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Abstract. Spatially-varying, non-linear image warping has gained grow-
ing interest due to the appearance of image domain warping applications
such as aspect ratio retargeting or stereo remapping/stereo-to-multiview
conversion. In contrast to the more common global image warping, e.g.,
zoom or rotation, the image transformation is now a spatially-varying
mapping that, in principle, enables arbitrary image transformations. A
practical constraint is that transformed pixels keep their relative order-
ing, i.e., there are no fold-overs. In this work, we analyze and compare
spatially-varying image warping techniques in terms of quality and com-
putational performance. In particular, aliasing artifacts, interpolation
quality (sharpness), number of arithmetical operations, and memory
bandwidth requirements are considered. Further, we provide an archi-
tecture based on Gaussian �ltering and an architecture with bicubic in-
terpolation and compare corresponding VLSI implementations.
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1 Introduction

With the steadily increasing frame rates and resolutions, real-time video pro-
cessing and graphics processing is becoming predominant in terms of computa-
tional requirements in mobile devices. Many application-speci�c hardware cores
for video processing are currently being integrated onto mobile system-on-chips
(SoCs) (e.g., NVIDIA Tegra). One upcoming application for mobile devices is
video content adaptation: while a growing amount of content is watched on an
increasing number of di�erent mobile platforms, most content is captured with
one acquisition system at �xed parameters. Examples for content adaption al-
gorithms are content-aware video resizing (video retargeting) [13], non-linear
stereoscopic 3D (S3D) adaption [14], 2D to S3D conversion and S3D to multi-
view generation [5,6,19]. Other content transformation applications are camera
alignment for S3D video and panoramic shots.

As a �rst step, any display adaptation algorithm determines an image warp-
ing function that is dependent on the display characteristics. The input frames



are then transformed to the output frames according to the given warping func-
tion using a view rendering algorithm based on spatially-varying warping. The
generation of the warping function is application-speci�c, and can be separated
from the view rendering. For instance in video retargeting, the warping function
retains the aspect ratio of salient (i.e., visually important) parts of the image,
while the image distortion is hidden in visually less important regions. In S3D
to multi-view conversion, the warping function is derived from the 3D structure
of the scene (obtained from a disparity estimation step) to generate in-between
views.

Various view synthesis and image rendering architectures have been proposed
in prior work. However, the majority of these architectures have been optimized
for one particular rendering application, such as depth-image based rendering
(DIBR) [3, 11], stereo recti�cation [7], or non-linear lens correction [2, 17]. In
contrast, we consider warping with general transformations that can be used for
global per-frame transformations such as (wide-angle) lens undistortion, but also
for spatially varying per-pixel transformations such as in video retargeting. Due
to the spatially-varying nature of the transformation and the high resolutions of
video footage in current applications, special care has to be taken in algorithm
and architecture design. That is, aliasing needs to be avoided, high-quality in-
terpolation should be guaranteed, and high computational � and memory band-
width requirements need to be addressed.

In this paper, we address hardware e�ciency and VLSI architectures of non-
linear warping for view synthesis applications. It is an extended version of our
previous work [8, 9]: next to the elliptical weighted average (EWA) rendering
system presented in [8, 9] we present non-linear image warping through bicubic
interpolation and adaptive super-sampling and assess image quality and hardware
requirements by comparing an extended set of non-linear warping strategies. An
important hardware consideration is thereby the memory bandwidth require-
ments and the corresponding cache simulations and VLSI designs. Finally, using
the obtained ASIC implementation results, we provide a comparison of di�erent
warping techniques in terms of VLSI performance.

2 Non-linear Image Warping

Non-linear image warping is the process of geometrically transforming an image
with a general image transformation (warping) function. In the simplest case, the
image warping function can be represented as a global per-image transformation
such as a rotation or translation of all the pixel values. Such transformations are
usually represented by simple, per-image arithmetic operations of the input pixel
locations. Stereo recti�cation is a practical application example: two non-aligned
camera images are recti�ed in order to eliminate any vertical o�sets between the
cameras, and a 3-by-3 matrix with 8 degrees of freedom is enough to specify the
full image transformation.

While our setup is able to perform global per-image transformations, its
strength lies in the ability to realize locally-adaptive non-linear deformation of
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Fig. 1. Example of transformations possible with our non-linear image warping setup.
In addition to global per-frame transformations such as rotations or linear scaling
(right image) our system also allows arbitrary non-linear transformations (middle im-
age). Such transformations are essential for spatially-adaptive retargeting applications.
Image credits: the initial image (left) is in the public domain, the middle image is
generated with the framework from [13] and the right image is a linear scaled version
of the initial image.

the input video, which is required in modern video applications such as content-
aware video retargeting. Our warping function can be speci�ed by a per-pixel
mapping function: any pixel in the source image is assigned its own destination
pixel position in the target image. Figure 1 shows an example of transformations
that are possible with the system presented in this work.

2.1 Warping Basics

In the following we brie�y summarize the image resampling process, for a thor-
ough derivation we refer to literature (e.g. [18,21,22]). Consider an input image
with pixel values wk, where k is the linearized image coordinate and uk the
corresponding 2D coordinate in source (image) space. Each (non-integer) source
coordinate u is transformed via mapping m to a target coordinate x

x = m(u) (1)

Further, let fi() be a continuous source space interpolation �lter and fa() a
continuous target space anti-aliasing �lter. The general mapping function m
then transforms an input image into an output image fout according to

fout(x) =
∑
k

wkfi(m
−1(x)− uk) ∗ fa(x)

=

∫
R2

∑
k

wkfi(m
−1(τ )− uk)h(x− τ )dτ . (2)

The interpolation and anti-aliasing �lter are crucial for obtaining good image
quality in the resampling process, and omitting them can lead to aliasing or



holes in the output image, especially for spatially-varying transformations. The
�nal output image is obtained by evaluating fout on the desired integer grid
positions.

