
On the Functional Test of Branch Prediction Units

Based on the Branch History Table architecture

Ernesto Sanchez1, Matteo Sonza Reorda1, and Alberto Paolo Tonda2,

1 Dipartimento di Automatica e Informatica,

Politecnico di Torino

Corso Duca degli Abruzzi 24

10129 Torino, Italy

{ernesto.sanchez, matteo.sonzareorda}@polito.it

2 Institut des Systèmes Complexes

Paris Île-de-France,

Rue Lhomond 57-59,

75005 Paris, France

alberto.tonda@iscpif.fr

Abstract. Branch Prediction Units (BPUs) are commonly used in pipelined

processors, since they can significantly decrease the negative impact of

branches in superscalar and RISC architectures. Traditional solutions, mainly

based on scan, are often inadequate to effectively test these modules: in

particular, scan does not represent a viable solution when Incoming Inspection

or on-line test are considered. Functional test may stand as an effective solution

in these situations, but requires effective algorithms to be available. In this

paper we propose a functional approach targeting the test of BPUs based on the

Branch History Table (BHT) architecture; the proposed approach is

independent on the specific implementation of the BPU, and is thus widely

applicable. Its effectiveness has been validated on a BPU resorting to an open-

source computer architecture simulator and to an ad hoc developed HDL

testbench. Experimental results show that the proposed method is able to

thoroughly test the BPU, reaching complete static fault coverage with

reasonable requirements in terms of test program size and execution time.

Keywords: branch prediction unit; branch history table; functional test; SBST.

1 Introduction

Embedded applications characterized by high performance requirements often exploit

RISC or superscalar processors. In order to increase their performance, it is common

practice to equip them with highly efficient Branch Prediction Units (BPUs), which

can significantly decrease the negative impact of branches.

Nevertheless, the complexity of these architectures, combined with the increased

sensitivity to faults of new technologies, requires suitable techniques able to

effectively detect possible faults affecting them, at the end of the manufacturing

process, for incoming inspection, and during the operational life (on-line test).

Unfortunately, a number of reasons may sometimes make traditional test solutions,

mainly based on scan, inadequate: first of all, these solutions can hardly be exploited

during the operational life (even for non-concurrent on-line testing) since they require

an external tester to drive the chain and observe the results. Secondly, companies

involved in processor design and manufacturing tend not to disclose details about

scan (or any other kind of Design for Testability) architectures, in order to better

protect the Intellectual Property of their designs; this means that for both incoming

inspection and end-of-production test of System-on-Chip (SoC) devices, scan or other

Design for Testability techniques can hardly be adopted. Thirdly, scan is generally

inadequate for testing delay faults, that usually require at-speed stimuli application

and response observation (not to mention the overtesting scan tends to produce). For

all these reasons, a functional test approach based on developing suitable test

programs to be executed by each core and on observing the produced results is a

much more suitable solution, provided that effective techniques are available for the

generation of such test programs.

When targeting processors, the functional test approach generally translates into a

carefully written test program suitably stored in a memory accessible to the processor,

which executes it when test is triggered. Possible faults are detected by observing the

results produced by the program, or by observing its behavior during program

execution. This approach, originally introduced in [2], is currently known as

Software-Based Self-Test (SBST) [3].

BPUs are among the most critical components within high-performance embedded

systems, since their behavior can significantly affect the performance of the whole

system. Interestingly, faults affecting BPUs do not cause the generation of erroneous

results, but rather slow down the system, increasing the number of mispredictions and

possibly causing the system not to match the expected target in terms of performance.

BPU testing has been the subject of a few previous papers, such as [5] and [6]. The

former proposes a hardware-based method, which requires the insertion of proper

circuitry in the processor for BPU test. The latter follows the SBST approach, and

mainly focuses on BPUs based on the Branch Target Buffer architecture. In [4] the

authors report a very convincing analysis of faults affecting BPUs, and propose the

usage of performance counters to detect them. However, the proposed method does

not achieve full coverage of stuck-at faults, and requires very long test times. In [7],

the authors use faults in BPUs as the typical example of the so-called Performance

Degrading Faults, and analyze their impact on the performance of a processor,

showing that their proper identification can significantly help to improve the yield.

