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Abstract. Compressed sensing (CS) is a universal low-complexity data
compression technique for signals that have a sparse representation in
some domain. While CS data compression can be done both in the
analog- and digital domain, digital implementations are often used on
low-power sensor nodes, where an ultra-low-power (ULP) processor car-
ries out the algorithm on Nyquist-rate sampled data. In such systems an
energy-efficient implementation of the CS compression kernel is a vital
ingredient to maximize battery lifetime. In this paper, we propose an
application-specific instruction-set processor (ASIP) processor that has
been optimized for CS data compression and for operation in the sub-
threshold (sub-VT) regime. The design is equipped with specific sub-VT

capable standard-cell based memories, to enable low-voltage operation
with low leakage. Our results show that the proposed ASIP accomplishes
62× speed-up and 11.6× power savings with respect to a straightforward
CS implementation running on the baseline low-power processor without
instruction set extensions.

Keywords: Ultra-Low-Power Processor, Application-Specific Instruc-
tion Set Processor, Instruction Set Extensions, Sub-VT Operation, Sub-
VT Embedded Memories, Compressed Sensing

1 Introduction

Digital signal processing traditionally relies on the Nyquist sampling theorem
which states that a faithful reconstruction of a signal, limited to a bandwidth B
in the frequency spectrum, can be ensured with a sampling rate of fs ≥ 2 ∗ B.
Unfortunately, when sampled data needs to be stored or needs to be transmitted
over a wireless link, the storage or transmission costs of the raw samples can often
limit the energy-autonomous lifetime of the system. In this case, it is advisable

? This article has been published in parts in [1].
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to first compress the data. However, in this case the power consumption of the
compression process must also be kept very low to ensure an overall energy-
efficiency advantage.

Compressed sensing (CS) [2] is a universal, low-complexity data compression
technique to compress sparse signals. CS has been widely used in environmental
monitoring systems and in wireless body sensor networks (WBSNs) [3], where
portable and autonomous devices are expected to operate for long periods of
time with limited energy resources. Hence, an ultra-low-power (ULP) CS imple-
mentation is crucial for these systems.

On the architectural level, supply voltage scaling, potentially all the way to
the subthreshold (sub-VT) regime, can reduce both dynamic and leakage power
consumption. Therefore, many sensing platforms exploit sub-VT computing. The
state-of-the-art processors for sensing platforms have been reported to consume
as little as a few pJ/cycle while operating in the sub-VT regime [4–6]. Sub-VT

computing can also be used to perform CS data compression (in the digital
domain). However, most established CS implementations either require a large
memory footprint or still require considerable computational effort (despite the
inherent complexity advantage of CS). Leakage power consumption becomes a
very important challenge in the sub-VT regime with reduced active power. A
considerable amount of leakage in sensing platforms is due to the integrated
memories [7]. Moreover, many sensing platforms cannot be power gated com-
pletely, to retain their memory content [5], and hence leakage power is always
dissipated. Therefore, implementations with large memory requirements are not
desirable in the sub-VT regime. On the other hand, high computational effort
requirements can limit the degree of voltage scaling because of performance
degradation issues in the sub-VT regime [8–10]. These issues ultimately limit
currently the benefits of CS based data compression in ULP sensor nodes.

Application-specific instruction-set processors (ASIPs) can compensate for
the performance degradation issue, since they are optimized for a specific ap-
plication domain, providing increased efficiency and performance for the core
algorithms of the domain’s target applications. For instance, an ASIP optimized
for stereo image processing can achieve up to 130× speed-up compared to a
conventional processor [11]. These performance optimizations also lead to en-
ergy saving as in [12], where a processing core with few accelerators dedicated
to biomedical applications, can achieve up to 11.5× energy saving compared
the processing core-only implementation. Despite of their efficiency in some spe-
cialized application domains, to the authors knowledge no ASIP core has been
reported for ultra-low-power CS compression.