In practice, the general mapping functionm(u) is linearly approximated with
a �rst-order Taylor expansion around an integer grid position uk

x = m(u) ≈m(uk) + Jk · (u− uk), (3)

where Jk is the 2× 2 Jacobian matrix of m at position uk. Also, the resampling
equation (2) can be evaluated in two ways. The so-called backward mapping ap-
proach steps through the output pixel positions xh and looks for the correspond-
ing pixels in the input image. The forward mapping approach steps through the
input grid positions uk and calculates its contributions to the target pixels. In
the following, we introduce practical backward and forward mapping techniques
for non-linear warping.

2.2 Forward Mapping: EWA Splatting

An e�cient forward mapping approach is elliptical weighted average (EWA)
splatting [9]. In the EWA framework, 2D Gaussian �lters are used for both
interpolation and anti-aliasing �lters with covariance matrices V{i,a} = σ2

{i,a}I2,
where I2 is a 2-by-2 identity matrix. Two main advantages of Gaussian �lters
make the EWA framework very e�ective: �rst, a Gaussian �lter remains Gaussian
under linear transformations. Second, the convolution of two Gaussian �lters
results in another Gaussian.

Consider an input image with pixel values (intensities or RGB components)
wk, where k is the linearized 2D image coordinate corresponding to the 2D
position vector uk and an Taylor-approximated mapping m(uk) + Jk(u − uk).
The complete EWA resampling process is then summarized as follows. First, the
per-pixel covariance matrix is calculated from the warping grid Jacobian Jk and
covariance matrices V{a,i}

Ck = JkViJ
T
k +Va. (4)

The technique from [9] further adapts the resulting co-variance matrix Ck on
a per-pixel level and thereby optimizes the inherent blur-aliasing trade-o� of
Gaussian �lters (see [9] for details). Next, for each input pixel k with position
uk and value wk, we accumulate its contributions in the target image vh on
target grid positions xh with linear index h

vh ←
wk|Jk|

2π
√
|Ck|

e−0.5(xh−m(uk)
TC−1

k (xh−m(uk)). (5)

The '←' symbol denotes an update operation (accumulation). Due to non-
idealities, a post-normalization step is necessary: vh/ρh, where ρh are the ac-
cumulated weights

ρh ←
|Jk|

2π
√
|Ck|

e−0.5(xh−m(uk)
TC−1

k (xh−m(uk)). (6)



In theory, xh is the complete target image grid; in practice, because of the fast
decay of the Gaussian kernel, the range of xh can be con�ned by a rectangular
bounding box around the transformed center of the Gaussian m(uk) [9]

m(uk) +

(
±
√

Ck(1, 1)

±
√

Ck(2, 2)

)
. (7)

2.3 Backward Mapping

Backward mapping approaches do not accumulate contributions from source pix-
els in the target image but, conversely, perform a direct look-up for each target
pixel in the source image. In order to evaluate the analytical resampling expres-
sion without using Gaussian �lters, the anti-aliasing �lter is usually replaced by
a practical anti-aliasing technique. The resampling expression simpli�es to an
interpolation in source space. There exist a variety of di�erent �lter kernels that
can be used for the interpolation, such as nearest-neighbor, bilinear, bicubic, or
windowed-sinc interpolation kernels. In the quality evaluation section, the per-
formance of the interpolation kernels is evaluated and compared numerically to
each other.

The general backward evaluation formula can be written as

ρh =
∑
k

wkfi(m
−1(xh)− uk). (8)

For instance, in the simple case of nearest-neighbor interpolation, the expression
becomes ρh = wk′ with k′ = argmink|m−1(xh) − uk|2. Expressions for other
interpolation �lters can be derived similarly or looked-up in literature [21].

To add anti-aliasing on top of the practically e�cient backward interpola-
tion technique, di�erent approaches exist. One is super-sampling and decimation,
where image values are looked-up on a higher-resolution output grid and then
decimated again to the actual required resolution. The decimation �lter thereby
serves as anti-aliasing �lter. Another technique is mip-mapping, which is used
in the texture mapping stage in current GPUs [1]. Mip-mapping keeps multi-
ple resolution of the same image and, during look-up, uses the resolution that
corresponds to the local downscale/upscale factor.

3 Evaluations

The general resampling framework described above allows many practical real-
izations, in particular when selecting interpolation �lters and the anti-aliasing
method. In this section we compare several common methods in terms of visual
quality, and, more importantly, in terms of computational complexity. Finally,
we evaluate memory accesses and design a cache to reduce memory bandwidth
for non-linear image domain warping applications.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

30

35

40

45

50

55

60
a) Rotation

rotation (in 2pi/17 steps)

P
S

N
R

 (d
B

)

Bilin
BicConv
BSpl
BicSpl
Gauss_0.39
Hann_2
Lancz_2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
30

35

40

45

50

55

60

65

70
b) Translation

translation (in 1/17 steps)

P
S

N
R

 (d
B

)

Bilin
BicConv
BSpl
BicSpl
Gauss_0.39
Hann_2
Lancz_2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
30

35

40

45

50

55

60

65

magnification factor: 1+(x−1)/17

P
S

N
R

 (d
B

)

Bilin
BicConv
BSpl
BicSpl
Gauss_0.39
Hann_2
Lancz_2

c) Isotropic magnification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
24

26

28

30

32

34

36

38

40

42

minification factor: 1−0.75*(x−1)/17

P
S

N
R

 (d
B

)

BicSpl+noAA
BicSpl+SSx2
BicSpl+SSx4
BicSpl+QX
BicSpl+FQ
Bilin+noAA
Bilin+SSx2
Bilin+SSx4
Bilin+QX
Bilin+FQ
EWA+norm
EWA+sa

d) Isotropic minification

Fig. 2. Comparison of PSNR values for di�erent kind of transformations. The evalua-
tions have been performed by �rst applying a transformation and then the correspond-
ing inverse transformation. The resulting image is compared with the original using the
PSNR metric. The results plotted here are median values over a set of 16 natural 720p
color images. The Gaussians are parameterized with σ = 0.39 in the above evaluation
(this value was determined in [9]) and they are clipped at 2.



