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Abstract. As nanoscale lithography challenges mandate greater pat-
tern regularity and commonality for logic and memory circuits, new
opportunities are created to affordably synthesize more powerful smart
memory blocks for specific applications. Leveraging the ability to embed
logic inside the memory block boundary, we demonstrate the synthesis of
smart memory architectures that exploits the inherent memory address
patterns of the backprojection algorithm to enable efficient parallel im-
age reconstruction at minimum hardware overhead. An end-to-end de-
sign framework in sub-20nm CMOS technologies was constructed for the
physical synthesis of smart memories and evaluation of the huge design
space. Our experimental results show that customizing memory for the
computerized tomography (CT) parallel backprojection can achieve more
than 30% area and power savings while offering significant performance
improvements with marginal sacrifice of image accuracy.

Keywords: Smart Memory; Logic and Memory Synthesis; Computed Tomog-
raphy; Parallel Backprojection;

1 Introduction

Computationally intensive algorithms in medical image processing (e.g., comput-
erized tomography (CT)) require rapid processing of large amounts of data and
often rely on hardware acceleration [1–3]. Inherent parallelism in the algorithms
is exploited to achieve the required performance by increasing the number of
parallel functional units at a cost of power and area. The overall performance
is often defined by the limited bandwidth of the on-chip memory as well as the
high cost of memory access.

One approach to address these challenges is to optimize the on-chip mem-
ory organization by constructing a customized smart memory module that is
optimized for a particular function for higher performance and/or energy effi-
ciency [4, 5]. However, such customization is generally unaffordable for an application-
specific IC embedded memory for which cost dictates that it is “compiled”
from a set of SRAM hard IP components (e.g., physical implementations of
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bitcells and peripheral circuits). Such memory compilation limits the possibil-
ity of application-specific customization and hinders the system design space
exploration.

Recent studies of sub-20nm CMOS design indicate that memory and logic
circuits can be implemented together using a small set of well-characterized
pattern constructs [6, 7]. Our early silicon experiments in a sub-20nm commercial
SOI CMOS process demonstrate that this construct-based design enables logic
and bitcells to be placed in a much closer proximity to each other without yield or
hotspots pattern concerns. While such patterning appears to be more restrictive
to accommodate the physical realities of sub-20nm CMOS, the ability to make
the patterns the only required hard IP allows us to efficiently and affordably
customize the SRAM blocks. More importantly, it enables the synthesis (not just
compilation) of customized memory blocks with user control of flexible SRAM
architectures and facilitate smart memory compilation.

To efficiently leverage this new technology, however, algorithms and hardware
architectures need to be revised. In this paper we revisit the well-known Shepp
and Logan’s backprojection algorithm that is widely used in the CT image recon-
struction [3]. It is observed that in the parallel implementation of the algorithm,
the memory address differences are fairly small for adjacent projection angles
and adjacent pixels. We exploit this property via a customized memory struc-
ture that could feed in-parallel running image processing engines (IPEs) with
a large amount of required projection data in one clock cycle. The implemen-
tation is realized by embedding “intelligent” functionality into the traditional
interleaved memory organization and allow multiple memory sub-banks to share
the memory periphery. Novel periphery-sharing smart memory strategies are ex-
plored, and an efficient parallel-pipeline backprojection architecture is proposed.
We further construct a smart memory design framework that provides the end
user with finer control of the customized SRAM architecture parameters, thus
enabling automatic generation of the specified implementation. Physical imple-
mentations were carried out in a commercial sub-20nm SOI CMOS process. Our
results indicate that there is more than 40% area savings and 30% power savings
while providing significant performance improvements. The marginal impact on
accuracy is minimized with appropriate constraints on the algorithm.

Related work. In other related work various fast approaches have been
proposed to improve the backprojection implementation [2, 8, 9, 3]. As pointed
out in [3], these approaches may be classified into three categories; namely, al-
gorithmic improvement, dedicated hardware, and parallel processing. However,
this paper shows that it is possible to combine these three aspects to deliver a
more efficient backprojection architecture by taking advantage of the availability
of smart memory synthesis. Our approach optimizes the parallel backprojection
architecture, especially the on-chip memory architecture, by exploiting the in-
herent memory address pattern that has not been previously explored.
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Fig. 1. Illustration of Parallel-Beam Projection: The object to be scanned is placed
between the evenly spaced array of an unidirectional X-ray source and the detector.
Radiation beams from the X-ray source pass through the object and are measured at
the detector, forms the projections of the image.

