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Abstract. Charge balance law based on conservation of charge is stated and 
employed to analyze on-chip linear, Fibonacci and exponential charge pumps. 
For micro-power on-chip implementations, both the positive- and the negative-
plate parasitic capacitors have to be considered. Voltage conversion ratios and 
efficiencies can be obtained in closed form for single- and dual-branch linear 
charge pumps, but not for Fibonacci and exponential charge pumps. Instead, a 
first iteration approximation analysis for computing voltage conversion ratio is 
proposed. For the linear charge pump, efficiency optimization is achieved by 
first computing the optimal number of stages, and then obtaining from the 
required output voltage the reduction factor that is a function of load current, 
flying capacitor and switching frequency. Using a 0.35m CMOS process, 8X 
linear, Fibonacci and exponential charge pumps are designed and their 
performances are compared and confirmed by extensive Cadence Spectre 
simulations. It is concluded that linear charge pumps attain the best efficiency. 

Keywords: charge balance, charge pump, charge redistribution, exponential 
charge pump, Fibonacci charge pump, linear charge pump 

1   Introduction 

Micro-power energy harvesting and micro-sensor applications require fully on-
chip implementation of power management units that include integrated switched-
capacitor power converters, or charge pumps (QPs). Embedded systems that have a 
stringent silicon estate need fully on-chip charge pumps for reading and writing 
EEPROM. For on-chip charge pumps, efficiency in power and area are two major 
concerns, and both are closely related to charge pump topologies that determine the 
number of capacitors and switches and losses due to parasitic capacitors. Integrated 
linear (or Dickson) charge pumps (LQPs) are the most popular implementations due 
to their simple structure and readily available design procedures [1-8]. With a 2-phase 
non-overlapping clock, the Fibonacci charge pump (FQP) [9] and the exponential 
charge pump (EQP) [10, 11] promised to achieve very high voltage conversion ratios 
using fewer capacitors than the LQP, and both are potential candidates for on-chip 
applications. Therefore, there is a practical need in analyzing which charge pump 
would have the best efficiency using the smallest area of on-chip capacitors. 



Consider a (linear) charge pump with N flying capacitors and a load capacitor. For 
each flying capacitor Ck (the kth stage), one plate is always at a higher potential and is 
called the positive plate, while the other is the negative plate. For an on-chip capacitor 
Ck, both the positive-plate and negative-plate parasitic capacitors can be considered to 
be proportional to Ck, namely, Ck and Ck, respectively, and they are not negligibly 
small. In [2], the output voltage Vo was derived by assuming that all Ck are equal and 
the load capacitor CL is infinite, and equal Ck gives the smallest total capacitance in 
maximizing Vo [1]. The exact argument of how to charge up an infinite capacitor was 
not presented, and the efficiency was not considered. The Dickson derivation of [2] 
used heuristic reasoning in accounting for Ck and formed the basis of many 
subsequent analyses [3-8]. Evidently, a more solid derivation on par with circuit 
analysis using Kirchhoff's current and voltage laws is needed. In [3], the authors 
commented that the output voltage ripple Vo could be added back to the case with 
CL=, but gave no computation details. Nevertheless, the major concern of [3] (and 
[8]) was to compute the non-ideal effect of the transistor switches. In [4], both the 
load capacitor and the parasitic capacitors were not considered in analyzing the 
Dickson charge pump, and no efficiency information was given. In [5] (and [7], an 
extended version of [5]), the correct equation for the output voltage of an ideal linear 
charge pump with different Ck and an infinite CL was put down without elaboration. 
More importantly, it presents a design procedure that minimizes the input current, 
which is equivalent to maximize the power conversion efficiency . However, Ck 
are ignored in [5] as the authors argue that the major contributions of loss are from 
Ck. To improve the analysis of [5], both Ck and Ck are included in [6], but it 
assumes that all Ck are charged in both phases, while in the steady state, any 
capacitor should have alternate charging and discharging phases in one cycle. Despite 
the deficiencies, [5] and [6] are among the very few publications that presented 
formulae for computing efficiency. While analyses of LQPs are numerous, there is no 
corresponding analysis for FQPs and EQPs, and they could not be easily analyzed by 
the Dickson derivation. 

In this research, the linear charge pump with parasitic capacitors and a finite load 
capacitor is analyzed. Ideal switches are assumed, as non-ideal switches lead to 
incomplete charge transfer that should be dealt with in a separate work. Analysis on 
charge transfer and charge redistribution is based on systematic application of the 
charge balance law (QBL) to be discussed in Section 2 [12, 13]. The output voltage 
Vo(t) and the average output voltage Vo are derived in Section 3, the power 
conversion efficiency  in Section 4, and Vo and  of the dual-branch linear charge 
pump in Section 5. Cadence Spectre simulation results of single- and dual-branch 
linear charge pumps are presented in Section 6. The first iteration approximation 
analysis is employed in analyzing Fibonacci and exponential charge pumps in Section 
7 and Section 8, respectively [14]. All charge pumps are compared in Section 9. After 
concluding that the linear charge pump is the most efficient on-chip implementation 
with the smallest area, a detail design strategy is proposed in Section 10, followed by 
some concluding remarks in Section 11. 
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2   Charge Balance Law 

In circuit analysis, we use Kirchhoff's current law and Kirchhoff's voltage law 
systematically to solve problems. It is beneficial to have a similar law for analyzing 
switched-capacitor circuits including charge pumps. In fact, to facilitate the 
computation of charge transfer, a law that is based on conservation of charge can be 
formulated. The charge balance law (QBL) says 

In a system of capacitors, the sum of all charges leaving a node at 
any instance of charge transfer is equal to zero. 