Fig. 3. Visual comparison of anti-aliasing artifacts: without anti-aliasing visual dis-
tortions are obvious (a); twofold oversampling removes some of the aliasing in this
example (b). However, fourfold oversampling is necessary to remove all aliasing (d).
The two EWA splatting variants (c,e) hardly show aliasing artifacts. We also observe
that adaptive EWA splatting (e, see Section 2.2) provides a sharper image than con-
ventional EWA splatting (c).



3.1 Quality Comparisons

For the evaluations we use several well-known interpolation and anti-aliasing
methods and apply them to aspect-ratio retargeting and stereo-to-multiview
conversion examples. Interpolation kernels compared in this work are bilinear
and bicubic interpolation, b-spline, bicubic spline interpolation, Gaussian, and
windowed-sinc �lters with Hann and Lanczos windows. For details on the dif-
ferent methods refer to e.g. [21]. Anti-aliasing kernels in forward mapping are
evaluated using the EWA framework. Backward mapping methods are evalu-
ated with various degrees of constant super-sampling (SS) or di�erent sampling
patterns such as quincunx and �ipquad [1].

Figure 2 provides evaluation results on comparing interpolation �lters and
anti-aliasing methods in resampling applications. The di�erent resampling meth-
ods are used to transform a set of 16 natural 720p color images according to
simple parameterized transformations (e.g. rotation by a certain angle). In or-
der to be able to assess the resampling quality using the PSNR measure, the
images are resampled twice: once with the forward transform and once with the
corresponding inverse transform. The original images can then be used as a ref-
erence. It should be noted that the PSNR is a good measure for the amount of
introduced blurring, but it does not capture aliasing artifacts very well as can be
seen in Figure 2d, which shows the numerical results for isotropic mini�cation.

From these basic quality evaluation �gures, several observations can be made.
The �rst observation is that Gaussian interpolation shows similar quality com-
pared to the typically used bilinear interpolation, even without any non-linear
warping. Bicubic methods and windowed sinc �lters are in general superior to
Gaussian and bilinear interpolation, and B-splines show the worst performance.

Regarding anti-aliasing, one observes two things: the numerical evaluations
show that all methods introduce a similar amount of additional blurring, except
of course, when using no anti-aliasing method. The adaptive Gaussian shows
less blurring than the �xed-width Gaussian, which has been already shown in
Section 2.2. On top of that, visual evaluations show that using no anti-aliasing
�lter may introduce severe aliasing artifacts, as can be seen in Figure 3.

Our observations are in line with claims and evaluations from previous works
[1, 10, 18, 20]. Quality-wise, we conclude that the adaptive EWA splatting ap-
proach is superior both to simple bilinear interpolation and bilinear interpolation
with super-sampling. In terms of quality, a bicubic or windowed-sinc backward
mapping approach with (su�cient) supersampling are superior to EWA splat-
ting.

3.2 Computational Complexity

Beside the quality evaluations, we compare the computational complexity of
bilinear and bicubic backward mapping as well as adaptive EWA splatting in
image domain warping applications (e.g., aspect ratio retargeting). We consider
the following scenarios, �rst an identity transformation of a 1920× 1080 image,
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Fig. 4. Comparison of the computational complexity of di�erent resampling techniques.
Top: identity transformation; middle: 4:3 to 16:9 retargeting using linear scaling; bot-
tom: 16:9 to 4:3 retargeting using linear scaling. The compared methods are bilin-
ear interpolation (Bil), bicubic convolution (BicConv) and adaptive EWA splatting
(adEWA). The post�x SSx2 stands for twofold supersampling, whereas noAA stands
for no anti-aliasing. The methods printed with a bold font do not include any warp
preprocessing, whereas the methods with the post�x WarpInv1081, WarpInv100 or In-
terp100 include an additional warp inversion or warp interpolation step (the number
denotes the vertical warp resolution - refer to the text for more details).



second linear scaling from 1440 × 1080 to 1920 × 1080, and third linear scaling
from 1920× 1080 to 1440× 1080.

Using these three cases, the order of magnitude of the complexity can be esti-
mated. More importantly, these cases allow us to compare the relative complexity
of di�erent methods. As can be seen in Figure 4, the lowest-cost technique is bi-
linear interpolation (Bil+noAA), followed by bicubic interpolation (Bic+noAA)
and adaptive EWA (adEWA). We also see that supersampling signi�cantly in-
creases the complexity of the backward mapping methods. Note that the bicubic
polynomials and the Gaussian kernel evaluations are approximated with linear
interpolation between lookup table values. Further, the inverse square-root is
calculated using the fast inverse square-root approximation [16].