The authors of [8] propose a method to make BPUs resilient to faults: however, the

method is based on first detecting possible faults affecting each BPU, and then

reconfiguring it, which raises even further the issue of how to test BPUs.

The purpose of this paper is to describe an algorithm for the generation of a proper

test program to be executed by a processor in order to check whether the circuitry

implementing its BPU works correctly. For the purpose of this paper, we target on

BPUs implementing the Branch History Table (BHT) architecture. An important

characteristic of our method is that it is based on a purely functional approach, i.e., it

does not require any information about the actual implementation of the circuitry it is

intended to test, nor about the adopted semiconductor technology (and hence on the

faults that can affect the circuitry). The test program is derived from the functional

specifications of the circuitry under evaluation, only, and can thus be reused on any

circuit implementing the same branch prediction mechanism. Since the approach does

not require the knowledge of any implementation detail, it is well suited to be adopted

by system companies for both Incoming Inspection [1] and on-line test, as well as by

semiconductor companies producing SoCs, when they decide to follow the functional

approach (e.g., because they don’t have access to structural information about the

processor core).

The test approach proposed in this paper belongs to the SBST family; therefore, it

can be applied at-speed and does not require any modification in the processor or

BPU hardware. Moreover, being based on test programs to be executed by the

processor, it can be activated at any time, even when the system is already in its

operational phase. The relatively short duration of the test program makes it easily

applicable even during concurrent on-line testing.

Code size and execution time of the programs generated with the proposed

methodology scale linearly with the number of entries in the BHT.

The approach has been validated resorting to a computer architecture simulator and

a purposely developed VHDL module implementing a BHT.

A preliminary version of the paper has been presented in [12].

The paper is organized as follows: section 2 reports some background about the

BHT architecture and behavior. Section 3 describes the functional approach we

propose for generating suitable test programs; section 4 reports some data about the

experimental set up we devised and implemented to assess the effectiveness of the

method. Section 5 draws some conclusions.

2 Background

2.1 Branch History Table behavior

Branch prediction based on Branch History Table (BHT) exploits a data structure

which stores the result (taken or not taken) of previously executed conditional

branches. The BHT data structure contains N words, and is accessed during the

Decode stage each time a conditional branch instruction is detected; to access the

BHT, the n least significant bits of the instruction address are used, being n = log2 N.

In this phase, the BHT returns a prediction, which is used by the processor to identify

which instruction should be fetched at the following clock cycle. If the prediction is

correct, the performance penalty stemming from the branch is reduced. After the

branch instruction result becomes known the BHT is possibly updated.

The BHT can be implemented in different manners: in the simplest version, each

word in the table stores a single bit, recording whether the last time the associated

branch has been executed its result has been taken (T) or not taken (NT).

In a different version, which is also considered in this paper, each word

corresponds to 2 bits: their value records the results of the branch in the last 2 times it

has been executed. If the branch has never been taken in that period, the stored value

is 00, while the value is 11 if it has been taken twice. The value of the counter is used

for prediction assuming that 00 corresponds to a “Strongly Not Taken” prediction, 01

to “Weakly Not Taken”, 10 to “Weakly Taken”, and 11 to “Strongly Taken”. From an

implementation point of view, this means that each word corresponds to a saturated 2-

bit counter which is incremented each time the branch is taken, and decremented

otherwise. During the Decode phase, the value of the counter associated to the branch

is used to predict the branch result taking the dominant result over the last 2

executions of the branch.

2.2 Branch History Table architecture

Although the method proposed in this paper does not rely on any information about

the implementation of the BPU, in the following we assume that the main components

of a BPU based on a 2-bit saturated counters BHT are:

 A decoding logic, receiving the n least significant bits of the address of the

branch instruction, and selecting the corresponding line of the BHT

 A table composed of a set of N 2-bit saturated counters, each of which can be

read, incremented or decremented

 A multiplexer logic receiving the N 2-bit values coming from the counters,

and selecting the correct one, based on the n least significant bits of the

address of the branch instruction

 A Taken / not Taken (T/nT) logic able to translate a 2-bit value in the branch

prediction, as described before.

