takes much longer time than
H2MC, Hcmvm-dc and H2MC−DC have similar run time. In the former case, this
is simply because Hcmvm generally takes more than one iteration due to the
difference method. In the latter case, the delay constraint with the minimum
number of adder-steps highly restricts the ability of the difference method and
Hcmvm-dc generally takes few iterations. On the other hand, H2MC takes less
time than H2MC−DC. This is because H2MC−DC operates with the 2-term subex-

Table 1. Summary of results of high-level algorithms on linear DSP transforms in
terms of the number of operations.

Algorithms H.264 DCT8 IDCT8 DHT DST

[9] – 227 222 211 252
[8] – 202 183 209 238
[28] 53 161 140 161 181

[12] - CSD 51 147 138 159 176
H2MC - CSD 49 150 137 150 174
Hcmvm - CSD 42 145 136 150 172

pressions, which are not the most common, due to the delay constraint. Hence, it
requires more 2-term subexpressions and thus, it takes more iterations to obtain
a solution than H2MC that considers the most common 2-term subexpressions.
Overall, Hcmvm-dc takes less time than Hcmvm since it takes less number of
iterations than Hcmvm due to the delay constraint.

4 Experimental Results

This section presents the high-level results of previously proposed algorithms [5,
8, 9, 12, 27, 28] and of the algorithms introduced in this chapter on linear DSP
transforms and random instances. We have also implemented the algorithms
of [12, 27]. Moreover, we developed a computer-aided design (CAD) tool that
automatically describes the solutions of high-level algorithms under the shift-
adds architecture in VHDL. The CAD tool is also capable of describing the
direct realizations of linear transforms in VHDL where they are defined as the
summations of constant multiplications as given in Eqn. 1. Additionally, this
section presents the gate-level results of 20 × 20 DCTs designed using the so-
lutions of high-level algorithms. The DCTs were synthesized using the Cadence
Encounter RTL Compiler with the Nangate 45nm Open Cell library [31].

The first experiment set [28] consists of a 7 × 3 H.264 video compression
transform, an 8-point DCT, an 8-point inverse DCT (IDCT), an 8 × 8 discrete
Hartley transform (DHT), and an 8 × 8 DST. The constants are defined using
14 bits. The solutions of the high-level algorithms in terms of the number of
operations are given in Table 1 where the results of algorithms [8, 9, 28] were
taken from [28]. In H2MC and Hcmvm, the constants were defined under CSD.
Observe that Hcmvm finds better solutions than all algorithms in terms of the
number of operations (except that both H2MC and Hcmvm obtain the best
solution on the DHT instance).

As the second experiment set, we used the benchmark set introduced in
Section 2.2. Table 2 presents the results of high-level algorithms, where adder and
step stand for the average number of operations and the average number of adder-
steps, respectively. The results of the algorithm [5] were taken from its paper. The
results of the algorithm of [27] were found when the delay constraint (dc) was set
to the minimum delay of the CMVM operation (min delayCMVM), as computed
in Eqn. 2. InHcmvm-dc, dc was set tomin delayCMVM andmin delayCMVM+2.
In all algorithms, the constants were defined under CSD.

Table 2. Summary of results of high-level algorithms on m ×m randomly generated
matrices with 8-bit constants.