It is obvious that the term "leaving a node" can be replaced by "entering a node" with 
the same validity. This law was first named Kirchhoff's charge law in [12] and then in 
[13], but is better be renamed as the charge balance law. It is also known simply as 
charge balance in [15]. Fig. 1 shows n capacitors (C1, C2, …, Cn) to be connected at 
the node Va at t=to. For each capacitor, one plate will be connected to Va and let us 
arbitrarily assign that plate to be the positive plate, while the negative plate will be 
connected to other circuit components not shown. Prior to the charge transfer, the 
corresponding capacitor voltages are VC1(to

–), VC2(to
–), …, VCn(to

–), and at t=to, charge 
transfer occurs, such that when charge redistribution is completed, the capacitor 
voltages are VC1(to

+), VC2(to
+), …, VCn(to

+). Employing QBL we have 

n n
k 1 k 1k Ck o k Ck oC V (t ) C V (t ) 
   . (1) 

A simple way to apply QBL is to remember 

Total Initial Charge = Total Final Charge. (2) 

In this paper, all equations accounting for charge transfer are written in the form of 
(2). 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Charge redistribution at the node Va. 
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3   Analysis of Single-Branch Linear Charge Pumps 

Fig. 2 shows a single-branch N-stage linear charge pump (LQP) with a voltage 
conversion ratio M (=Vo/Vdd) that is equal to N+1 if the load current is zero. The 
analysis is simplified by having a load current Io instead of a load resistor. The case 
using ideal switches and no parasitic capacitor has been derived in [13]. We now turn 
to the general case that any on-chip (flying) capacitor Ck has both positive-plate and 
negative-plate parasitic capacitors Ck and Ck to ground. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Single-branch (N+1)X linear charge pump with parasitic capacitors. 
 

Fig. 3 shows the voltages across the capacitors Ck, Ck and CL. Every capacitor 
Cx has a charging phase cx and a discharging phase dx. For example, for k even, the 
charging phase of Ck is ck=2. We assign Vk as the capacitor voltage of Ck (at the 
end) of its discharging phase. The analysis of charge pumps involves mundane charge 
accounting, and our experience tells us that it is more efficient to work from the 
output side towards the input side. Fig. 3(d) shows the time-varying output voltage 
Vo(t), and let Vo1 be the output voltage at the beginning of the discharging phase of 
CN (dN=1). During dN=1, the load current Io discharges CN and CL for half of the 
clock period T/2, and 

o
o1 o2

N L

I T / 2
V V

(1 )C C
 

  
. 

(3) 

During the next phase cN=1, CN is disconnected from CL, and the load current 
discharges CL and gives 

o
o3 o2

L

I T / 2
V V

C
  . 

(4) 

The output voltage ripple Vo is immediately given by 

o
o o1 o3

L N

I T 1
V V V

2 C || [(1 )C C ]
   

  L

. 
(5) 

oV (t)

1CddV k 1C 

LC oI
kC

ck

NCddV ddV ddV ddV

1C k 1C  kC NC

1C k 1C 

dk

ck kC

k 1C 

c(k 1)

k 1C 

d(k 1)

k 1C c(k 1)

cN

cN

dN

dN

c(k 1)

c(k 1)

d(k 1)

ddV

2

1

1
NC
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Fig. 3. Capacitor and output voltages of LQP: (a) VC1 and VC1; (b) VCk and 
VCk; (c) VCN and VCN; and (d) Vo(t). 

While CL is discharged by Io, CN is being charged up, and the charging phase of 
CN is the discharging phase of CN–1. Therefore, in cN=1, CN–1 is discharged to VN–1, 
CN is charged to Vdd+VN–1, and CN is discharged to Vdd+VN–1. In fact, it will become 
clear later that while the flying capacitor Ck is being charged up, Ck is being 
discharged (Fig. 4). At the start of the next clock phase, that is, at the instant of dN=1 
again, CN redistributes charge with CL such that Vo(t) is pumped up from Vo3 to Vo1. 
Employ QBL gives 

N dd N 1 L o3 N o1 dd N o1 L o1(1 )C (V V ) C V C (V V ) C V C V        . (6) 

In substituting (3) and (4) into (6) we have 

o
o2 dd N 1

N

2 I
V V V

1 (1
 

  
  

T

)C
. 

(7) 

Next, consider the charge redistribution of CN–1 with CN, and QBL gives 

N 1 dd N 2 N o2 dd N o2

N 1 N 1 N 1 dd N 1 N dd N 1

(1 )C (V V ) C (V V ) C V

          C V C (V V )(1 )C (V V )
 

    

      

   
. 

(8) 

In making use of (7), (8) can be simplified to 

o
N 1 dd N 2

N 1

1 I
V V V

1 (1 
T

)C 

  
  

. 
(9) 

o2V
oV (t)

t

o1V

o3V

ddV
1 1V(C )

1 1C CV / V

1 12
t

dd2V dd 1V V 1( C )

o1V

(a)

(d)

o2V N( C )

(c)

N NC CV ,V

dN cN
t

dd N 1V V 

N(C )

o1 ddV V

dd(N 1)V

o2 ddV V

ddkV

k kV (C )

k kC CV / V

dkck
t

dd kV V

k( C )

(b)

dd k 1V V 

dk

oV

   dN dN cN dN
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Fig. 4. Capacitor Ck in discharging phase. 
 
We then consider the general kth stage, such that Ck is charged up by Ck–1 in its 

charging phase ck, and redistributes charge with Ck+1 during its discharging phase 
dk. Employ QBL and an equation similar to (8) can be written down. By grouping the 
terms involving Ck and Ck+1 on different side we obtain 

k dd k k 1 k k k 1 dd k 1 k k 1 k 1C V (1+ )C V (1+ )C V C V (1+ )C V (1+ )C V           .   (10) 

An immediate relation is revealed if we consider k=N–2 such that the right hand side 
of (10) is equal to IoT, and (10) is the same as (9) with a different index. Clearly, the 
same relation propagates down the charge pump, and we can rewrite (10) as 

o
k dd k 1

k

1 I
V V V

1 (1  
  

T

)C
. 

(11) 

However, C1 has no prior stage, and V0 (not Vo) is zero, that is, 

o
1 dd

1

1 I
V V

1 (1
 

  
T

)C
. 

(12) 

The interpretation of (11) is that the overall change in charge of each flying capacitor 
in one cycle is the amount of charge IoT delivered to the adjacent higher stage in the 
same cycle. This charge transfer is independent of CL. Consider that when Ck is 
charged to Vdd+Vk–1, the voltage across Ck is also Vdd+Vk–1. When Ck is discharged 
to Vk, the voltage across Ck is Vdd+Vk. It is clear from (11) that Vdd+Vk is larger than 
Vdd+Vk–1. Hence, when Ck is being charged, Ck is being discharged, but in [6], Ck 
is assumed to be charged in both phases. Next, substitute (9), (11) and (12) into (7), 
and we have 

N
o

o2 dd
k 1 k

N 1 I T
V V

1 (1 )C

 
  

 
. 