Contributions We propose to synergistically exploit sub-VT computing in con-
junction with an ASIP core for CS compression to provide an ultra-low-power
solution for compression of sparse signals for sensing applications. To this end,
we extend the instruction set of a low-power processor to exploit the specific
operations of the CS compression algorithm. Our ASIP core does not require
high clock frequencies, and therefore enables more aggressive sub-VT voltage
scaling for a given throughput requirement. The very low memory requirements
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additionally allow for a major reduction in leakage power. For a typical case
study of electrocardiogram (ECG) signal compression in WBSNs, the processor
consumes only 30.6 nW for an ECG sampling rate of 125 Hz. Moreover, we show
that the proposed processing platform achieves 62× speed-up and 11.6× power
saving with respect to the established computation-based CS implementation
running on the baseline low-power processor.

2 Compressed Sensing

Signal compression based on compressed sensing (CS) [2] is performed by com-
puting the matrix-vector multiplication:

y = Φx (1)

where the random sensing matrix Φ ∈ Rk×n with k < n maps an input data
vector x ∈ Rn holding n samples to a compressed data vector y ∈ Rk with k
entries, for a compression ratio of k

n .
There are multiple approaches of how to choose a random sensing matrix Φ

with k rows and n columns. Sensing matrices with near optimal properties can
for example be constructed by choosing the entries of Φ by random iid sampling
from a uniform distribution [2].

2.1 Reduced Complexity Compression Algorithm

The structure and values of the entries of Φ determine the computational com-
plexity of the matrix-vector multiplication. Mamaghanian et al. [3] show (for
WBSNs) that in fact choosing Φ as a sparse matrix that contains only a few
non-zero entries per column at random positions is a valid approach which sig-
nificantly reduces complexity and still provides good integrity of the compressed
sparse signals. The non-zero elements can furthermore be chosen as 1, and the
number of ones per column (namely I) can be fixed. These constraints on Φ lead
to a very efficient algorithm (Algorithm 1) for performing CS data compression.
As a result, the computational complexity of the CS algorithm is reduced from
n×k multiplications and (n−1)×k additions for a dense sensing matrix of random
values, to only I×n additions. The sensing matrix can therefore be represented
in a compact form by a sequence of I×n random indices ∈ {1, 2, ..., k} describing
for each column in Φ the rows with non-zero entries1.

On a resource constrained system, the key challenge of Algorithm 1 is the
generation of the random indices. The optimized reference implementation [3]
uses a sensing matrix realized as a fixed sequence of indices stored in memory (for
a specific value of k). Since large memory footprints are undesirable, especially in
the context of ULP sensor nodes and sub-VT operation, we discuss the generation
of the required random indices at runtime.

1 Note that strictly speaking such a representation requires unique row-indices per
column. However, this requirement can often be relaxed without a significant impact.
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Algorithm 1 Pseudocode of Compressed Sensing Algorithm

1: for i := 1→ n do
2: sample := getSample()
3: for j := 1→ I do
4: index := getRandomIndex(1..k)
5: buffer[index] := buffer[index] + sample
6: end for
7: end for

2.2 Pseudo Random Number Generation

A pseudo random number generator (RNG) can be used for the generation of the
random indices. A common implementation of such an RNG is a linear feedback
shift register (LFSR). The random sequence generated by an LSFR is defined by
the sequence of its internal states. The initial state of an LFSR is referred to as
its seed. For each state transition (LFSR step) the current internal state bits are
combined with the binary coefficients of a polynomial, which defines the pseudo
random sequence of the LFSR. The bits selected by the polynomial are summed
to produce one new bit (parity bit). The next state of an LFSR is calculated by
shifting out the least significant bit of the state and shifting the generated bit
in as the new most significant bit.

Maximum-length LFSRs provide a cycle length of the generated random
number sequence that is equal to the number of maximum possible states (ex-
cluding zero). Note that although maximum-length LFSRs can provide good
sequences of random numbers, the correlation between two subsequent LFSR
states, i.e., subsequent indices, i1 and i2 is high, since i2 = i1/2 or i2 = i1/2 + k/2.
When the state is used directly, this correlation of the generated indices has a
negative effect on the reconstruction quality of the compressed samples. Hence,
we propose to use an LFSR that advances multiple steps per generated index.
The number of steps is equal to the number of used index bits. For example,
for k = 256 the LFSR has to advance 8 states to generate the next index, which
yields only a small correlation to its predecessor. The quality of our generated
random indices for CS is assessed in the case study presented in Section 4.4. The
drawback of this approach is the increased computational effort for the RNG,
which can be compensated for by custom hardware support.