CMVM problem CMVM problem under a delay constraint

m [12] [5] H2MC Hcmvm Hcmvm-dc∗ [27]∗∗ Hcmvm-dc∗∗

adder step adder adder step adder step adder step adder step adder step

2 8.8 3.5 9.7 8.7 3.6 8.2 4.4 8.2 3.7 9.0 3.1 8.8 3.1
4 32.1 5.9 31.2 31.7 5.8 27.6 7.8 28.1 5.7 32.8 4.1 32.1 4.1
6 68.0 7.6 66.1 66.5 7.7 57.3 10.0 58.2 7.0 68.1 5.0 66.8 5.0
8 116.4 9.2 113.2 114.1 9.2 96.3 11.9 99.5 7.1 119.7 5.1 117.2 5.1
10 175.7 10.7 172.4 172.0 10.5 143.5 13.2 146.9 8.0 175.8 6.0 157.7 6.0
12 246.5 12.0 241.6 240.9 11.7 200.4 14.6 206.8 8.0 247.1 6.0 241.6 6.0
14 327.1 13.2 322.9 320.0 13.0 264.3 15.5 274.8 8.0 330.2 6.0 324.0 6.0
16 417.9 14.4 412.4 407.5 14.0 338.3 16.3 353.3 8.0 431.0 6.0 423.2 6.0
∗ the delay constraint was set to min delayCMVM + 2
∗∗ the delay constraint was set to min delayCMVM

Observe from Table 2 that the Hcmvm algorithm finds significantly better
solutions than the CSE algorithms [12, 5] and H2MC in terms of the number
of operations due to the use of the difference method. However, its solutions
lead to CMVM designs with a large number of adder-steps. On the other hand,
when dc is min delayCMVM + 2, the Hcmvm-dc algorithm still obtains better
solutions than those of the CSE algorithms designed for the CMVM problem
and finds solutions close to those of Hcmvm. Note that while the maximum
gain on the number of operations between Hcmvm and Hcmvm-dc when dc is
min delayCMVM + 2 is 4.23% on 16 × 16 matrices, the maximum gain on the
number of adder-steps between Hcmvm-dc when dc is min delayCMVM+2 and
Hcmvm is 50.73% on the same instances. However, when dc is min delayCMVM

in Hcmvm-dc, the effect of the difference method is diminished significantly.
Note that the maximum gain on the number of operations obtained by Hcmvm-
dc when dc is min delayCMVM + 2 and min delayCMVM is 16.52% on 16 × 16
instances with a two adder-steps increase on average. However, it finds better
solutions than the algorithm of [27] in terms of the number of operations on
all matrix types. Moreover, there are instances, such as 10× 10 matrices, where
Hcmvm-dc under the minimum number of adder-steps delay constraint obtains
better solutions than the CSE algorithms designed for the CMVM problem.

As the third experiment, we used 20× 20 DCTs, where the bitwidth (bw) of
the constants were defined from 2 to 16 with increments of 2. Table 3 presents
the results of algorithms where CPU denotes their run time in seconds. The
constants in DCTs were defined under CSD, and in the algorithm of [27] and
Hcmvm-dc, dc was set to the minimum adder-steps of the DCT design.

Observe from Table 3 that Hcmvm and Hcmvm-dc find respectively better
solutions than the CSE heuristics [12] and [27], requiring 6.75 and 5.62 less
operations on average. Note that all these algorithms obtain a solution with the
same number of operations for DCTs when bw is equal to 4 and 8. However, the
run times of Hcmvm and Hcmvm-dc are greater than those of [12, 27], since
they may take more than one iteration due to the new realizations of linear
transforms found by the difference method. Also, the run time of Hcmvm is
longer than Hcmvm-dc on average since Hcmvm-dc may require fewer number
of iterations than Hcmvm due to the delay constraint.

Table 3. Summary of results of high-level algorithms on 20× 20 DCTs.

CMVM problem CMVM problem under a delay constraint

bw [12] Hcmvm [27] Hcmvm-dc

adder step CPU adder step CPU adder step CPU adder step CPU

2 118 6 6.5 98 5 16.0 118 5 15.5 98 5 35.8
4 156 7 46.7 156 8 193.3 156 6 115.1 156 6 412.9
6 192 8 105.3 189 8 392.8 194 6 245.2 191 6 250.7
8 232 11 250.4 232 11 905.4 232 7 573.3 232 7 1077.9
10 257 11 414.6 254 11 2135.8 260 7 938.8 258 7 3573.8
12 300 13 624.7 295 13 3808.9 303 7 1406.3 298 7 1437.0
14 323 13 962.7 319 13 4814.8 326 7 2107.2 323 7 2156.7
16 376 15 1556.9 357 15 9002.1 391 7 3362.4 379 7 3385.6

Total 1954 84 3967.8 1900 84 21269.1 1980 52 8763.8 1935 52 12330.4

Table 4. Summary of gate-level results on 20× 20 DCT designs.