Figure 1 graphically summarizes the BHT architecture.

...

lo
g

2
N

 to
 N

 d
eco

d
in

g lo
gic

log2 N bits

select 0

select 1

select 2

select N-1

select 3

select 4

select 5

select 6

select 7

select N-3

select N-2

increment/
decrement/
read

Prediction
T / nT

word 0

word 1

word 2

word 3

word 4

word 5

word 6

word 7

word N-3

word N-2

word N-1

N
 to

 1
 M

u
x lo

gic

2

T / nT

2

2

2

2

2

2

2

2

2

2

2 1

Fig. 1. BHT architecture when 2-bit saturated counters are considered

3 Proposed Approach

3.1 Basics

Testing a BHT-based BPU in accordance with the SBST paradigm requires checking

that each line in the BHT

 Can be correctly accessed

 Stores the bit which was initially written to it

 Correctly implements the forecasted prediction.

In other words, the test aims at checking whether the decoding logic, the table and

the surrounding logic all work correctly.

The first and second goals can be achieved by resorting to the following algorithm,

largely used in memory testing; the algorithm is able to fully test the decoding logic

of a memory and to detect any fault preventing a memory cell to work correctly [9]:

 M1: ↕ (w1)

 M2: ↑ (r1, w0)

 M3: ↓ (r0, w1)

The symbols ↓ and ↑ correspond to a scan of the whole BHT in a given order, and

in the opposite order, respectively, while ↕ corresponds to scanning the whole BHT in

whichever order. Each line corresponds to a scan of the whole memory, performing

the specified operation on each word before moving to the following word, according

to the specified order. Therefore, M1 corresponds to filling the memory with 1s, M2

to scanning the table in a given order, reading each word, checking whether it stores a

1 and writing it with a 0, M3 to scanning the whole memory in the opposite order,

reading each word, checking whether it stores a 0 and writing a 1 into it.

3.2 Test of a 1-bit BHT

Let us first consider a BHT that only stores one bit per word: in this case the above

algorithm is sufficient to fully test it. A read operation corresponds to accessing a

word asking for a prediction, and checking whether the prediction is the expected one.

This check can be performed in several possible ways, including the following:

 By resorting to the performance counters [10] existing in many processors

and able to monitor the number of correctly/incorrectly executed predictions

 By resorting to a timer able to measure the performance of the processor

when executing a given piece of code, exploiting the fact that mispredictions

imply longer execution time

 By resorting to some debug feature provided by the processor [13]

 By resorting to some ad-hoc module added to the system and able to monitor

the bus activity [11].

On the other side, write operations correspond to updating a given word in the

BHT: if the BHT implements a 1-bit prediction, this operation is performed when a

misprediction arises. A w0 operation corresponds to an untaken mispredicted branch,

a w1 operation to a taken mispredicted branch.

Hence, the test program for a BPU based on a 1-bit BHT requires 3 phases:

 Phase 1: N conditional branches, stored in suitable positions in the code

memory, so that the n least significant bits of the corresponding addresses

assume all the possible combinations over n bits; all the branches should be

Taken, thus filling the BHT with 1s

 Phase 2: a set of N branches whose result is Not Taken: again, the N

branches are suitably stored in the code memory, so that the n least

significant bits of the corresponding addresses assume all the possible

combinations over n bits; each branch is mispredicted, and their execution

causes the BHT to be filled with 0s

 Phase 3: a set of N branches whose result is Taken: once more, the N

branches are suitably stored in the code memory, so that the n least

significant bits of the corresponding addresses assume all the possible

combinations over n bits; each branch is mispredicted, and their execution

causes the BHT to be filled with 1s.

The reader should note that the above algorithm is thoroughly able to detect faults

not only in the decoding logic, but also in the table, since every cell is written with 0

and 1, and the written value is then read and checked. The result is observed looking

at the provided prediction, thus testing also the multiplexing and T/nT logic.

3.3 Test of a 2-bit BHT

Let us now consider a BHT where each line implements a 2-bit saturated counter.

In this case the test to be performed on each line requires some more complex

operations, corresponding to testing the correct functionality of the 2-bit saturated

counter, which is graphically reported in Figure 2 for sake of clarity.