The proposed generation of the sensing matrix Φ can hence be described
with four main parameters: the LFSR polynomial, the LFSR seed, the number
of index bits (depending on k), and the number of non-zero elements per column
(I). These four configuration parameters enable the generation of a large set
of different sensing matrices. At the same time, the compact representation of
the RNG configuration keeps the memory overhead small compared to the case
where all indices for multiple matrices would need to be stored.

Hence, by choosing from a preconstructed pool of feasible values for the
RNG configuration, it is hence possible to achieve good sensing performance for
a variety of different signal conditions, potentially even by dynamically changing
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the RNG configuration at runtime. This capability supports one of the strength
of the compressed sensing method which lies in the fact that even a randomly
chosen sensing matrix Φ ensures a good mapping for the sample data of a signal
source which has sparsity in a specific (potentially) unknown base with high
probability. On the contrary, any CS implementation using only a single or a very
small number of pre-stored sensing matrices loses its generality to perform well
independent of the signal source. To alleviate this issue, our approach therefore
tries to minimize all related storage and memory costs to support a large number
of different random sensing matrices, which can be dynamically generated at
runtime.

3 Sub-VT CS Processor

Resource constrained environments, such as ULP processing nodes, pose sig-
nificant challenges for the implementation of the presented data compression
algorithm (Algorithm 1). The key performance issue lies in the realization of the
random number sequences needed to address the elements in the sensing buffer.
Hence, the goal of our custom designed ASIP architecture is to provide support
for an efficient random number sequence generation, enabling energy efficient
operation in the sub-VT regime.

3.1 Processor Baseline Architecture

In this study we use a custom 16-bit reduced instruction set computing (RISC)
architecture (TamaRISC [13]), as shown in Figure 1, as the baseline microproces-
sor. TamaRISC provides a complete RISC instruction set, a C-Compiler, as well
as interrupt capability for basic embedded real-time operating system support.

Core Architecture The main focuses of the architecture lies on minimizing the
instruction set complexity in a true RISC fashion, while still providing enough
hardware support, especially regarding addressing modes, for efficient execution
of signal processing applications.

The microarchitecture has a 3-stage pipeline, comprised of a fetch, decode
and execute stage. The core operates on a data word width of 16-bit, comprises
16 general purpose working registers and 3 external memory ports, one for in-
struction fetch, one for data read and one for data write. The register file has
3 read ports and 4 write ports, and provides 32-bit double word writeback sup-
port. Instruction words are 24 bit wide, with every instruction using only a single
word. All instructions generally execute in one cycle, which is guaranteed by the
use of complete data bypassing inside the core for register as well as memory
writeback data.

Moreover, the TamaRISC architecture supports memory-to-memory arith-
metic instructions with advanced operand addressing modes, and is hence not a
typical load/store RISC architecture, but rather inspired by typical microcon-
troller architectures.
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Instruction Set The instruction set architecture (ISA) comprises a total of 14
unique instructions, with 8 arithmetic logic unit (ALU) instructions, 2 general
data move instructions, 2 program flow instructions, a sleep mode instruction,
and an instruction to provide basic hardware loops. The ALU supports addition,
subtraction (each with optional carry/borrow), logical AND, OR and XOR, right
(arithmetic or not) and left shift, as well as full 16-bit by 16-bit multiplication
(32 bit-result) on unsigned and signed data.

All ALU instructions work on two source and one destination operands, using
the exact same addressing mode options for each instruction, which helps to
reduce complexity of the architecture, since the operand fetch logic and the
arithmetic operation are completely decoupled. The supported addressing modes
are register direct, register indirect (with pre- or post-increment and decrement)
as well as register indirect with offset. The second operand also supports the use
of 4-bit literals. Regarding program flow instructions, branching is possible in
direct and register indirect mode, as well as by offset with 15 different condition
modes. The ISA also includes instructions for interrupt and sleep mode support
of the core. The sleep mode allows external clock-gating of the entire core, until a
wakeup event occurs (e.g., an interrupt request triggered by a new ADC sample).