(13) 

An important observation is that Vo2 is independent of CL, and this property is very 
useful in simplifying the analysis for the case of CL=. From Vo2, one can write down 
Vo1 and Vo3 from (3) and (4) easily: 

N
o o

o1 dd
k 1 k N

N 1 I T I T / 2
V V

1 (1 )C (1 )C C

  
  

    L

, 
(14) 

kV




kC

kC

k 1C 

k 1C 

ddV

dd k 1V V 

dd kV V dd k 1V V 


dd kV V
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N
o o

o3 dd
k 1 k L

N 1 I T
V V

1 (1 )C

  
  

 
I T / 2

C
. 

(15) 

The average output voltage can be computed from Fig. 3(d) by averaging the areas of 
trapezoids as Vo = (Vo1+2Vo2+Vo3)/4, that is, 

N
o o

o dd
k 1 k L N

N 1 I T I T 1 1
V V

1 (1 )C 8 C (1 )C C

   
          L

. 
(16) 

A practical capacitance assignment requires CL>Ck, and usually, CL>>Ck, and the 
effect of CL is negligibly small; or equivalently, we may assume CL, such that 
Vo=Vo2. To maximize Vo2 (Vo) and minimize the total capacitance CT it is clear that 
all Ck should be set equal [1, 13]: 

1 2 NC C ... C C    . (17) 

The total capacitance CT is 

TC NC , (18) 

and the output voltage and the output voltage ripple (with CL>>Ck) are then given by 

o
o dd

N 1 NI
V V

1 (1

T

)C

 
 

 
, 

(19) 

o
o

L

I T
V

C
  . 

(20) 

Let us define the reduction factor  as the fractional voltage drop per stage due to the 
load current Io with the flying capacitor equal to C: 

o

dd

I T

CV
  . 

(21) 

The voltage conversion ratio M can then be written as 

o

dd

V N 1 N
M

V 1

    
 


. 

(22) 

As  (as well as ) is fixed in a fabrication process, the only way to increase the 
output voltage Vo (=MVdd) is to use a small , that is, to use a large C or a high 
switching frequency fs (=1/T) as design constraints allow. In Section 4, we will show 
that this criterion is in conflict with maximizing the efficiency in the presence of 
parasitic capacitors. 
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4   Efficiency Optimization of Linear Charge Pumps 

After obtaining the output voltage as a function of capacitors, switching frequency 
and load current, the next is to compute and optimize the efficiency . Let Ei be the 
input energy supplied by Vdd in one cycle, and Eo the output energy consumed by the 
load in the same cycle. The efficiency of a charge pump is given by 

o

i

E

E
  . 

(23) 

The term Eo is simply given by 

o o oE V I T . (24) 

With reference to Fig. 2, the term Ei supplied by Vdd can be divided into three types: 
(1) Ei1 is the cycle energy delivered to the positive plates of C1 and C1 when being 
charged; (2) Ei2k is the cycle energy delivered to the negative plate of Ck when it is 
discharged; and (3) Ei3k is the cycle energy delivered to the positive plates of Ck 
when being charged. Hence, 

N N
k 1 k 1i i1 i2k i3E E E E     k . (25) 

First of all, consider C1 being charged by Vdd. With reference to Fig. 3(a), when C1 
is previously discharged to V1, C1 is charged to (Vdd+V1). In the charging phase of 
C1, if we assume there is no reversion loss, that is, the charge C1(Vdd+V1) entirely 
redistributes with C1 first before C1 is charged by Vdd, then the charge Qi1 supplied 
by Vdd is 

1 1 1 dd 1 i1 1 ddC V C (V V) Q (1 )C V      . (26) 

Using (12) and that Ei1 is equal to VddQi1, we have 

i1 dd oE V I T . (27) 

In computing Ei2k, denote the charge that is lost on the positive plate of Ck in its 
discharging phase as Qi2k, and this charge has to be supplied by Vdd to the negative 
plate of Ck. Hence, for Ck (kN), we have 

k dd k 1 i2k k kC (V V ) Q C V    . (28) 

Using (11) and that Ei2k is equal to VddQi2k, we have 

2
i2k dd o k dd

1
E (V I T C V

1
 


) . 

(29) 

Special care is needed for CN, as its discharging phase consists of two parts. The first 
part is for CN to redistribute charge with CL, and the charge supplied by Vdd is Qi2N1: 

N dd N 1 i2N1 N o1 ddC (V V ) Q C (V V )     . (30) 
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The second part is discharging CN and CL by Io for half of the period, and the charge 
supplied by Vdd to CN is Qi2N2: 

N o1 dd i2N2 N o2 ddC (V V ) Q C (V V )     . (31) 

Using (7) in (31), and that the total cycle energy Ei2N is given by Vdd(Qi2N1+Qi2N2), 
we have 

2
i2N dd o N dd

1
E (V I T C

1
 


V ) . 

(32) 

Here we proved that Ei2N is independent of CL and has the same form as Ei2k. For the 
negative-plate parasitic capacitors, it is easy to obtain Ei3k as 

2
i3k k ddE C V  . (33) 

From Section 3, the optimal capacitor assignment is Ck=C. Therefore, in combining 
(27), (29), (32) and (33) we have 

o o

2 2
dd o dd dd

V I T
N α

1 V I T NCV NCV
1+α 1+α

 
    
 

. 
(34) 

From the above discussion, we observe that the input cycle energy Ei is 
independent of CL. In fact, CL plays an important role in determining the output 
voltage ripple (5), but has a negligible effect on the average output voltage (16). For 
all practical purposes, we may assume CL=, and (34) can be written as 

N 1 N
N( )

N 1

   
   

  


. 
(35) 

The reduction factor  is required to be small if the output voltage has to be as 
large as possible, for example, <0.05. However, a small  is achieved by a large C, 
which translates to large losses of CVdd

2 and CVdd
2. From (35), both the positive-

plate and negative-plate parasitic capacitors have comparable effect on the efficiency. 
To maximize efficiency, if N is fixed, the only parameter that can be changed is , 
and we need to solve for the condition d/d=0. To make the differentiation easier, 
we rewrite (35) as 

(1 )

( )