CMVM problem CMVM problem under a delay constraint

bw [12] Hcmvm [27] Hcmvm-dc

area delay pd area delay pd area delay pd area delay pd

2 36.5 3202 2.0 29.6 3066 1.7 35.7 2963 1.8 30.3 3019 1.7
4 49.3 4132 3.5 45.1 4015 3.3 48.5 3924 3.4 48.2 3911 3.5
6 60.7 4176 4.6 53.8 4237 4.2 61.0 4094 4.5 58.4 4060 4.5
8 76.3 5473 6.4 64.5 4971 5.6 71.7 4439 5.7 69.9 4539 5.6
10 87.7 5435 7.7 73.6 5325 6.5 84.5 4775 6.9 80.6 4799 6.8
12 101.9 5262 9.4 84.4 5704 7.6 99.7 4988 8.3 94.8 4966 8.1
14 112.7 5837 10.8 94.3 5724 9.2 111.9 5205 10.2 105.4 5480 9.5
16 122.5 5812 13.1 103.6 5846 11.0 126.0 5417 12.0 120.6 5683 11.5

Total 647.6 39329 57.5 548.7 38888 49.1 639.0 35805 52.9 608.2 36457 51.2

Table 4 presents the gate-level results of 20 × 20 DCTs synthesized based
on the solutions of algorithms given in Table 3. In Table 4, area (mm2), delay
(ps), and pd (mW) stand for area, delay, and RTL power dissipation estimation,
respectively. In this experiment, the bitwidths of input variables were taken as
16 and DCTs were synthesized under the minimum area design strategy.

Observe from Table 4 that the solutions of Hcmvm yield low-complexity
DCT designs (but with a large delay due to a large number of adder-steps) and
high-speed DCT designs with low-complexity are obtained by the solutions of
Hcmvm-dc with respect to designs obtained by the heuristics of [12] and [27],
respectively. This is because they find a solution with less number of operations
than the algorithms [12, 27] and they also consider some hardware optimizations.
The impact of the latter fact can be easily observed on the results given in Table 4
when bw is 4 and 8, where all the algorithms find a solution with the same number
of operations. The DCT designs obtained by the hybrid algorithms also consume
less power on average with respect to those synthesized by the solutions of the
CSE heuristics of [12, 27]. This is primarily because of less area in the DCTs
designed using the solutions of the hybrid algorithms.

Figure 9 presents the gate-level results of direct realizations of 20×20 DCTs,
where linear transforms are realized using additions and multipliers. The gate-
level results of DCTs when they were synthesized under the shift-adds archi-
tecture using the digit-based recoding technique [25], that does not exploit any
partial product sharing, are also given in this figure. These results are com-
pared with those of DCTs obtained by Hcmvm. In the digit-based recoding

2 4 6 8 10 12 14 16

50

100

150

200

250

300

350

400

 20 × 20 DCTs

Bit−width of constants (bw)

A
re

a
(m

m
2)

Direct realization
Digit−based recoding [23]
H

CMVM

2 4 6 8 10 12 14 16

3000

3500

4000

4500

5000

5500

 20 × 20 DCTs

Bit−width of constants (bw)

D
el

ay
 (

ps
)

Direct realization
Digit−based recoding [23]
H

CMVM

(a) (b)

2 4 6 8 10 12 14 16

5

10

15

20

 20 × 20 DCTs

Bit−width of constants (bw)

P
ow

er
 d

is
si

pa
tio

n
(m

W
)

Direct realization
Digit−based recoding [23]
H

CMVM

(c)

Fig. 9. Gate-level results of 20× 20 DCTs: (a) Area; (b) Delay; (c) Power dissipation.

method [25], the constants were defined under CSD and the linear transforms
were realized with addition/subtraction operations as in a binary tree so that
the minimum number of adder-steps of DCTs is achieved. A similar approach
was also taken in the direct realizations of DCTs using multipliers and additions.