3.2 Sub-VT Memories

While the core logic of the sub-VT CS processor works reliably at low sup-
ply voltages in the sub-VT regime, conventional data and instruction memories
based on 6-transistor (6T) static random-access memory (SRAM) bitcells fail to
operate reliably at low voltages [14]. Therefore, such conventional, embedded 6T
SRAM macrocells prohibitively limit the overall reliability and the manufactur-
ing yield of the proposed sub-VT CS processor. More precisely, under gradual
supply voltage down-scaling, read and write access failures start to appear first,
before the occurrence of data retention failures at even lower voltages [15]. Spe-
cially designed SRAM macrocells based on 8- or 10-transistor (8-10T) bitcells
are typically used to enable reliable data storage in the sub-VT regime. For ex-
ample, a typical 8T SRAM cell contains a read buffer to avoid the direct access
of the bit lines to the internal storage nodes and consequently to avoid the risk
of switching the bitcell during a read access [16], thereby improving read-ability.
Moreover, a popular 10T SRAM bitcell contains, in addition to the read buffer,
a tri-state inverter in the cross-coupled latch; this tri-state inverter is disabled
during a write access in order to avoid write contention [17], thereby improving
write-ability. All these 8T or 10T SRAM macrocells, specifically optimized for
robust sub-VT operation, need to be custom-designed due to the lack of good,
commercially available low-voltage memory compilers. Such custom design is
associated with a high engineering effort and bares high risk, unless each macro-
cell is first manufactured and silicon-proven independently, before its integration
into a larger VLSI system.

As opposed to such custom-designed sub-VT 8T/10T SRAM macrocells,
we employ a fully automated standard-cell based memory (SCM) compilation
flow [18]. The use of SCMs considerably simplifies the design process, and the
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resulting latch or flip-flop arrays directly avoid the aforementioned reliability
concerns of conventional 6T SRAM. In particular, standard-cell latches already
contain a read buffer to avoid read failures and a cell-internal keeper which is
disabled during write, i.e., during the transparent phase of the latch, to avoid
the risk of write contention and write failures. Consequently, the proposed SCMs
work reliably in the sub-VT regime without the need for any extra engineering
effort, and allow the complete system to operate at aggressively scaled voltages.
Among many architectural variants summarized in [18], this work adopts the
latch array architecture shown in Fig. 2. This architecture consists of a write ad-
dress decoder (WAD) and clock gates for the generation of the one-hot encoded
write select pulses (row-wise gated clock signals). Moreover, static CMOS multi-
plexers are used to read out the desired address (word). While a read logic based
on tri-state buffers exhibits lower leakage current, the chosen CMOS multiplexers
are faster and more robust for sub-VT operation. This latch array architecture
can be synthesized from commercially available standard-cell libraries. However,
note that it is possible to customize one or several standard-cells to meet a
specific design goal, such as ultra-low leakage power. For example, the leakage
power and access energy can be reduced by approximately 50% by using a sin-
gle custom-designed standard-cell, namely an ultra-low leakage latch using stack
forcing and channel length stretching, as well as a tri-state enabled output buffer
to implement the read logic [19].

Even though these latch-based memories are optimized for low-voltage and
low-power operation, they still consume considerable leakage power. In our sys-
tem example, memories account for 70–95% of the architecture’s total power
consumption, depending on the mode of operation. Furthermore, the sub-VT

memories consume a considerable area share: our implementation with moder-
ate memory sizes of 256 instructions (6 kBit) and 512 data words (8 kBit) results
in the processing core only consuming 16% of the total area.

3.3 Index Sequence Implementations

As discussed before, the generation of random numbers used as the buffer indices
in Algorithm 1 is commonly performed using one of the following two approaches.
The first approach employs precomputation and storage of all required indices
in form of a large array in data memory, while the second approach performs
the computation of the index sequence at runtime based on a pseudo RNG.

Precomputation The storage of a preconstructed sequence effectively trades
computational effort for memory consumption. For example, the requirement
for a single sensing matrix (with 12 non-zero entries per column), used for the
compression of a set of 512 samples by 50%, is 6 Kbyte of memory. However, a
relatively large memory footprint is especially undesirable in an ULP embedded
system, for reasons of die area and power consumption. Since sub-VT memories
are large and consume most of the total power through leakage for low voltages,
the storage of tens of Kbyte of data for sensing matrices is not a feasible option,
especially when different matrices are to be supported.
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while the read port is highlighted in blue.