 
 

  
, 

(36) 

with 

N

N 1
 

 
, 

(37) 

    . (38) 
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The optimal reduction factor is obtained as 

opt 2

1
1 1

 
        

, 
(39) 

and the corresponding maximum efficiency is 

max opt1 2    . (40) 

However, if a predefined Vo has to be achieved, opt obtained in (39) may not satisfy 
(22). To satisfy (22), we substitute 

N 1 (1 )

N

     
 

M
 

(41) 

into (35) and obtain 

2

(1 )M
N

N 1
N (1 )(M 1)

 
 


   

   

. 
(42) 

As (1+)M is a constant, maximizing  is the same as minimizing the denominator: 

2N
N 1

N (1 )(M 1)


    

   
, 

(43) 

and d/dN=0 is satisfied if 

optN (1 ) 1 (M 1)
1

 
       

. 
(44) 

Note that if =0, then (44) is reduced to 

opt 0
N 1 (M

1

 
1)     

 
(45) 

which gives the same result as obtained in [5]. The design strategy according to the 
above analysis will be discussed in details in Section 10. 

5   Analysis of Dual-Branch Linear Charge Pumps 

Dual-branch and multi-phase charge pumps result in smaller output voltage ripples 
than single-branch counterparts, and in-depth analysis is needed to obtain the design 
equations [13, 16]. Fig. 5 shows the schematic of a dual-branch (N+1)X linear charge 
pump, with the two branches operating in complementary phases. Only the charging 
and discharging phases of Branch A are labeled. Due to symmetry, we assign 
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CAk=CBk=Ck, but we still use CAk and CBk when clarity in description is needed. 
Negative-plate parasitic capacitors are not shown. Fig. 6 shows the timing diagrams 
of CN and Vo(t), as those of C1 and Ck are the same as the single-branch case. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Dual-branch (N+1)X linear charge pump. 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 6. Timing diagram of dual-branch LQP of (a) CN; and (b) Vo(t). 

 

The analysis follows closely that of the single-branch case and is skipped. The key 
results of Vo1, Vo2 and the average output voltage Vo=(Vo1+Vo2)/2 are shown below: 

N
o o

o1 dd
k 1 k N

N 1 I T / 2 I T / 2
V V

1 (1 )C (1 )C C

  
  

    L

, 
(46) 

N
o

o2 dd
k 1 k

N 1 I
V V

1 (1

  
  

 
T / 2

)C
, 

(47) 

N
o o

o dd
k 1 k N

N 1 I T / 2 I T / 4
V V

1 (1 )C (1 )C C

  
  

    L

. 
(48) 

1

2
1

oV (t)

1CddV LC oI
kC

ck

NCddV ddV ddV1C kC NC

dk ck

cN

cNdN

dN

ddV

2

1
2

1C kC NC

ddVddV

1C kC NC

Branch A

Branch B

o2V

oV (t)

t

o1V

o1V

(a)

o2V N( C )

N NC CV ,V

dN cN
t

dd N 1V V 

N(C )

o1 ddV V

dd(N 1)V

o2 ddV V

oV

   dN dN cN dN(b)
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Note again that Vo2 is independent of CL. For CL>>Ck, the average output voltage 
Vo is equal to Vo2, and to maximize Vo2 and minimize the total capacitance CT it is 
clear that all Ck should be set equal: 

1 2 NC C ... C CII    , (49) 

where the subscript II is for the dual-branch case. The output voltage with CL>>Ck is 

o
o dd

II

N 1 NI T
V V

1 (1

 
 

 
/ 2

)C
, 

(50) 

and the output voltage ripple by restating a finite CL (>>Ck) is 

o
o

L

I T
V

2C
  . 

(51) 

As in Section 3, if we assign the reduction factor II as 

o o
II

II dd dd

I T I T
2

C V (C/2)V
     , 

(52) 

then the voltage conversion ratio is 

o I
II

dd

V N 1 N /2
M

V 1

    
 

 
I . 

(53) 

Compare (50) and (19), if we assign 

IIC C / 2  (54) 

then both single-branch and dual-branch charge pumps have the same output voltage 
Vo for the same total capacitance CT (note that 2NCII=NC for the dual-branch LQP). 
The only difference between the two LQPs is the output voltage ripple, with the dual-
branch LQP being only half of that of the single-branch case. The equation for 
efficiency of the dual-branch LQP is the same as (35) by replacing  with II/2, and 
therefore, all equations (36) through (45) apply to both the single-branch and dual-
branch linear charge pumps. 

6   Comparison of Single- and Dual-Branch Linear Charge Pumps 

We validate the analyses of single- and dual-branch linear charge pumps for the 
following aspects. (A) Perform time-domain Cadence simulation to verify equations 
(5, 13-15) of the single-branch LQP, and equations (46-48) of the dual-branch LQP. 
(B) Perform Cadence simulations on output voltage and efficiency of (A) and 
compare with theoretical results. (C) Perform Matlab simulation of opt and max for 
different N,  and . Cadence simulations will be performed and compared with 
theoretical values. For all Cadence simulations presented in this paper, the switches 
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are realized by nearly ideal switches that have very low on-resistance of 0.1Ω and 
very large off-resistance of 1TΩ. Simulations are performed using relative tolerance 
of 10–6, absolute tolerance in current of 1pA, and absolute tolerance in voltage of 
1µV. 

(A) For time-domain simulation, we design single-branch and dual-branch 8X LQPs 
(N=7) with the following specification: the input voltage Vdd is 1V, the load current Io 
is 10μA, and the switching frequency fs is 10MHz. The positive-plate and negative-
plate parameters are =0.01 and =0.05, respectively. The non-overlapping dead time 
is set to be 1ns. 

For the single-branch 8X LQP, we set C=20pF and CL=25pF. Fig. 7(a) shows the 
simulation result of Vo(t) on which Vo1, Vo2 and Vo3 are marked. For the dual-branch 
8X LQP, we set CII=10pF and CL=25pF. Fig. 7(b) shows the simulation result of Vo(t) 
on which Vo1 and Vo2 are marked. Table 1 tabulates the analysis and simulation 
results along with the percentage errors. The errors for Voi's are due to the switch dead 
time in our simulation and are all smaller than 0.013%. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Time-domain simulation of (a) single-branch LQP; and (b) dual-branch LQP. 