Warp Interpolation and Inversion The numbers discussed above hide a
practical issue: depending on the application, warp information is available in
either forward or backward format and the conversion from one format to another
requires additional computations. In typical image domain warping applications,
warps are available in forward format. This has consequences for backward map-
ping approaches, where an additional inversion step becomes necessary (denoted
as Inv1081 in Figure 4). Further, the warp is usually available on lower resolution
than the actual image such that an additional upscaling step using interpolation
is necessary (e.g. bilinear interpolation). Warp inversion together with warp up-
sampling from 100 pixel to 1080 pixel in vertical direction is denoted as Inv100
whereas, warp upsampling alone is denoted as Interp100. Note that the warp
inversion also requires more memory (and associated bandwidth) for the storage
of the inverted warp coordinates or the partly rasterized output image.

Conclusion Together with the quality evaluations from the previous section, we
conclude that adaptive EWA splatting forms a good tradeo� between computa-
tional complexity, interpolation and anti-aliasing quality. Bilinear interpolation
lowers the computational complexity but at the price of lower image quality.
Finally, bicubic approaches provide more interpolation quality at a similar cost
as EWA splatting, but they are very costly when super sampling is added. In im-
age domain warping applications, forward warp coordinates are available, which
makes EWA splatting an e�cient solution for non-linear warping.

3.3 Memory Bandwidth Evaluation

In real-time VLSI implementations, the warp and image are processed in scanline
order. Depending on the warp format, i.e., backward or forward transformation,
the image needs to be stored in either input bu�er or an output framebu�er, in
order to support arbitrary image transformations. The bu�ers usually contain
large parts or the entire image and therefore have to be stored in external o�-
chip memories (an uncompressed full HD image amounts to about 50 Mbit). Due
to the limited pin and power budget it is important to minimize the required
memory bandwidth.
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Fig. 5. This �gure shows a typical frame bu�er access pattern of a retargeting warp
rendered with EWA splatting. The grid on the left hand side shows a typical retargeting
warp of a 1280× 720 image. In this application, the warp contains only limited image
distortions. The excerpts on the right side show close-ups of two partially rendered
regions of this warp, where the large spatial overlap among subsequent patches in
horizontal and vertical directions can be observed.

Bandwidth Bottleneck In the case of backward mapping, each rendered out-
put image pixel requires a small patch to be fetched from the input image in
order to perform the interpolation. Similarly, in the case of a forward mapping
method, each input image pixel leads to a patch of pixel contributions in the
output image, which are then accumulated in a frame bu�er. In both cases the
size of those patches depends on the employed �lter kernel, and ranges from 2×2
(bilinear and adaptive EWA), to 3× 3 (normal EWA) to 4× 4 pixels (bicubic).

Thus, the amount of memory accesses is a multiple of the image resolution
and can easily lead to a bandwidth bottleneck. For instance, in the case of
bicubic interpolation and a 1080p color output image we require a bandwidth
of 1920 × 1080 × 3 × 4 × 4 ≈ 796 MByte/frame. Fortunately, if the warp is
traversed in scanline order, consecutively accessed patches spatially overlap to a
certain degree as illustrated in Figure 5. The vertical and horizontal locality of
the patches can be leveraged to reduce the overall bandwidth by employing a
two-dimensional image cache (similar to texture caches in GPUs).

Cache Evaluations In order to see how a two-dimensional image cache has to
be parameterized in the case of image warping, we simulated di�erent cache con-
�gurations for di�erent resampling methods and calculated the required band-
width for one frame. Figure 6 shows the averaged simulation results of a direct
mapped cache with degenerate 1 × 1 blocks for 17 nonlinear retargeting warps
(aspect ratio change from 4:3 to 16:9 for 1080p images). Note that the retargeting
warps all show similar memory access patterns as they perform the same global
linear upscaling with only local variations. For better readability, the bandwidth
has been normalized with the size of the input image (a), or with the size of the
output image (b) � depending on the mapping direction (forward or backward).
We can see that as soon as the cache is large enough to store an image patch
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Fig. 6. Simulation of di�erent overall cache sizes of a direct mapped cache with de-
generate 1 × 1 blocks (i.e. each pixel has its tag and valid bit). Both plots show the
averaged results from 17 nonlinear retargeting warps (aspect ratio change from 4:3 to
16:9 of 1080p images).(a) shows the normalized bandwidth of the input image bu�er
for bicubic backward mapping; and (b) shows the normalized bandwidth of the frame
bu�er for (non-adaptive) EWA splatting. The normalized bandwidth is encoded in the
color. Depending on the mapping direction of the method, the normalization factor is
either the size if the input (a) or output image (b).

which is larger than the size of the employed �lter kernel (4× 4 in (a) and 3× 3
in (b)), the bandwidth is beginning to drop signi�cantly. In the ideal case, if
the cache is large enough, data will be transferred only once between the main
memory and the cache. This corresponds to transferring only one input image
to the cache in a backward mapping architecture, and only one output image in
a forward mapping architecture. In this optimal case the normalized bandwidth
is equal to one. As can be seen in Figure 7 and Figure 8, the optimum can be
reached if the cache is large enough to hold several image rows.

A cache with a block size of 1 × 1 pixel is adapts well to the geometric
variations in the warp function, but such a cache con�guration requires a huge
amount of overhead (i.e., valid-bit and address-tag entries have to be stored
for each pixel as well). Increasing the block size reduces the memory required to
store the tags and the valid-bits, but also comes at the cost of cache performance,
as can be seen in Figure 7 and Figure 8. However, if the cache is large enough,
it is possible to reach the optimum with large cache blocks.

4 Hardware Architectures

Based on the �ndings from the previous section, we introduce two hardware
architecture for spatially-varying image warping. The �rst architecture uses for-
ward mapping with adaptive EWA, the second architecture uses backward map-
ping with bicubic interpolation and, to reduce computations, with an adaptive
super-sampling technique.
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Fig. 7. Simulation of di�erent cache con�gurations for the input image bu�er used in
bicubic backward mapping. (a) shows the results for a nonlinear aspect ratio change
from 4:3 to 16:9 of a 1080p image; and (b) shows the results for a nonlinear aspect
ratio change from 16:9 to 4:3 of a 1080p image. The results are mean values over 17
warps generated for natural testimages.