Computation at Runtime The generation of suitable random indices can
also be performed by sequence computation based on pseudo RNGs, such as
the algorithm proposed in Section 2.2. This approach only requires the data
memory to comprise the sensing buffer, which for compression of a set of 512
samples by 50% equals 256 data words (e.g., 512 bytes with a sample precision
of 12 (up to 16) bit). As shown in Section 2.2, for each generated index the
RNG has to perform the same number of LFSR steps as the number of bits per
index. A typical implementation (on a RISC ISA) in software can perform one
16-bit LFSR step in about 10 operations. For the example of a sensing buffer
size of 256 and 12 ones per column in the sensing matrix, this results in 12× 8
steps per sample, i.e., a computational requirement of about 1 kOp per sample,
dedicated to the task of random number generation alone. This requirement
becomes problematic, since downscaling of the supply voltage considerably limits
the maximum core clock frequency (cf. Figure 3). Due to the relatively large
computational overhead, achievable sampling rates for sub-VT operation are
therefore reduced to the range of tens of Hz, which is undesirable.

To combine the benefits of instant random number access of the storage
approach, with the memory savings of the computational approach, we propose
an instruction set extension for TamaRISC, which performs the task of pseudo-
random index generation efficiently in hardware.
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3.4 Instruction Set Extension for CS

Analysis of the CS kernel loop shows that the extension of memory operand ad-
dressing with efficient randomization can result in significant performance gains.
We hence introduce an extension to the TamaRISC instruction set architec-
ture, adding a new instruction that performs an accumulation of sample data
on randomized memory addresses within a defined buffer. Essentially, lines 3-6
of Algorithm 1 are combined into a single instruction, named Compressed Sens-
ing Accumulation (CSA). The assembler semantic of CSA is: CSA *Rb, Rs. As
shown in Fig. 1, the CSA instruction takes two general purpose registers as ar-
guments: the first (Rb) holding the data memory base address (b) of the sensing
buffer, the second (Rs) containing the sample data (s). The CSA instruction
addresses a random element (i) within the referenced buffer and adds the pro-
vided sample onto the existing value in the memory. This operation is repeated
for a configured number of iterations, by the use of a counter register dedicated
to the instruction. With each repetition a new pseudo random element of the
buffer is addressed.

Since the LFSR state of the address randomizer can be directly accessed
through the register file, the LFSR hardware can also be used for efficient pseudo
random number generation, independently of the CS specific memory addressing
and accumulation.

Moreover, the CSA instruction is generally used in a small loop in conjunc-
tion with the processor’s sleep mode, which puts the core in a dormant state
(clock-gated) to significantly reduce power consumption until new sample data
is available. On wakeup by an interrupt request, the sample data is fetched
from the ADC and the CSA instruction is executed, after which the core can
immediately be put to sleep again.

Configurability To enable the construction of many different sensing matrices,
the custom instruction is based on four parameters, accessible through dedicated
configuration registers. The custom instruction supports software reconfigura-
bility regarding the employed 16-bit LFSR polynomial, the LFSR seed, and the
required index width used for memory addressing. Additionally the number of
non-zero entries per matrix column can be configured, which equals the number
of times a sample is added to pseudo random locations of the sensing buffer. This
configurability amounts to storage requirements of at most three 16-bit values
per sensing matrix.

Hardware Implementation The internal hardware structure of the address
randomizer extension to the TamaRISC micro-architecture is presented in Fig. 1.
The custom instruction employs for the sample accumulation the existing 16-bit
adder unit in the ALU and does not introduce any new units to the data path
of the execution stage of the processor. The decode stage holds the extended
address generation logic, which enables addressing of a random word inside the
sensing buffer by combining a buffer base address (b) with index bits (i) taken
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from the least significant bits of the current LFSR state. The number of index
bits depends on the value set in the configuration register. In one cycle, the
LFSR state is updated by the same number of LFSR steps as index bits used (1-
16). Additionally, the instruction set extension (ISE) is realized as a multi-cycle
instruction, which allows handling of one sample in a number of cycles equal to
the configured number of non-zero entries (I) per matrix column.