 
(B) The reduction factors of the charge pumps in (A) are =0.05 and II=0.1, 
respectively, and are not the optimal values. Efficiency computations are performed 
for CL=25pF and CL=1nF (such that it can be regarded as infinite), and both are only 
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around 46.5% (Table 2). Next, for the single-branch charge pump with N=7, =0.01, 
=0.05 and CL=1nF, opt is computed from (39) to be 0.1987 and max is 65.27%. 
Cadence simulation gives an almost identical efficiency of 65.29%. The results are 
again tabulated in Table 2. 

(C) We would like to find out the general range of opt and the corresponding max. 
Fig. 8 shows opt and max vs ,  and N. The negative-plate parasitic parameter  
takes the value of 0.00, 0.05 and 0.10, while the positive-plate parasitic parameter  
ranges from 0.00 to 0.10 for N=1 (voltage doubler), N=3 and N=7. Cadence 
simulations are also performed for =0 to =0.10 at an interval of 0.02. The 
theoretical curves match very well with Cadence simulations. 

 

Table 1. Output voltages and output voltage ripples of LQPs. 

 Analysis Simulation % error 

Single-branch 
     

Vo1 7.5952V 7.59470V 0.006%  
Vo2 7.5842V 7.58419V  0.0001%  
Vo3 7.5642V 7.56319V 0.013%  
Vo 31.1mV 31.5mV 1.29%  

Dual-branch 
     

Vo1 7.5984V 7.5982V 0.0026%  
Vo2 7.5842V 7.5835V 0.0092%  
Vo 14.2mV 14.7mV  3.52%  

 

Table 2. Output voltages and efficiencies of LQPs. 

 Analysis Simulation % error 

Single-branch with =0.05, C=20pF, CL=25pF 

Vo 7.5820V 7.5816V 0.0053% 
 46.47%  46.49% 0.043% 

Single-branch with =0.05, C=20pF, CL=1nF 

Vo 7.5842V 7.5841V 0.0013% 
 46.48%   46.51%  0.065% 

Dual-branch with II=0.1, CII=10pF, CL=25pF 

Vo 7.5913V 7.5909V 0.0053% 
 46.52%    46.54% 0.043% 

Dual-branch with II=0.1, CII=10pF, CL=1nF 

Vo 7.5844V 7.5843V 0.0013% 
  46.48%   46.50% 0.043% 

Single-branch with opt=0.1987, C=5.032pF, CL=1nF 

Vo 6.5535V 6.5534V 0.0015% 
 65.27%   65.29%  0.031% 

 

 14



 
 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c)
 

Fig. 8. opt and max for (a) N=1; (b) N=3; and (c) N=7. 
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7   Analysis of Fibonacci Charge Pumps 

Fig. 9 shows a single-branch 8X Fibonacci charge pump, leaving out all parasitic 
capacitors for a clear exposition of the topology [9]. It uses only four flying capacitors 
to achieve a voltage conversion ratio of 8. An immediate question is: will the total 
capacitance be smaller than that of the 8X LQP for the same output voltage Vo? In 
fact, the same question can be asked of the 8X exponential charge pump to be 
discussed in Section 8. For a complete analysis with CL0 including parasitic 
capacitors, it can be shown, by following the procedure as discussed in Section 3, that 
Vo2 of both single- and dual-branch charge pumps are independent of CL, and as 
CL, VoVo2. Therefore, we assume CL= to arrive at a simpler procedure as 
discussed below. 

 
 

 1

2

12
122

12

2 11

1
o2V

1C

ddV
2C 3C 4C

C

 
 

oI
 

 
 
 

Fig. 9. Single-branch 8X Fibonacci charge pump. 
 

Fig. 10 shows the connections of the switches, the flying capacitors and their 
parasitic capacitors of the 8X FQP in both 1=1 and 2=1. As discussed in Section 3, 
for any flying capacitor Ck, the charging phase is ck and the discharging phase is dk, 
and the capacitor voltage when fully discharged in dk=1 is designated as Vk. Clearly, 
in c1=1=1, C1 is charged to Vdd, and in d1=2=1, C1 is discharged to V1, but then d1 
is the same as c2, and C2 is charged to Vdd+V1. The same mechanism propagates 
down the stages, and it also applies to the parasitic capacitors. Let us consider the case 
with ==0 first. It is straightforward to work from the last stage back to the first 
stage. In the charging phase of C4 (i.e., 2=1), C4 is charged to Vdd+V1+V3, while C 
is discharged by Io for the duration of T/2. In the discharging phase, C4 is stacked on 
top of Vdd and C2, and C4 supports Io for T/2, and C4 is eventually discharged to V4. 
Employ QBL, we have 

4 dd 1 3 4 4 oC (V V V ) C V I T    . (55) 

Note that for CL=C=, the output voltage Vo2 will never change, and we need to 
account for the load current consumption as discussed above so that the result would 
be correct. Next, for charge transfer at Vd (12), we have 

3 dd 2 4 4 3 3 4 dd 1 3C (V V ) C V C V C (V V V )      , (56) 

and it can be simplified using the result of (55) to give 

3 dd 2 3 3 oC (V V ) C V I T   . (57) 
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Fig. 10. Capacitor connections of 8X FQP in (a) 1=1; and (b) 2=1. 

 
The charge transfer at Va (21) is not as straightforward, as it is the negative 

plate of C4 that is connected to Va. Taking this into consideration and we obtain 

2 dd 1 3 3 4 dd 1 3 2 2 3 dd 2 4C (V V) C V C (V V V ) C V C (V V ) C V4         . (58) 

Using both (55) and (57) gives 

2 dd 1 2 2 oC (V V) C V I T   . (59) 

In a similar fashion, the charge transfer at Vc (12) gives 

1 dd 1 1 oC V C V 3I T  . (60) 

Backward substitution can then be performed, and we obtain 

o
1 dd

1

3I T
V V

C
  , 

(61) 

 

1C

2C 3C

4C 4C

C oIddV

2V





4V





o2 dd 2 4V =V +V +V

aV

1 1 (a) bV

1C

2C 3C 4C 

2C

o2V

ddV

1V





3V



cV

V
2 1 (b) d

2C

3C

2C

3C

1C 1C

4C 4C

C

3C

1C oI
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o o
2 dd

1 2

3I T 2I T
V 2V

C C
   , 

(62) 

o o o
3 dd

1 2

3I T 2I T I T
V 3V

C C C
   

3

, 
(63) 

o o o o
4 dd

1 2 3

3I T 2I T I T I T
V 5V

C C C C
    

4

. 
(64) 