00 01 10 11

Taken Taken Taken

Not Taken Not Taken Not Taken

TakenNot Taken

Fig. 2. 2-bit saturated counter behavior

In order to test the correct behavior of the 2-bit saturated counter we need to

activate every transition, and then check whether it has been correctly executed, i.e.,

whether the correct state has been reached. In order to do so, the algorithm we

propose is the following

 Initialize the counter to the 11 state: this can be achieved (no matter the

initial state of the counter) by executing 3 Taken branches; this guarantees to

reach the 11 state, regardless of the initial state

 Execute 4 Not Taken branches: this moves the counter to the 00 state,

producing 2 mispredictions, followed by 2 correct predictions, once again

saturating the counter to the lower value and checking its ability to remain in

the 00 state

 Execute 4 Taken branches: this moves the counter back to the 11 state,

producing 2 mispredictions, followed by 2 correct predictions.

Now we should combine in a minimal program the test of the different components

of the BHT, i.e., the decoding and multiplexing logic, the set of N 2-bit saturated

counters, and the Taken / not Taken logic. Hence, the test program for a BPU based

on a 2-bit BHT requires 3 phases:

 Phase 1: 3 × N Taken conditional branches, stored in suitable positions in the

code memory, so that for every possible combination of the n least

significant bits 4 branches exist; all the branches are Taken, thus moving all

the counters in the BHT to the 11 state; the order of accesses to the BHT in

this initialization phase is not important, nor it is important to check whether

they cause correct or incorrect predictions (since we don’t know the initial

state of the counters);

 Phase 2: a set of 4 × N branches whose result is Not Taken: in this phase the

order of accesses to the BHT lines is important, and the 4 accesses to each

line should be completed before moving to the following line; this can be

easily achieved by suitably storing the branches in the code memory; for

every line 2 incorrect predictions followed by 2 correct ones should be

produced; at the end of this phase all counters should be in the 00 state;

 Phase 3: a set of 4 × N branches whose result is Taken: in this phase the

order of accesses to the BHT lines is also important, and should be the

opposite of the previous phase; the 4 accesses to each line should be

completed before moving to the following line; for every line 2 incorrect

predictions followed by 2 correct ones should be produced; at the end of this

phase all counters should be back to the 11 state.

The third phase is particularly critical from the implementation point of view, since

it requires that 4 Taken branches are executed for every BHT line; lines must be

considered in a specified order, and the 4 accesses to a line must be performed before

the 4 accesses to the following line. No further branch instructions can be executed to

manage the program flow, because they would improperly access the table.

In order to solve this issue, we propose a technique exploiting the fact that the

execution flow can be controlled either through branches, or through procedure call

and return instructions: instructions belonging to the latter type have the benefit of not

accessing the BHT. Therefore, what we suggest is to write a set of N procedures,

whose body only contains a single conditional branch instruction, which is suitably

stored in memory so that it refers to a different BHT line. Each phase in the test

program outlined above can now be implemented in two steps: first setting the

registers affecting the condition tested by the branch instructions so that they produce

either a Taken or Not Take result, and then calling the procedures in the desired order

and for the desired number of times.

To summarize, the whole algorithm requires the execution of 11 × N branches,

being N the size of the BHT. For sake of clarity, the pseudo-code for the test program

targeting a 8 lines 2-bits BHT is now reported.

.data

A: .word 0

B: .word 1

.code

…

lw R1,A(R0)

M1: Phase 1

 lw R2,A(R0)

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK1

 CALL JUMPTK1

 CALL JUMPTK1

 …

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK7

 CALL JUMPTK7

 CALL JUMPTK7

M2: Phase 2

 lw R2,B(R0)

 CALL JUMPTK7

 CALL JUMPTK7

 CALL JUMPTK7

 CALL JUMPTK7

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK6

 …

 CALL JUMPTK1

 CALL JUMPTK1

 CALL JUMPTK1

 CALL JUMPTK1

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK0

M3: Phase 3

 lw R2,A(R0)