4 Power and Performance Results

Due to the need to retain their memory content, many sensing platforms can not
be power gated completely [5], and hence, leakage power is always dissipated.
Therefore, our sub-VT CS processor always operates at a clock frequency that
barely accomplishes the task on time while lowering the supply voltage to the
corresponding minimum possible level that avoids timing violations. Note that
the objective is to minimize power for a given workload in contrast to the opera-
tion at the energy-minimum-voltage (EMV), where maximizing energy efficiency
often requires a higher operating voltage to balance leakage and active energy.

4.1 Synthesis and Energy Profiling

The design is synthesized above threshold at nominal supply voltage of 1.0 V
with a low-power high threshold-voltage 65-nm CMOS technology, which has
a threshold voltage VT ≤ 700 mV. Toggling information is obtained by simu-
lating a fully routed design (including clock tree) with back-annotated timing
information. The design is characterized by employing the sub-VT energy char-
acterization model that has been derived in [20] and that is briefly introduced
in the next subsection. With this model, parameters retrieved from critical path
information as well as a traditional value change dump based power simulation
are used to compute maximum operational speed, energy and power dissipation
in the sub-VT region.

In our implementation, the post-layout critical path delay at nominal supply
voltage is 5.2 ns, according to the gate-level static timing analysis. Optimization
for maximum frequency and thus a larger slack on the critical path allows for
a more aggressive voltage scaling. However, leakage and active power increase
considerably with hard timing-constrained designs. Tight constraints will force
the tool to infer nets with high fan-out as well as stronger buffers, which increases
capacitance on the critical path and consequently yield a slower operation in the
sub-VT region. Following the strategy proposed in [21], we relax the timing
constraint to achieve a design with low area and leakage cost. Simulation results
show that a relaxed timing constraint of 9 ns, at nominal supply voltage, gives
good power results, while it still enables for aggressive voltage scaling for our
target applications.
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4.2 Sub-VT Energy Profiling

The total energy dissipation ET of static CMOS circuits operated in the sub-VT

regime is modelled as

ET = αCtotVDD
2︸ ︷︷ ︸

Edyn

+ IleakVDDTclk︸ ︷︷ ︸
Eleak

+ IpeaktscVDD︸ ︷︷ ︸
Esc

, (2)

where Edyn, Eleak, and Esc are the dynamic, leakage, and short-circuit energy,
respectively. The energy dissipation Esc has been shown to be negligible in the
sub-VT regime [22]. The switching current causing the energy dissipation Edyn

results from subthreshold currents [23], i.e., from the drain currents of MOS tran-
sistors whose gate-to-source voltage VGS is equal to or lower than the threshold
voltage VT (VGS ≤ VT). Whenever the subthreshold current is not used to
switch a circuit node, it contributes to Eleak. For a given clock period Tclk, (2)
may be rewritten as

ET = µeCinvkcapVDD
2 + kleakI0VDDTclk, (3)

where I0 and Cinv represent average leakage current and input capacitance of a
single inverter, respectively. Furthermore, kleak and kcap are the average leakage
and capacitance of the circuit, respectively, both normalized to a single inverter.
Moreover, µe represents the circuit’s average switching activity.

In the sub-VT domain, it is beneficial to operate at the maximum achievable
frequency to reach minimum energy dissipation per operation. The critical path
delay of the circuit is given by

Tclk = kcrit
CinvVDD

I0eVDD/(nVT)
, (4)

where kcrit is the critical path delay of the circuit normalized to an inverter
delay, VT = kT/q is the thermal voltage and n is the subthreshold factor. By as-
suming that operation is performed at the maximum frequency, the total energy
dissipation ET is found by introducing (4) into (3), which gives

ET = CinvVDD
2

[
µekcap + kcritkleake−VDD/(nVT)

]
. (5)

Additionally, for a system that operates at a fixed frequency with a given clock
period Tclk, at a given VDD, the power is derived from (3) as

P =
µeCinvkcapVDD

2

Tclk
+ kleakI0VDD, (6)

which shows that the static power consumption is directly proportional to VDD.
The application of the model provides the sub-VT profile of a design, i.e.,

energy/operation, power consumption, and critical path speed. The model was
validated by measurements and accuracy is within a 10% error rate at the mea-
sured temperatures 0, 27 and 37 ◦C. In Table 1 the design properties of the
sub-VT processor are shown in terms of leakage, capacitance and critical path
normalized to a single inverter, as well as switching activity. For more details,
the reader is referred to [20].
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Table 1. Architectural properties for sub-VT modeling.