Finally, Vo2 = Vdd+V2+V4, and we have 

o o o o
o2 dd

1 2 3

9I T 4I T I T I T
V 8V

C C C C
    

4

. 
(65) 

The analysis of a higher order FQP is similar, and one can easily infer the result 
from observing the above trend of Vk. From (65), it is obvious that the capacitors 
should not have the same value: the 1/C1 term has a weight of 9, the 1/C2 term has a 
weight of 4, and the 1/C3 and 1/C4 terms have weights of 1. Qualitatively, C1 should 
be larger to minimize the reduction due to a larger weight. Quantitatively, to minimize 
the total capacitance, the procedure described in [1, 13] should be followed, and the 
optimal assignment is 

1C 3C , (66) 

2C 2C , (67) 

3 4C C C  , (68) 

T 1 2 3 4C C C C C 7C     . (69) 

Using the above optimal assignment for the ideal case, we have 

o
o2 dd

7I T
V 8V

C
  . 

(70) 

This is the same result as obtained for the single-branch 8X LQP with =0 (19). 
Therefore, for on-chip implementation, there is no advantage in saving capacitor area 
by using FQP instead of LQP. This is a very important conclusion of this research. 
Nevertheless, we continue to work out the voltage conversion ratio in the presence of 
Ck and Ck, as the result would be useful for off-chip implementation. 

In analyzing FQP including Ck and Ck, we propose a first iteration 
approximation (FIA) analysis. This procedure can work with both Ck and Ck 
together, but for the purpose of illustration, let us consider only Ck first (=0). 
Again, we consider the charge transfer at Vb (21) and obtain 
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4 dd 1 3 4 4 4 dd 2 4 o(1 )C (V V V ) C V C (V V V ) I T         . (71) 

Eq. (71) can be rearranged to read 

4 dd 1 3 4 4 4 4 3 2 1 oC (V V V ) C V C (V V V V) I T         . (72) 

Following the same procedure and rearranging the corresponding equations as in (72), 
we have 

3 dd 2 3 3 3 3 2 1 oC (V V ) C V C (V V V) I T       , (73) 

2 dd 1 2 2 2 2 1 4 4 3 2 1 oC (V V) C V C (V V) C (V V V V) 2I T          , (74) 

1 dd 1 1 1 1 3 3 2 1 4 4 3 2 1 oC V C V C V C (V V V) C (V V V V) 3I T           . (75) 

The difficulty of solving (72) to (75) lies with the parasitic terms Ck. Consider (72). 
If  is very small, the term with C4 should be much smaller than the terms with C4 
only. If there is an error in the multiplicand of C4 (that is, V4–V3+V2–V1), the error 
would be of second order and can be neglected. Now, for ,, << 1, we have 
V45Vdd, V33Vdd, V22Vdd and V1Vdd. Using this approximation we have 

4 4 3 2 1 4 ddC (V V V V) 3 C V      . (76) 

Performing the same approximation for (73), (74) and (75) by also including 0 we 
obtain 

o
1 dd dd dd

8 5 I
V V V V

3 3

T

C

 
    , 

(77) 

o
2 dd dd dd

31 19 2I T
V 2V V V

6 6 C

 
    , 

(78) 

o
3 dd dd dd

43 19 3I T
V 3V V V

6 6 C

 
    , 

(79) 

o
4 dd dd dd

77 29 5I T
V 5V V V

6 6 C

 
    , 

(80) 

o
o2(FQP) dd dd dd

7I T
V 8V 18 V 8 V

C
      . 

(81) 

This output voltage is much lower than that of the LQP (19): 

o
o2(LQP) dd dd

7I T
V 8V 7 V

C
    . 

(82) 

Clearly, linear charge pumps are preferred to Fibonacci charge pumps for on-chip 
implementation. 

 19



8   Analysis of Exponential Charge Pumps 

Fig. 11 shows the dual-branch exponential charge pump that uses 2N flying 
capacitors and one load capacitor [10, 11]. Note that with N flying capacitors, a 2NX 
charge pump can only be realized using a multi-phase clock [17, 18]. The analysis is 
left as a challenge to the readers and only the key results are presented below. For the 
optimal capacitor assignment with ==0, we have 

1A 1B IIC C 4C  , (83) 

2A 2B IIC C 2C  , (84) 

3A 3B IIC C C  , (85) 

T 1A 2A 3AC 2 (C C C ) 14C     II . (86) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Dual-branch 8X exponential charge pump. 
 
For ,  0, we use first iteration approximation and the final capacitor voltages Vk 
and Vo2 are 

o
1 dd dd dd

II

I T
V V 4 V 3 V

2C
      , 

(87) 

o
2 dd dd dd

II

I T
V 2V 8 V 5 V

C
      , 

(88) 

o
3 dd dd dd

II

2I T
V 4V 16 V 8 V

C
      , 

(89) 
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ddV
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o
o2(EQP) dd dd dd

II

7I T
V 8V 28 V 16 V

2C
      . 

90) 

This result is to be compared with (81) and (82) for ==0: with CII=C/2, all LQP, 
FQP and EQP have the same output voltage using the same total capacitance. For the 
same 0 and/or 0, LQP achieves the highest voltage conversion ratio, and EQP 
achieves the lowest voltage conversion ratio. 