Observe from Figures 9(a) and (c) that the use of a high-level algorithm
targeting the minimization of the number of operations in the multiplierless
design of linear transforms leads to significant reductions in area and power
dissipation when compared to the direct realizations of DCTs and the digit-
based recoding technique [25]. However, as can be observed from Figure 9(b),
the shift-adds designs insert larger delay than those of direct realizations due to
a large number of addition/subtraction operations in series.

5 Conclusions

This chapter addressed the problem of minimizing the number of operations in
the multiplierless design of linear transforms and introduced a hybrid algorithm,
Hcmvm, that combines an efficient GB difference technique and an improved
CSE algorithm. Since the proposed hybrid algorithm can lead to a solution
with the fewest number of operations, but with a large number of adder-steps

due to the sharing of partial products, this chapter also presented its modified
version, Hcmvm-dc, that can handle the delay constraint. The experimental
results on a comprehensive set of instances showed that the hybrid algorithms
yield significantly better solutions than previously proposed algorithms at both
high-level and gate-level. It was also indicated that the shift-adds design of linear
transforms with the use of high-level algorithms lead to significant reductions in
gate-level area compared to linear transforms designed using multipliers.

References

1. Quereshi, F., Gustafsson, O.: Low-Complexity Reconfigurable Complex Constant
Multiplication for FFTs. In: Proc. of IEEE International Symposium on Circuits
and Systems. (2009) 24–27

2. Thong, J., Nicolici, N.: A Novel Optimal Single Constant Multiplication Algorithm.
In: Proc. of Design Automation Conference. (2010) 613–616

3. Kang, H.J., Park, I.C.: FIR Filter Synthesis Algorithms for Minimizing the Delay
and the Number of Adders. IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing 48(8) (2001) 770–777

4. Hartley, R.: Subexpression Sharing in Filters Using Canonic Signed Digit Multi-
pliers. IEEE Trans. on Circuits and Systems II 43(10) (1996) 677–688

5. Boullis, N., Tisserand, A.: Some Optimizations of Hardware Multiplication by
Constant Matrices. IEEE Trans. on Computers 54(10) (2005) 1271–1282

6. Wallace, C.: A Suggestion for a Fast Multiplier. IEEE Trans. on Electronic Com-
puters 13(1) (1964) 14–17

7. Gallagher, W., Swartzlander, E.: High Radix Booth Multipliers Using Reduced
Area Adder Trees. In: Proc. of Asilomar Conference on Signals, Systems and
Computers. (1994) 545–549

8. Nguyen, H., Chatterjee, A.: Number-Splitting With Shift-and-Add Decomposition
for Power and Hardware Optimization in Linear DSP Synthesis. IEEE Trans. on
VLSI 8(4) (2000) 419–424

9. Potkonjak, M., Srivastava, M., Chandrakasan, A.: Multiple Constant Multiplica-
tions: Efficient and Versatile Framework and Algorithms for Exploring Common
Subexpression Elimination. IEEE Trans. on Computer-Aided Design of Integrated
Circuits 15(2) (1996) 151–165

10. Aksoy, L., Costa, E., Flores, P., Monteiro, J.: Exact and Approximate Algorithms
for the Optimization of Area and Delay in Multiple Constant Multiplications. IEEE
Trans. on Computer-Aided Design of Integrated Circuits 27(6) (2008) 1013–1026

11. Yurdakul, A., Dündar, G.: Multiplierless Realization of Linear DSP Transforms
by Using Common Two-Term Expressions. The Journal of VLSI Signal Processing
22(3) (1999) 163–172