Design properties Value

kcap 254 000

kcrit 434

kleak 194 000

µe 0.0675

4.3 Simulation Results

Fig. 3 shows the power consumption and the corresponding supply voltage of
the sub-VT CS processor for various clock frequencies in the sub-VT domain,
computed using (6) and (4). More specifically, a clock frequency of 100 kHz
for the CS processor is achieved at a supply voltage of 0.37 V. As a result, a
total power of 288 nW is dissipated, where 27% of the power consumption is
due to leakage power. When the required clock frequency is reduced to 1 kHz
through voltage scaling, the sub-VT CS processor consumes 22.5 nW in total,
where the leakage dissipation now has a share of 98%. As demonstrated in Fig. 3,
the leakage power dominates the overall power for clock frequencies lower than
1.5 kHz, corresponding to 0.2 V supply voltage. In this particular technology,
operation below 0.25 V is not recommended due to higher rates of functional
failures from larger process variations according to [20].
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Fig. 3. Power and performance exploration of the sub-VT CS processor.
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Fig. 4. Energy profile for various operational frequencies of the sub-VT CS processor.

The energy profile of the sub-VT CS processor is shown in Fig. 4. Energy
dissipation at maximum operational frequency (5) is shown together with fixed
clock frequencies (3) of 2.1 kHz, 16.5 kHz and 100 kHz. It is observed that
operating at lower frequency than dictated by supply voltage results in higher
energy dissipation. Thus the implementation goal is to use a supply voltage that
is just barely sufficient to support the necessary clock frequency.

The total area of the sub-VT CS processor is 84.7 kGEs, where 1 GE corre-
sponds to the area of a NAND-2 minimum drive strength gate. The instruction
and data memory in the processor have a size of 768 Bytes and 1 kByte, respec-
tively. The memories occupy 84% of the overall area, whereas the core occupies
the rest. The area overhead of the instruction set extension for CS accounts for
less than 3% of the overall area.

4.4 Case Study: CS-based ECG Signal Compression

As a case study, we apply the CS algorithm for the compression of ECG sig-
nals [3]. The test case performs data compression on blocks of 512 samples,
recorded at different sampling rates.

Quality of Produced Sensing Matrices Mamaghanian et al. [3] have shown
that 12 non-zero elements in each column of the sensing matrix are sufficient to
maintain satisfactory quality of reconstructed ECG signals for diagnostic pur-
poses. Based on the study in [3], we group random indices into groups of 12,
where each group determines the non-zero elements of the corresponding col-
umn in the sensing matrix. Assuming that there are no repeated indices in a
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group, the corresponding column of the sensing matrix will have only ones and
zeros. However, in case of repetition the repeated indices will accumulate, which,
according to our experiments, does not lead to any quality degradation in the
reconstructed signal as shown in Fig. 5 for an example sensing matrix.

To ensure a good quality of diagnostic analysis on the reconstructed ECG
signal, the compression performance is quantified according to the percentage
root-mean-square difference (PRD) for different compression ratios [3]. PRD
quantifies the percent error between the original and the reconstructed signal
where a PRD value less than 9 is classified as ”very good” or ”good” qual-
ity for ECG diagnosis. Thanks to our configurable CS-extension, many sensing
matrices with different combination of primitive polynomials and seeds can be
constructed. These sensing matrices are analyzed by quantifying their corre-
sponding PRD values for various compression ratios. More specifically, Fig. 5
shows as an example the PRD values with respect to various compression ratios
for one of the constructed sensing matrices with a polynomial

p = x13 + x12 + x11 + x10 + x9 + x7 + x3 + x2 + x1 + 1

and the seed ”0x6218” in hexadecimal combination. As seen from Fig. 5, a PRD
value below 10 is retained for compression ratios up to almost 60%. Moreover,
50% compression is achieved with a PRD of 7.7. Similar to the state-of-the-
art CS sensing matrices [3], our sensing matrices that are generated by our
multi-step LFSR mechanism, accomplish a ”good” or ”very good” quality of the
reconstructed signals for compression ratios less than 53%.