9  Comparison of LQPs, FQPs and EQPs 

For the purpose of comparison, we design single-branch 8X LQP and 8X FQP, 
and dual-branch 8X LPQ, 8X FQP and 8X EQP with the following specification: the 
input voltage Vdd is 1V, the load current Io is 10μA, and the switching frequency fs is 
10MHz. Ideal switches are used and the non-overlapping dead time is set to be 1ns. 
The single-branch unit capacitor C(1B)=C is 20pF, such that the reduction factor  = 
IoT/(CVdd) is 0.05, and the total capacitance of all charge pumps are CT=140pF. The 
load capacitor CL is 1nF to fulfill the assumption of CL>>Ck. Due to limited space, 
only the time-domain simulation of the single-branch 8X FQP is shown. Fig. 12 
shows the positive-plate voltages of Ck and the output voltage Vo(t) for the case with 
=0.025 and =0.04. As CL, Vo(t) is not a constant; but the mid-voltage of Vo(t) is 
Vo2 as shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Simulated waveforms of single-branch 8X FQP. 
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The simulated values are to be compared with the computed values using FIA 
analysis. Consider the positive-plate voltage of C4. The maximum value (in the 
discharging phase) is 6.979V, and the minimum value (in the charging phase) is 
2.677V. Hence, V4(sim) = 6.979–2.677 = 4.302V. The curves are a little bit difficult to 
read due to overlapping. Eq. (81) gives V4(comp) = 4.236V, and the error is –1.6%. The 
computed and simulated values are compiled in Table 3. Note that in FIA analysis, Vk 
in the Ck terms are over-estimated, and they lead to consistently under estimation of 
the computed Vk terms. 

Fig. 13 shows the time-domain simulation of the dual-branch 8X FQP with C(2B)= 
CII=C/2=10pF, such that CT=140pF. Except for the reduction in output voltage ripple 
as discussed in [13], the corresponding voltages of the dual-branch FQP are the same 
as the single-branch counterpart, verifying our conclusion that they should have the 
same performance when CL=. 

The second set of simulations is to plot the output voltage Vo2 vs  and Vo2 vs  
individually. Here, all three charge pumps are dual-branch charge pumps. Optimal 
capacitance assignment for the respective ideal case is used. Hence, for the 8X LQP, 
CkA = CkB = C = 10pF, where the subscript "A" is for the A-branch, and "B" for the B-
branch. For the 8X FQP, C1A:C2A:C3A:C4A = C1B:C2B:C3B:C4B = 3C:2C:C:C; and for 
the 8X EQP, C1A:C2A:C3A = C1B:C2B:C3B = 4C:2C:C. For all three charge pumps, the 
total on-chip capacitance CT is 140pF, and CL = 1nF. 

Fig. 14 shows the simulation results of Vo2 vs  and Vo2 vs  for all three charge 
pumps, with both  and  changed from 0 to 0.1. The calculated results match the 
simulated results quite well when  and  are small, as shown in Table 3: for =0.025 
and =0.04, the error is only -1.4%. The differences become larger for larger  and . 
To enhance the accuracy in computation, a more complicated second iteration 
approximation has to be used. 

 
 

Table 3. Computed and Simulated values of 8X FQP. 
 

 Computed Simulated Error 

V1 0.817V 1.833 - 1.000 = 0.833V -2.0% 

V2 1.644V 2.677 - 1.000 = 1.677V -2.0% 

V3 2.544V 4.416 - 1.833 = 2.583V -1.5% 

V4 4.236V 6.979 - 2.677 = 4.302V -1.6% 

Vo2 6.880V 6.979V -1.4% 
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Fig. 13. Simulated waveforms of dual branch 8X FQP. 
 

 

(a)
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 (b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c)
 
 

Fig. 14. Vo2 vs  and Vo2 vs  for (a) LQP; (b) FQP; and (c) EQP. 
 

10   Design Strategy of Optimal Linear Charge Pumps 

As the linear charge pump is the most efficient on-chip implementation, it is 
worthwhile to devise a design strategy in optimizing the efficiency for a specified 
output voltage. Table 4 summarizes the design strategies proposed in [5] and [6], 
along with our own proposal. The design strategy of [5] has been very successful in 
optimizing the efficiencies of LQPs and worth repeating in some details. In [5], 
instead of working directly on , the input current Iin consisting of the currents 
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flowing into the negative-plate parasitic capacitors Ck were used to find Nopt that 
minimizes Iin, while Ck were left out. In assuming =0, Nopt is computed using (45). 
The input current Iin with =0 is derived as [5] 

2

in o0

N
I N 1

N 1 M

 
     

I . 
(91) 

Then the flying capacitor C is computed using (21) and (41), and  can be obtained 
from (35), all with =0 (Table 4). 

The drawback of [5] is in neglecting Ck. In present-day technology, an MIM 
(metal-insulator-metal) capacitor has a capacitance of 1fF/m2. The bottom-plate 
(usually implemented as negative-plate) parasitic parameter is =0.01~0.05, while the 
top-plate (usually implemented as positive-plate) parasitic parameter is 0.1fF/m of 
perimeter. If the unit capacitor is 1.6pF, it could be realized by a 40m40m MIM 
capacitor, and =0.01. If the unit capacitor is 400fF, then  increases to 0.02. 
Moreover, when switches or diodes are taken into consideration, additional parasitic 
capacitors will be added to both plates. Therefore, the assumption that Ck are 
negligible may not be justified. 

Table 4. Comparison of analyses and optimization methods of LQPs. 
 

 [5] [6] This work 

  = 0,   0   0,   0  = ++ 

Nopt 

 
1

1

 
   

(M–1) 
N is given a priori 

 
(1+) 1

1

 
    

(M–1) 

 = o

dd

I T

CV
 N 1 M

N

 
 

C is given a priori 

 

N 1 (1 )M

N

     
 

Vo 

 
(N+1)Vdd – oNI T

C
 

N 1

1

  


Vdd – oNI T

(1 )C 
 

N 1

1

  
 

Vdd – oNI T

(1 )C 
 

 

 

M
N

N 1


 


 
M

(2N 1) N
N 1

1

  
  

  

 
(1 )M

N( )
N 1

 
  

   


 

 
An attempted to perfect the analysis of [5] by including the input currents of Ck 

was proposed in [6]. Ref. [6] did not show how N is computed, and it is reasonable to 
use Nopt and  as computed in [5]. By using the formula for Vo due to [2] that includes 
Ck, Vo was accurately estimated (Table 4). However, all Ck were assumed to be 
charged in both phases (that gives the factor 2N+1 shown in Table 4) and was thus 
not accurate enough. Moreover, the parameter VC/D in [6] was not derived correctly. 
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Our proposed design strategy complements that of [5] by correctly accounting for 
the effects of Ck. By grouping the denominator of (34) as VddIinT, the input current 
Iin is obtained as 

2
o

in

( )N
I N 1

N 1 (1 )M 1

   
     

I
       

. 
(92) 

The dependence of  in (92) cannot be obtained very easily through ad hoc 
addition of Ck terms to (91), but it can be handled correctly through using the 
systematic application of the charge balance law as shown in Section 4. It is obvious 
that minimizing Iin of (92) is the same as minimizing  of (43). 