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK0

 CALL JUMPTK1

 CALL JUMPTK1

 CALL JUMPTK1

 CALL JUMPTK1

 …

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK6

 CALL JUMPTK7

 CALL JUMPTK7

 CALL JUMPTK7

 CALL JUMPTK7

END: end

.org 0xXX000

JUMPTK0: beq R1,R2,TK0

 nop

TK0: RET

.org 0xXX048

JUMPTK1: beq R1,R2,TK1

 nop

TK1: RET

…

.org 0xXX1F8

JUMPTK7: beq R1,R2,TK7

 nop

TK7: RET

In the reported code, a couple of data variables (A and B) are initialized to two

different values and the reference register (R1) is initialized with the value in A; then,

the three described phases are executed. Every phase initially configures the

comparison register (R2) to a value according to the desired outcome of the

conditional jumps: Taken in the case the value stored in registers R1 and R2 is the

same, Not Taken if it is different. Then, a series of CALL instructions targeting every

BHT line are executed guaranteeing the desired behavior. In the case of phase 1, it is

expected to consecutively execute four taken branches for every BHT line in

ascending (↑) order. Phase 2, on the contrary, executes four Not Taken branches for

every BHT line in descending (↓) order. We also reported 3 out of the 8 required

procedures, which are composed each of a conditional jump instruction (beq), a nop

instruction, and a RET instruction. It is important to note that the location in the code

memory of the procedures (stated by the .org directive in the code) must be suitably

selected, so that the branch instructions access the right lines in the BHT. However, it

should be noted that this constraint can easily be fulfilled, since it only concerns the

least significant bits of the branch instructions address; in other words, we need to

store the test program in some area of the memory that can freely be located at the

most suitable addresses from the application point of view, while the branch

instructions must be carefully located within this area. For this reason, in the code

above the addresses of the memory areas where the procedures are stored include

some Xs in the code above.

3.4 Theoretical analysis

In this sub-section we analytically calculate the number of instructions required to

implement the approach proposed in the previous sub-section, and the number of

clock cycles that the final program takes to execute.

As the reader should observe, the code derived from the proposed approach is

mainly divided in 2 different parts: one part contains the 3 different code phases

labeled as M1, M2, and M3, whereas another part is composed of the jump procedures

(JUMPTK0, JUMPTK1…).

Each of the three phases described in section 3.3 follows a very regular pattern

corresponding to:

 one control instruction

 N×m CALL instructions.

The control instruction writes into the processor register used by the conditional

branch within each procedure, N is the number of lines of the BHT, and m is the

number of accesses to each BHT line performed by each program phase (3, 4, 4,

respectively).

On the other hand, every jump procedure counts on only 3 instructions (the

conditional branch, a NOP and the return instruction).

Thus, the number of instructions required to implement the proposed approach can

be calculated by the following formula:

 2

 N×3 + ∑(N×mi + 1) (1)

 i=0

with mi that varies according to the BHT accesses required by every phase (3, 4, 4,

respectively). For example, in the case of a BHT containing 1,024 entries the final test

program corresponds to the execution of 14,339 instructions.

In order to better determine the test program execution time, it is necessary to take

into account some architectural characteristics of the processor pipeline, such as the

pipeline length, and other parameters, such as the result of each performed branch

prediction, or the instruction type. For this purpose, we make the following

assumptions:

- all the instructions different from branch instructions always require 1 clock

cycle to execute; this means that no pipeline stalls arise (e.g., due to cache

misses)

- branch instructions correctly predicted require 1 clock cycle

- branch instructions incorrectly predicted require p_c additional penalty cycles,

whose exact number depends on the processor architecture

- CALL and RET instructions always require p_c clock cycles, since these

instructions are not predicted (and do not use the BHT).

 It is also important to note that the proposed program behaves in a different way

according to the exercised branch in every one of the three program phases:

- Taken branch: for every CALL, the program executes the branch instruction,

and the RET instruction only.

- Not Taken branch: for every CALL, the program executes the branch

instruction, a NOP instruction, and the RET instruction.