4.1 EWA Splatting Architecture

The top-level diagram of the EWA architecture is given in Figure 9. The core
accepts streaming pixel color information, given in an 24 bit RGB format. In ad-
dition to the color information, a deformation grid describing the pixel mapping
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Fig. 8. Simulation of di�erent cache con�gurations for the frame bu�er used in EWA
splatting. (a) shows the results for a nonlinear aspect ratio change from 4:3 to 16:9
of a 1080p image; and (b) shows the results for a nonlinear aspect ratio change from
16:9 to 4:3 of a 1080p image. The results are mean values over 17 warps generated for
natural testimages.

m is streamed in. In the quadrilateral deformation grid format, the deformation
of each pixel is described by transformation of the pixel's bounding box. More
speci�cally, the four corner positions of a quad describe the new pixel center as



well as the pixel deformation. The horizontal and vertical gradients necessary
for constructing Jk can be easily deduced from the quads.

We assume that the image transformation m is locally smooth, and that
neighboring pixels share their adjacent quad grid corners. Therefore, in compact
form, the quad grid representation only requires (W +1)× (H+1) grid points, if
W and H are the input video width and height, respectively. Note that we chose
this representation in order to disallow transformations that would result in
image holes. Furthermore, since neighboring grid points and pixels are typically
strongly correlated, we add a lossless di�erential compression/decompression
scheme at the input interface to reduce the input bandwidth and I/O power.
Note that temporal compression across frames could further reduce the input
bandwidth since the warp typically varies slowly over time.

From the input quad grid, the pixel position m(uk) (mean of adjacent corner
positions) and the Jacobi matrix Jk (horizontal and vertical gradients computed
from the corner positions) are calculated and stored in an on-chip FIFO bu�er.
A dispatcher unit then distributes positions, Jacobian, and pixel values to mul-
tiple arithmetic units that perform the splatting operation. The processing time
of each splatting operation strongly depends on the deformation, as one input
pixel can possibly be stretched to multiple output pixels. To handle the vari-
able throughput requirements, several arithmetic splatting chains are used in
parallel, and the dispatcher unit distributes the input pixels depending on the
workload. A FIFO bu�er can absorb incoming pixels when all splatting units are
occupied during performance peaks. To handle prolonged peaks, the FIFO �res
a back-pressure system that allows to stall the data source to avoid data loss.

Due to mathematical properties of the summation operation in (5), we can re-
arrange the operation: instead of evaluating the sum for each output position, we
forward-transform all individual Gaussian kernels and perform an accumulation
of the Gaussian contributions in the temporary output image. To avoid exces-
sive memory bandwidth requirements between the chip and the external frame
bu�er, we employ a two-level cache structure, in accordance with the cache con-
�guration simulations presented in the previous section. The cache exploits the
spatial coherence of image transformations, which in general map neighboring
input pixels to neighboring output pixels.

When all input pixels have been processed, the temporary output image can
be streamed to a normalization unit, where the accumulated pixels are then
normalized by the sum of the �lter weights. Note that this �nal normalization
step is necessary due to the fact that Gaussian �lters, and in particular their
truncations, are non-ideal interpolation �lters.

Input Interface The system requires the pixel information and the deformation
grid as the input. Since the deformation grid has to be determined by another
computation block, a simple custom interface has been designed that can easily
be adapted for di�erent applications.

Compression The input interface consists of 24 bit RGB values and 2 × 24
bit pixel coordinates, resulting in a bandwidth of 4.5GBit/s for 1080p30. To
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Fig. 9. Top level block diagram of the EWA rendering architecture.

reduce the input bandwidth, we propose an optional di�erential compression
scheme. The compression exploits the fact that neighboring pixel colors and
coordinates usually exhibit strong spatial correlation, and will therefore result
in small incremental changes only. The purpose of the compression is to transmit
the small incremental changes only. The input �xed-point words are decomposed
into several sub-words, i.e., an n bit word is decomposed into n/m m bit words.
This decomposition relies on the observation, that the upper bits (MSBs) of
pixels and pixel positions change very rarely compared to the lower bits (LSBs).
With this, as only sub-words that change are transmitted, one MSB sub-word
can be transmitted with several LSB sub-words plus control bits that indicate
the number of lower sub-blocks per upper sub-block. Evaluation on actual data
has shown a bandwidth reduction of 35% on average. Note that the compression
is completely lossless and comes at negligible hardware overhead.

Dispatcher The dispatcher unit is responsible for load-balancing between mul-
tiple subsequent splatting units. A simple round-robin based priority scheme is
used for the scheduling.

Arithmetic Processing Elements In a nutshell, the splatting units imple-
ment the EWA equation (5) in a �xed-point format. For each input pixel, a
Gaussian kernel is calculated from the pixel color wk and the linearized approxi-
mation Jk of the warp grid. The Gaussian kernel is then resampled to determine
its contribution to all output pixels. The resampling is evaluated within a small
bounding box of the Gaussian only, i.e., the Gaussian will be truncated to zero
as soon as its energy falls below a very small threshold. The contributions of the
individual Gaussians are then accumulated, and �nally normalized.

The datapath is implemented using custom �xed-point arithmetic. The ac-
cumulated color channels are calculated with 11 bits each, and the accumulation
values are calculated with 12 bits, resulting in data words of 45 bits in total for



each pixel. This number has been chosen both for accuracy reasons as well as to
match the word-width of the external memory.