Following the steps in [5], Nopt is first computed using (44) that correctly 
accounts for Ck (Table 4). From Fig. 14, it is clear that max decreases as N increases 
for the same  and . Qualitatively, using a larger N to realize the same output 
conversion ratio M means that more Ck have to be used, and there will be more losses 
from Ck and Ck. Therefore, a smaller N is preferred if the realized Vo is acceptable 
for that application. After N is determined, one then has two choices in computing C: 
the first one is to compute C using (39), such that maximum efficiency is guaranteed, 
but the realized output voltage may deviate from the required Vo; and the second one 
is to compute C using (41) such that Vo = MVdd as required. Here, we propose that we 
should compute C using (41) whatsoever to make sure that the realized output voltage 
is the same as the specification, while the degradation in efficiency is too small to be 
of concern. Our argument is as follow. When  is not equal to opt, the efficiency  
can be obtained from max using Taylor's series expansion: 

opt opt

2
2

max 2

d 1 d

d 2 d 

 
       

 
 . 

(93) 

The maximum efficiency is obtained by finding the condition for d/d=0; hence, the 
first order term is zero. For the second derivative, it can easily be shown that 

opt

2

2
opt

d 2

d


  


   
. 

(94) 

giving 

2

max
opt

2

1
1

1
1

 
                

. 

(95) 

In general, the coefficient of the (/opt)
2 term is smaller than unity. For /opt = 

0.1 (10% deviate from the optimal value), the decrease in efficiency is only less than 
1%. Hence, we conclude that C should be computed using (41). 
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As an example, let us design a charge pump that has an average output voltage Vo 
of 5V (M=5) with the following specifications: the input voltage Vdd is 1V, the load 
current Io is 10μA, and the switching frequency fs is 10MHz. The positive-plate and 
negative-plate parameters are =0.01 and =0.06, respectively. The load capacitor is 
CL=1nF. 

For the design according to [5], Nopt and  are computed using the corresponding 
formulae in Table 4. Nopt is computed to be 4.95, and naturally N is taken as 5. As  
is assumed to be zero while actually it is 0.01, both the output voltage Vo and the 
efficiency  are overestimated, as the simulation results in Table 5 show. 

For the design according to [6], Nopt and  are obtained as in [5]. As the accurate 
formula for Vo is used, the theoretical value (4.9604V) is very close to the simulated 
value (4.960V). Moreover, as the effects of Ck are partially accounted for, the 
theoretical efficiency (0.6519) is closer to the simulated value (0.6466) than that of 
[5] (0.6667). 

For our proposed design, Nopt is computed using (44), and the value is 5.08. We 
choose N=5 instead of N=6 because it is closer to 5.08, and we can use (41) to 
compute  that still satisfies M=5. The reduction factor  is computed to be 0.192. 
Both the theoretical and the simulation values are Vo=5.00V. For computing the 
efficiency, the theoretical value (0.6434) is also very close to the simulated value 
(0.6436). To maximize the efficiency, we may re-compute  to obtain opt=0.2134, 
and the corresponding max is 0.6449. From (95), the coefficient of (/opt)

2 is 0.652, 
with  = 0.2134–0.192 = 0.0214, and /opt=0.1. The efficiency is then  = 0.6449 
– 0.6520.12 = 0.6384. Two conclusions can be drawn: (i) the estimated  using (95) 
is less than 1% from the computed value; and (ii) even with a 10% deviation from 
opt, the resultant efficiency is still very close to max. A plot of  versus  in the 
vicinity of opt, along with Cadence simulations, is shown in Fig. 15. 

Table 5. Comparison of analyses with simulations. 

  Analysis Simulation % error 

[5] with N=5, C=5pF 

Vo 5.000V 4.960V 0.8% 
 66.67% 64.47% 3.41% 

[6] with N=5, C=5pF 

Vo 4.9604V 4.960V 0.008% 
 65.19% 64.47% 1.12% 

This work with N=5, C=5.21pF 

Vo 5.00V 5.00V 0% 
 64.34% 64.36% 0.031% 

This work with N=5, C=4.72pF 

Vo 4.894V 4.902V 0.020% 
 64.49% 64.51% 0.031% 
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Fig. 15. Simulated  vs  in the vicinity of opt with =0.01. 

11   Conclusions 

In this research, charge balance law is systematically employed to analyze charge 
pumps with ideal switches and finite positive-plate and negative-plate parasitic 
capacitors. Equations for output voltages, output voltage ripples and efficiencies are 
derived for single-branch and dual-branch linear charge pumps. In computing Vo(t), a 
finite load capacitor CL is used, and the result is extended to CL=. We observe that 
CL determines the output voltage ripple, but has a negligible effect on the average 
output voltage. From exact derivations, it is found that Vo2 is independent of CL for 
both single-branch and dual-branch charge pumps, and can be used to simplify 
analysis for CL=. Interpolation could then be performed to obtain Vo1 and Vo3 for 
single-branch charge pumps, and Vo1 for dual-branch charge pumps. 

Besides linear charge pumps, Fibonacci and exponential charge pumps are 
analyzed. The exact analysis of FQPs and EQPs are too complex and no insight could 
be obtained. Instead, we proposed a first iteration approximation analysis to obtain 
reasonably accurate results. Our findings are as follows. (1) If CL=, the performance 
of single-branch and dual-branch charge pumps are the same, and the single-branch 
LQP is preferred due to its lower complexity. (2) If parasitic capacitors are negligible, 
LQP, FQP and EQP give the same total capacitance for the same output voltage. (3) 
In the presence of parasitic capacitors, LQP is the best topology that could achieve the 
highest output voltage. 

Efficiency optimization of LQPs is through first computing the optimal number of 
stages, followed by finding the reduction factor  that achieves the required average 
output voltage Vo. Using opt to maximize the efficiency  may not be necessary as 
the sensitivity of  w.r.t.  is very low. From the obtained  we may then choose to 
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change either the flying capacitor C or the switching frequency fs or both for the 
design. All the analyses are confirmed by Cadence Spectre simulations. 
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