At this point, it is possible to state the following expression that computes the

execution time considering the three phases of the program:

Texe=N×{Tp!=b[p_c + Stb] + Tp=b[1 + Stb] + nTp!=b[p_c + Sntb] + nTp=b[1 + Sntb]}

 (2)

where N is the number of entries in the BHT, Tp!=b is the number of conditional

branches wrongly predicted when branches are taken, p_c is the penalty due to wrong

prediction branches, Stb is the number of clock cycles required to execute the

procedure instructions when the branch is taken, Tp=b is the number of conditional

branches correctly predicted when branches are taken, nTp!=b is the number of

conditional branches wrongly predicted when branches are not taken, Sntb is the

number of clock cycles required to execute the procedure instructions when the

branch is not taken, and nTp=b is the number of conditional branches correctly

predicted when branches are not taken.

From equation (2) we can state that the complexity of the proposed test algorithm

grows linearly with the BHT size.

Considering a 1,024 entries BHT, and a penalty of 2 clock cycles for incorrect

prediction, equation (2) can be expressed as follows:

1,024×{ 4[2+4] + 3[1+4] + 2[2+5] + 2[1+5]} = 66,560 clock cycles.

4 Experimental Results

In order to validate the proposed approach we resorted to SimpleScalar [14], an open-

source system software infrastructure widely used for computer architecture research

and teaching. SimpleScalar has several desirable features: it can implement a 2-bit

BHT of arbitrary size, it can emulate several instruction sets (Alpha, PISA, ARM,

x86), it can be modified to monitor and store the internal state of the processor, and its

ISA is easily expandable to include new instructions.

The PISA architecture (whose ISA is very similar to the MIPS one) has been

selected for our experiments, and SimpleScalar has been configured to use a 2-bit

saturated counter BHT.

In order to check the correctness of the method, the SimpleScalar source code has

been modified to store additional data during the simulation, thus recording each time

a transition of a 2-bit saturated counter in the BHT is fired. Finally, a dummy

instruction has been added to the ISA to save the whole additional data structure to a

file without altering the state of the emulated microprocessor. Using a 1,024 entries

BHT, by comparing the data saved when the dummy instructions were executed, we

verified that every transition in each counter of the BHT was correctly fired, as

expected, thus thoroughly exciting and observing the BHT, as desired. In this way we

were able to validate the correctness of the proposed algorithm.

Furthermore, we performed some experiments to practically validate our previous

assumptions in terms of code size and execution time. In particular, we performed

four different experiments tackling BHTs of incremental size. Starting from a high-

level pseudocode that describes the test algorithm, a program in assembly language

was parametrically generated. The program was then compiled and run on

SimpleScalar. For every experiment, we used the sim-outorder simulator

customized as described before. Additionally, some of the cache configuration

parameters were set in order to minimize the collateral effects due to cache misses

during the programs simulations. Table 1 shows the different BHT configurations in

the first column (BHT size), the expected time (in terms of number of clock cycles) in

the second column, and the execution time for every case in the third column.

Table 1. Test program execution times for different BHT sizes.

BHT size Expected

[c.c.]

Simulated

[c.c.]

256 16,640 18,890

512 33,280 37,084

1,024 66,560 73,141

2,048 133,120 145,559

Interestingly, the collected results present the same linear trend we theoretically

forecasted in the previous sections. Figure 3 illustrates a plot of the collected results

(extracted from the simulation and from the theoretical forecast), showing a

significant match between the expected results and the simulated ones.

Fig. 3. Test program execution time vs. BHT size.

Referring once more to a 1,024 lines BHT, a VHDL implementation of the BPU

was then developed. The model described at RTL in VHDL counts about 600 code

lines. The device was synthesized using Synopsys Design Vision targeting a

homemade technology library. The synthesized version of the BHT counts 17,927

equivalent gates. The number of stuck-at faults for the entire BHT is 118,438.

To experimentally validate the behavior of the approach, the execution of the

program running on Simplescalar was then traced. The resulting signals were

converted to VHDL and included in a testbench for the 1,024 entries BHT model. A

fault simulation campaign was finally performed on Tmax v. B-2008.09-SP3 by

Synopsys. For the purpose of these experiments, we assumed to be able to fully

observe the processor behavior during the test program execution, both in terms of

produced data and of timing execution. The results gathered from this campaign

showed that 100% stuck-at fault coverage on the model was reached, thus showing

the effectiveness of the test program and confirming the results acquired from the

SimpleScalar emulation.