Power vs. Performance Analysis We consider the example of 50% data com-
pression of ECG signals, using the ECG database in [24] for stimuli generation,
to analyze the power and performance of our sub-VT CS processor. The required
operating frequency to support a given sampling rate to compress ECG signals
in real-time is given by: f ≥ N ∗ fs where fs and N stand for the given sam-
pling rate and the required average number of clock cycles to process a sample.
The clock frequency of the sub-VT CS processor is always adjusted, to have the
minimum required clock frequency, according to the given ECG sampling rate.
The supply voltage of the processor is then lowered accordingly.

The presented sub-VT CS processor requires 8460 clock cycles to apply 50%
compression on 512 samples of ECG data when the sensing matrix is constructed
by 12 random indices per column (I = 12). This corresponds to only an average
of N = 16.5 cycles processing time for each sample (16 cycles per sample + setup
overhead per sample set). As a result, the sub-VT CS processor must operate with
a clock frequency of 2.1 kHz and 16.5 kHz for 125 Hz and 1 kHz sampling rates,
respectively. Fig. 6 shows the power consumption of the sub-VT CS processor
for various ECG sampling rates. More specifically, for 125 Hz sampling rate the
sub-VT CS processor consumes only 30.6 nW in total with 95% of the power due
to leakage. Similarly, the total power consumption is only 74 nW for a sampling
rate of 1 kHz, where 70.7% is because of leakage dissipation.
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To compare our ISE-enhanced CS processor with the baseline processor, we
consider the construction of the CS sensing matrix by computing random se-
quences of indices based on a pseudo RNG algorithm (c.f. Section 2) running on
the baseline ISA. Our results show that the optimized implementation for the
baseline core requires a significantly higher computational effort. Specifically,
the increased computational effort per sample in terms of cycles amounts to
(10log2(k) + 5)I + 5, compared to our implementation based on the proposed
CSA instruction with an effort of I + 4 cycles. In this case of LFSR emulation
by software, code optimized to the baseline ISA processes one ECG sample,
including the sensing matrix construction, on average in N = 1025.5 cycles,
which translates into a speed-up of 62× for our ISE-supported implementation.
Therefore, a sampling rate of fs = 125 Hz requires a clock frequency of 128 kHz,
using the pure software approach. This results in a total power consumption for
the design of 355 nW (cf. Fig. 3), which is 11.6× higher than the sub-VT CS
processor with ISE, where the random indices are produced with the help of
the embedded LFSR. Moreover, Mamaghanian et al. [3] report a code execution
time of 25 ms on a different architecture with a clock frequency of 8 MHz, for
applying 51% compression on a set of 512 ECG samples, where pre-computed
random indices are stored in the memory. This results in N = 390.5 cycles per
sample, a 23.6× higher performance requirement than our CS implementation,
in terms of cycle count alone.
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5 Conclusion

Compressed sensing (CS) is a well-known universal data compression technique
applied to sparse signals, used widely for sensing environment applications. Au-
tonomous and portable devices, such as sensing platforms, however enforce ultra-
low-power CS implementations, due to their limited energy resources. Therefore,
we have proposed a subthreshold processing platform specifically optimized for
CS, while still maintaining the flexibility and configurability of a processor based
system. To this end, we have customized the instruction set architecture of a
low-power baseline processor to exploit the specific operations of the CS algo-
rithm. Specifically, we propose a Compressed Sensing Accumulation (CSA) in-
struction that efficiently performs accumulation of sample data on randomized
memory addresses within a defined sampling buffer. Moreover, our processing
platform embeds the required data and instruction memories in the form of
sub-VT-capable standard-cell memories, which are essential for ULP operation.
We show that our processing platform requires neither high computational ef-
fort nor excessive memory sizes compared to straight-forward implementations.
Therefore, the platform is well suited to exploit subthreshold computing at low
voltages and with very low leakage. Our system consumes only 30.6 nW for a
case study of CS-based electrocardiogram (ECG) signal compression at an ECG
sampling rate of 125 Hz. Our results show that the proposed processing platform
achieves 62× speed-up and 11.6× power savings with respect to an established
CS implementation running on the baseline low-power processor.
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