Adaptive EWA The splatting cores can be con�gured to work in 'adaptive' mode,
which means that the Gaussian resampling covariance matrix is adapted per-
pixel to reduce the amount of blurring. The adaptive mode has been introduced
in [9] and its impact on overall area is negligible.

Throughput Each splatting unit has a �xed throughput Θ = f/ncycles, deter-
mined by the clock frequency f and the number of cycles required to evaluate
one input pixel ncycles. The current architecture is optimized for ncycles = 20,
which is matched to the average number of output pixels times the number of
cycles it takes to evaluate one output pixel (9 × 2 plus overhead). A through-
put of 9MPixels/s per splatting unit at a clock frequency of 170MHz can be
achieved. Therefore, 1080p30 video (63MPixels/s) can be achieved with some
margin by employing 8 parallel splatting units.

Accumulation, Caching, and Memory Interface Each input pixel produces
several output contributions that need to be weighted by a Gaussian kernel
and accumulated at the output sampling locations. As described earlier, the
Gaussian kernels are truncated at the bounding box boundary, and simulations
have shown that bounding boxes of 4 to 9 pixels in size are su�cient to capture
the majority of the non-zero contributions. Hence, the accumulation bandwidth
is between 2 × 4 and 2 × 9 times larger than the input bandwidth, as each
accumulation is performed using a read-modify-write operation. To reduce the
external bandwidth, our on-chip caching architecture exploits the horizontal and
vertical overlaps of neighboring Gaussian kernels. In a �rst stage (denoted L1),
contributions with spatial proximity are collected and accumulated into larger
blocks. The L1 blocks are then e�ciently accumulated to a second stage (L2
blocks). The L2 cache is able to store several lines of the image, and once a
line is removed from the L2 cache it is accumulated to the external frame bu�er
memory. Our two-stage caching architecture reduces the resulting bandwidth
considerably: the L1 cache is implemented using register arrays that support
the highest bandwidth, and the L2 cache implemented using block RAMs that
reduce the bandwidth to external memory further.

Throughput Each accumulated data word has 45 bits, the required bandwidth
for 1080p30 can be calculated as

bwfull = 45× 1920× 1080× 30× 2× (1 + npps),

where the factor 2 comes from the read-modify-write operation. npps denotes the
number of pixels per splat, i.e., the bounding box size. Additionally, the �nal
read out requires one more read from the memory. If we assume a conservative
value of npps = 9, the overall bandwidth equals bwfull = 56Gbit/s. Our cache
architecture exploits the inherent spatial overlap between neighboring pixels,
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Fig. 10. Data path of the EWA splatting core.

and shifts the bandwidth burden to the on-chip bu�ers, reducing the e�ective
npps. In simulations, a cache e�ciency resulting in npps = 3 is always achieved,
and the required bandwidth is reduced to 22.4Gbit/s.

Due to the read-modify-write operation, we choose a QDR-type memory in-
terface to e�ciently support the accumulation. QDR memories are static RAMs
that have separate read and write ports, which can be accessed in parallel. More-
over, the data is transmitted in double edge mode. A 9 bit QDR RAM port
therefore has 3Gbit/s read and 3Gbit/s write bandwidth, at a clock frequency
of 170MHz. Our architecture employs 5 instances of such 9 bit RAM interfaces,
and the resulting 45 bit memory interface matches our data word size. The
overall available bandwidth therefore amounts to 30Gbit/s.

Scheduling and Control Flow Due to the varying bounding box sizes of
the input Gaussian kernels, the run-time of the individual rendering cores is
non-deterministic during operation. However, on a per-frame basis the varying
per-pixel run-times are averaged out and thus approximately constant, which
can be used for dimensioning the number of cores and the required memory
bandwidth. Short-term �uctuations of throughput are then regulated using a
back-pressure system. Moreover, an e�cient scheduling strategy distributes the
input pixels to individual rendering units.

Output Interface The �nal step of the rendering pipeline consists of reading
out the image from the frame bu�er and interfacing it to a standard display chip.
Since display interfaces must adhere to a very strict timing, the read-out from
the frame bu�er is always prioritized over the read-modify-write accumulation
operations. In case of collision, the accumulation can be stalled via the back-
pressure mentioned before. The normalization block contains a divider producing



warp

Jk
m-1(uk)

Bicubic
Kernel LUT

Adaptive Grid
Upsampling

Bu�er and
Pixel Lookup

Bicubic
Interpolation

ext.
RAM

Cache/Memory IF

Interpolation Arithmetics

pixel

pixel

addr

2x Super-Sampling 

pixelfractional coordinates

integer coordinates

ASIC

�lter
coe�s

Fig. 11. Block diagram of bicubic interpolation with adaptive 2× super-sampling. The
caching setup is similar to the EWA rendering architecture cache, since a similar access
pattern is assumed. The key di�erence is that the bicubic backward mapping cache
is a read-bu�er whereas the EWA forward mapping cache uses (read-modify)-write
accesses.

the �nal 24 bit RGB values, by normalizing the accumulated RGB values with
their weights.

4.2 Bicubic Warping Architecture

Figure 11 provides a top-level architecture overview of backward mapping using
bicubic interpolation and two-times adaptive super-sampling. The high-level ar-
chitecture is conceptually similar to the EWA architecture shown in Figure 9.
The backward warping grid represented by Jacobian and backward coordinate
lookup values is streamed line-by-line into the warping core (no warp inversion
is performed here). However, contrary to the EWA forward architecture, the
pixel intensities are not streamed together with the warp grid, but are accessed
through an external bu�er.