12. Hosangadi, A., Fallah, F., Kastner, R.: Reducing Hardware Complexity of Linear
DSP Systems by Iteratively Eliminating Two-Term Common Subexpressions. In:
Proc. of Asia and South Pacific Design Automation Conference. (2005) 523–528

13. Aksoy, L., Costa, E., Flores, P., Monteiro, J.: Optimization Algorithms for the Mul-
tiplierless Realization of Linear Transforms. ACM Trans. on Design Automation
of Electronic Systems 17(1) (2012) Article 3.

14. Bull, D., Horrocks, D.: Primitive Operator Digital Filters. IEE Proc. G: Circuits,
Devices and Systems 138(3) (1991) 401–412

15. Dempster, A., Macleod, M.: Use of Minimum-Adder Multiplier Blocks in FIR
Digital Filters. IEEE Trans. on Circuits and Systems II 42(9) (1995) 569–577

16. Gustafsson, O., Wanhammar, L.: A Novel Approach to Multiple Constant Multi-
plication Using Minimum Spanning Trees. In: Proc. of IEEE Midwest Symposium
on Circuits and Systems. (2002) 652–655

17. Voronenko, Y., Püschel, M.: Multiplierless Multiple Constant Multiplication. ACM
Trans. on Algorithms 3(2) (2007)

18. Aksoy, L., Gunes, E., Flores, P.: Search Algorithms for the Multiple Constant Mul-
tiplications Problem: Exact and Approximate. Elsevier Journal on Microprocessors
and Microsystems 34(5) (2010) 151–162

19. Dempster, A., Gustafsson, O., Coleman, J.: Towards an Algorithm for Matrix
Multiplier Blocks. In: Proc. of IEEE European Conference on Circuit Theory and
Design. (2003) 1–4

20. Gustafsson, O., Ohlsson, H., Wanhammar, L.: Low-Complexity Constant Coeffi-
cient Matrix Multiplication Using a Minimum Spanning Tree. In: Proc. of Nordic
Signal Processing Symposium. (2004) 141–144

21. Avizienis, A.: Signed-digit Number Representation for Fast Parallel Arithmetic.
IRE Trans. on Electronic Computers EC-10 (1961) 389–400

22. Garner, H.: Number Systems and Arithmetic. Advances in Computers 6 (1965)
131–194

23. Reitwiesner, G.: Binary Arithmetic. Advances in Computers 1 (1960) 261–265
24. Cappello, P., Steiglitz, K.: Some Complexity Issues in Digital Signal Processing.

IEEE Trans. on Acoustics, Speech, and Signal Processing 32(5) (1984) 1037–1041
25. Ercegovac, M., Lang, T.: Digital Arithmetic. Morgan Kaufmann (2003)
26. Gustafsson, O.: Lower Bounds for Constant Multiplication Problems. IEEE Trans.

on Circuits and Systems II 54(11) (2007) 974–978
27. Hosangadi, A., Fallah, F., Kastner, R.: Simultaneous Optimization of Delay and

Number of Operations in Multiplierless Implementation of Linear Systems. In:
Proc. of International Workshop on Logic Synthesis. (2005)

28. Arfaee, A., Irturk, A., Laptev, N., Fallah, F., Kastner, R.: Xquasher: A Tool
for Efficient Computation of Multiple Linear Expressions. In: Proc. of Design
Automation Conference. (2009) 254–257

29. Lefevre, V.: Multiplication by an Integer Constant. Technical report, Institut
National de Recherche en Informatique et en Automatique (2001)

30. Aksoy, L., Costa, E., Flores, P., Monteiro, J.: Finding the Optimal Tradeoff Be-
tween Area and Delay in Multiple Constant Multiplications. Elsevier Journal on
Microprocessors and Microsystems 35(8) (2011) 729–741

31. Nangate website, http://www.nangate.com/.