5 Conclusions

We described a method for functionally testing the circuitry implementing the

Branch Prediction Unit of a processor, assuming that it is based on the Branch History

Table architecture. The resulting test program can be used in different steps: at the

end of the manufacturing step, exploiting its ability to perform an at-speed test or

when the test cannot exploit any Design for Testability solution; during incoming

inspection, since it does not rely on any information about the implementation of the

circuitry; during on-line test, due to the fact that the method is relatively fast and does

not require any special hardware. The test program can be allocated in any part of the

memory, while the constraints about the position of the branch instructions within this

area have been clearly specified. Both the execution time and the code memory size

of the test program scales linearly with the BHT size.

Experimental results confirmed the analysis and showed the effectiveness of the

approach.

We are currently working to extend the method to other Branch Prediction

strategies and to decrease the code size and application times of the generated test

programs. Finally, we are evaluating the fault coverage capabilities of the method

against different fault models (e.g., delay defects).

References

1. Bushnell, M.L., Agrawal, V.D.: Essential of Electronic Testing. Kluwer Academic
Publishers (2000)

2. Thatte, S., Abraham, J.: Test Generation for Microprocessors. In IEEE Transactions on
Computers, vol. 29, no. 6, pp. 429–441, (1980)

3. Psarakis, M., Gizopoulos, D., Sanchez, E., Sonza Reorda, M.: Microprocessor Software-
Based Self-Testing. In: IEEE Design & Test of Computers, vol.27, no.3, pp.4-19 (2010)

4. Hatzimihail, M., Psarakis, M., Gizopoulos, D., Paschalis, A.: A methodology for detecting
performance faults in microprocessors via performance monitoring hardware. In: Proc.
IEEE International Test Conference, pp. 1-10 (2007)

5. Almukhaizim, S., Petrov, P., Orailoglu, A.: Low-Cost, Software-Based Self-Test
Methodologies for Performance Faults in Processor Control Subsystems. In: Proc. IEEE
2001 Custom Integrated Circuits Conference, pp. 263-266 (2001)

6. Hatzimihail, M., Psarakis, M., Gizopoulos, D., Paschalis, A.: A Methodology for
Detecting Performance Faults in Microprocessors via Performance Monitoring Hardware.
In: Proc. IEEE International Test Conference, pp. 1-10 (2007)

7. Hsieh, T.-Y., Breuer, M.A., Annavaram, M., Gupta, S.K., Lee, K.-J.: Tolerance of
Performance Degrading Faults for Effective Yield Improvement. In: Proc. IEEE
International Test Conference, pp. 1-10 (2009)

8. Almukhaizim, S., Sinanoglu, O.: Error-Resilient Design of Branch Predictors for Effective
Yield Improvement. In: Proc. IEEE Latin-American Test Workshop, pp. 1-6 (2011)

9. Van de Goor, A. J.: Testing Semiconductor Memories, Theory and Practice. John Wiley &
Sons (1991)

10. Spunt, B.: The Basics of Performance-Monitoring Hardware. In: IEEE Micro, pp. 64-71
(2002)

11. Perez, W. J., Velasco-Medina, J., Ravotto, D., Sanchez, E., Sonza Reorda, M.: A Hybrid
Approach to the Test of Cache Memory Controllers Embedded in SoCs. In: Proc. IEEE
International On-Line Testing Symposium, pp. 143-148 (2008)

12. Sanchez, E., Sonza Reorda, M., Tonda, A.: On the functional test of Branch Prediction
Units based on Branch History Table. In: Proc. IEEE/IFIP 19th International Conference
on VLSI and System-on-Chip (VLSI-SoC), pp. 278-283 (2011)

13. Grosso, M., Sonza Reorda, M., Portela-Garcia, M., Garcia-Valderas, M., Lopez-Ongil, C.,
Entrena, L.: An on-line fault detection technique based on embedded debug features. In:
Proc. IEEE International On-Line Testing Symposium, pp. 167-172 (2010)

14. SimpleScalar LLC http://www.simplescalar.com/