Adaptive Supersampling The adaptive super-sampling block decides for each
warp input whether super-sampling is necessary or not, by detecting if the trans-
formation is locally minifying. Mini�cations are detected by checking if the de-
terminant of the Jacobian is greater than one, or the determinant of the inverse
Jacobian is larger than one, depending on which format is available at the in-
put. In the case of supersampling, the locations of the additional sampling points
are linearly approximated using the Jacobian and the lookup coordinate. Note
that applying super-sampling in an adaptive way has two bene�ts over applying
super-sampling everywhere: �rst, the amount of computations is signi�cantly



reduced, and second, blurring due to super-sampling with non-ideal decimation
kernels is avoided where no anti-aliasing is necessary.

The currently employed supersampling strategy could be further improved
by introducing directional super sampling, i.e., by applying super sampling only
in the direction where the potential aliasing appears. This extension is able to
provide a higher throughput in cases where the image transformation is demag-
nifying and anisotropic (e.g. an aspect ratio change from 16:9 to 4:3).

Bicubic Interpolation The adaptive super-sampling block outputs backward
coordinates to the memory interface block responsible for fetching the corre-
sponding pixels from the external bu�er. In parallel, the interpolation arith-
metics block gets the fractional part of the backward coordinates to set up the
bicubic �lter kernel coe�cients. For each output sample, an area of 4× 4 pixels
has to be multiplied with the bicubic kernel. Note that this kernel is separable
and thus can be implemented with four vertical- and one horizontal application
of the one-dimensional bicubic convolution kernel. This architecture uses �xed
point arithmetic throughout. The coe�cients of the bicubic kernel can therefore
be directly obtained from two lookup tables (LUTs), where we the indices consist
of two integer bits and the fractional bits of the x and y coordinate di�erences,
respectively. If the fractional precision is not too large, no additional re�nement
of the indexed values (e.g. using linear interpolation) has to be performed as the
LUTs already cover the whole index range. The throughput of the bicubic in-
terpolator is one pixel per 4 cycles. In order to produce a super-sampled output
pixel, four such samples have to be calculated and averaged and thus 16 cy-
cles are required in that case. Thus, the e�ective throughput of the interpolator
depends on the fraction of supersampled pixels per frame.

Caching and Memory Interface Analogue to the forward mapping archi-
tecture, the amount of accessed input image pixels is very large as the bicubic
interpolator always accesses a 4× 4 neighbourhood in order to calculate an out-
put pixel. Thus even in the case of no supersampling, we would have to load
16 times more pixels than there are in one frame, which translates into a very
large external bandwidth. An on-chip read cache which is able to hold several
lines of the image is therefore employed to reduce the bandwidth. As the bicubic
interpolator requires 4 cycles to produce one output sample, the cache mem-
ory is divided into four column interleaved RAM macros such that four parallel
accesses are possible.

5 Implementation Results

Several ASIC implementations of non-linear warping architectures have been
realized which allow for a comparison and conclusion on hardware performance of
the di�erent techniques. In the following, we discuss some of the implementation
results of the di�erent ASICs.



5.1 EWA Splatting: Esper

The EWA architecture described previously was implemented in VHDL and
was fabricated in 180 nm (1P6M) CMOS technology (Figure 12(a)). The design
supports image resolutions up to 2048×2048 and works on gray-level 8-bit pixels.
It employs four splatting units to support 720p25 in splatting performance. Due
to die size limitations the cache is reduced to eight lines of gray-valued 576p
(i.e. 8x1024 pixels). The ASIC has been successfully tested at 123 MHz where a
power consumption of 300 mW has been measured. Core voltage is 1.8 V and I/O
pad voltage is 3.3 V. Core area is 6 mm2 which corresponds to 660 kGE. There
are 64 data I/O pins and 56 power/ground pins. This chip is a prototype of the
EWA core architecture and does not possess a real-world memory interface. The
normalization block is also not included. The accumulation precision is set very
conservatively to 16 bit per entry.

Detailed Throughput Figures For the following throughput �gures, a nominal
clock frequency of 133 MHz is assumed. One splatting unit has a throughput
of 6.65MPixels/s. A 720p25 video stream requires a throughput of 23MPixels/s
and thus four splatting units. The necessary external memory bandwidth without
caching is 2× 9× 23 = 414MPixel/s which amounts to 414× 4 ≈ 1.66GByte/s
for 4 bytes per pixel entry (accumulated value plus normalization weight). The
factor 2 comes from the read-modify-write operation of the accumulation. The
cache has an e�ciency of about 83% which reduces the external bandwidth to
282 MByte/s, i.e. the normalized bandwidth is around 1.5 (normalized to the
bandwidth it takes to read, modify and write one output image). The optimum
normalized bandwidth cannot be reached, as the cache is only 1024 pixels wide.
In order to reach the optimal cache e�ciency for 720p25 video, the cache should
be extended to 8 lines with 1280 pixels per line (see Section 3.3). Note that
in addition to the above bandwidth, a read/clear operation to the memory is
further necessary to account for the �nal read-out and clearing.

5.2 EWA Splatting: Vesper

The Vesper chip is an extended version of Esper, and it is designed to render
full HD color images at 30 frames per second. In contrast to Esper this chip
has been fabricated in 130 nm CMOS and it is equipped with fully-functional
display- and memory interfaces (Figure 12(c)).

The DVI interface requires a �xed input bandwidth and clock frequency,
which usually is dependent on the display resolution and frame rate. To de-
couple the arithmetics and accumulation from the DVI interface, we separate
the design into two clock domains. While the rendering core should run as fast
as possible, the DVI core is running at the speci�c DVI pixel clock. The asyn-
chronous data interface is implemented using an asynchronous FIFO, see [4]. The
chip also provides clock signals for the external RAM components and the DVI
transmitter. In order to provide a �exible timing at the corresponding interfaces,
those output clocks can be phase shifted relative to the internal clock signals.



The I/O bandwidth, the throughput of the splatting units and the caching
have been dimensioned for very pessimistic and demanding scenarios, such that
1080p30 performance is achieved in a practical system that supports a wide
variety of warping applications. In turn, the actual performance for typical ap-
plications will be higher, and therefore also higher frame rates are possible. Un-
der typical conditions, our architecture reaches 1080p48. Furthermore, smaller
resolutions are always possible and would increase the frame rate further (e.g.
720p60).

The chip area is largely dominated by the number of input and output pins, as
well as the required power distribution for the high speed I/O interfaces. Vesper
supports 175 data I/O pins, of which 115 pins are used for the external QDR-II
interface. Due to the prototype nature of the chip, a more conventional "around
the core" I/O has been employed, instead of a more area e�cient �ip-chip I/O.
For a commercial implementation, the area could be signi�cantly reduced since
the overall logic area (including on-chip SRAM) is 9mm2 which is much smaller
than the 5× 5mm2 the chip currently occupies.

5.3 Bicubic Interpolation: Eva

A bicubic backward mapping ASIC named Eva has been fabricated in 180 nm
CMOS technology (Figure 12(b)), and it has been designed to roughly match
the speci�cations of the Esper ASIC such that the two implementations are
comparable. It is able to support enough throughput for 576p25 when 10% of
the calculated pixels are super-sampled. Typical case post-layout simulations
have shown a maximum operating frequency of 135MHz and a power consump-
tion of 60mW. The core area is around 1mm2 which correspond to 110 kGE.
The chip contains a similar cache con�guration as Esper (8× 1024 pixel) with
approximately half of the access bandwidth: backward mapping only requires a
read operation whereas the accumulation process in forward mapping requires
a read-modify-write operation. Thus, a single port memory is su�cient which
reduces SRAM size by half. Further, the entries are only 8 bit wide, and no ac-
cumulation weights have to be stored. Thus, in total, the SRAM memory macro
is about four times smaller in size. Note however, that this factor of four reduces
to a factor of around 1.83 if RGB pixels are stored (EWA shares the weight entry
among the three color subpixels), and if the accumulation precision is changed
to a more realistic value of 11 bit.

5.4 Comparison

In Table 1, we list several warping VLSI architectures to compare computational
resources. As can be seen, the EWA warping core is signi�cantly larger than com-
parable backward architectures such as Eva and [12,15]. In particular, the cache
of the EWA implementations is larger due to the higher �xed-point precision,
the additional weight entry, and the read-modify-write type operation. Another
reason for the higher gate count of the EWA implementations is that the EWA
arithmetics are fully evaluated, whereas a signi�cant portion of computations in



Table 1. Comparison of di�erent warping CMOS implementations. The rather large
di�erences in size originate from the type of transformation that are supported: arbi-
trary (arb.) or simple linear scaling (lin. scal.). In addition, EWA and bicubic feature
full or partial (super sampling (SS)) anti-aliasing support. Note that for the EWA ar-
chitecture, the interpolation (interp.), anti-aliasing (AA), and transformation (transf.)
blocks cannot be separated for the area numbers. A '�' means that the architecture
does not contain such a block, N/A means that the values are not available. The exter-
nal bandwidth �gures are typical case values, normalized to reading/writing an image
once. The maximum throughput of our implementations are evaluated valid for non-
linear resizing (change of aspect ratio from 4:3 to 16:9). Results marked with (*) are
obtained through postlayout simulations.

EWA Bicubic Ext. Bil. Ext. Bil.
Esper Eva [15] [12]

Anti-Aliasing yes 2×SS no no
Transformation arb. arb. lin. scal. lin. scal.
Mapping direction fwd. bwd. bwd. bwd.
Image resolution 576p 576p 1080p WQSXGA
Color channels 1 1 1 1

Technology [nm] 180 180 130 130
Max. clock freq.[MHz] 123 135* 267 278

Max. throughput [fps] 40
47 (0%SS)*

N/A 3028 (10%SS)*
12.5 (100%SS)*

Power [mW] 300 62* 18.1 11.7

Transformation [kGE] ≈ 115 6 N/A N/A
Interpolation [kGE] ≈ 115 10 N/A N/A
Total w.o. memory [kGE] 230 16 26 13

Bu�er size [Bit] 1024× 8× 2× 16 1024× 8× 8 � 4 lines
Bu�er [kGE] 410 90 � N/A
Memory type DP SRAM SP SRAM � SRAM
Normalized ext. BW 1 1 4 N/A

the bicubic implementation are optimized by using LUT-based approximations.
Note that the EWA architecture could also be optimized by replacing some of
the arithmetic units with look-up tables. Thus, in applications where warping in-
formation is available in backward format and aliasing is of limited concern, one
should clearly prefer a backward mapping architecture, e.g. bicubic or bilinear
interpolation.

6 Conclusions

Arbitrary transformations of high-de�nition videos can be e�ciently rendered
using a non-linear warping VLSI architecture. The proposed VLSI cores can be
used in an end-user device and enable image warping for current and upcoming
content-adaptive applications. Due to the separation of the rendering core into
several sub-units, the computational capabilities are easily scalable to higher



(a) (b) (c)

Fig. 12. Photo and CAD rendering of our VLSI implementations: (a) Esper (180 nm),
(b) Eva (180 nm) and (c) Vesper (130 nm). The pictures are not to scale.

resolutions and frame-rates, such as the upcoming quad HD standards (2160p)
or the high-frame rate (HFR) standards.
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