2 Background

Filtered backprojection is the most commonly used approach for image re-
construction from parallel-beam projection data. Before analyzing the inherent
memory access pattern and building the corresponding customized memory ar-
chitecture, in this section we will first introduce the parallel-beam CT scanning
system and the commonly used backprojection algorithm.

2.1 CT Scanning Method

Tomography is a non-invasive imaging technique allowing for the visualization
of the internal structures of an object. Tomography has found widespread ap-
plications in many scientific fields, including physics, chemistry, astronomy, geo-
physics, and medicine. A parallel-beam CT scanning system uses an array of
equally spaced unidirectional sources of focused X-ray beams. The object to be
scanned is placed between the sources array and the detector. Radiation beams
from the source pass through the object and are measured at the detector (see
Fig. 1). A complete set of projections is obtained by rotating the arrays and tak-
ing measurements for different angles over 180◦, forming the Radon transform
of the image (i.e., projection data), and it contains information needed for the
reconstruction of an image. A set of values given by all detectors in the array
comprises a one-dimensional projection data. The inverse of the projection data
allows to reconstruct the tomographic images (i.e., backprojection) [10, 1]. The
Radon transform and its inverse provide the mathematical basis for reconstruct-
ing tomographic images from the measured projection data.
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2.2 Shepp and Logan Backprojection Algorithm

The most widely known reconstruction-from-projections test image is the Shepp-
Logan phantom. Introduced in 1974 it is still in common use today as a refer-
ence image for reconstruction algorithms. The Shepp and Logan backprojection
algorithm is the most well-known backprojection algortithm [3, 11]. In the con-
ventional Shepp and Logan backprojection algorithm, for each pixel, P , located
at (x, y), and each projection angle θi, the first step in backprojection is to lo-
cate the pixel in an appropriate beam (ray). If the center of P is not on a ray,
the distance (d) to its adjacent rays is calculated and the contribution from the
adjacent rays to the pixel (Qp) is computed according to the linear interpolation
equation (1), assuming that pixel is enclosed by the tth and (t+ 1)thth rays,

Qp(x, y, θi) = Rt + (d/L) · (Rt+1 −Rt), (1)

where Rt is the value of tth ray, d is the interpolation distance, and L is the
ray interval. Qp represents the contribution of the projection of angle θi to the
current pixel value.

In the above equation, the address t to the projection data memory and the
interpolation distance d are computed as follows (assuming the target image has
the dimension size of r × c):

tx,y,θi =
(
x− r

2

)
· cos θi −

(
y − c

2

)
· sin θi + toffset. (2)

and the interpolation distance d is calculated as follows:

d = t(θ)− bt(θ)c. (3)

Existing algorithm optimization. The above procedures, locating and
interpolation, are to be repeated for every pixel and for every projection angle.
However, there exists computational redundancy that can be explored to save the
operations in the iterations. To do this, 2D Shepp and Logan algorithm exploits
the property of constant difference of address t for those pixels on the same
row or column. Considering two adjacent pixels located at (x, y) and (x+ 1, y),
and backprojection angle θ, we can calculate the addresses to the projection
memory for the two pixels based on (2). And the difference of their addresses,
tx+1,y,θi − tx,y,θi is equal to cos(θ), which is a constant for a given θ. Let δtx
denotes the constant difference along the x direction. Then, in the 2−D Shepp
and Logan algorithm, instead of evaluating equation (2) for every pixel, it simply
adds a constant of cos(θ) to the previous adjacent address index (tx,y,θi) to
generate the new address index (tx+1,y,θi). The same rule can be applied to
the y direction to calculate the address index (tx,y+1,θi) by adding the constant
difference δty of sin(θ) to (tx,y,θi).

3 Memory Address Pattern Analysis

This paper moves one step forward by taking advantage of these constant ad-
dress differences of δtx and δty that exist in the conventional Shepp and Logan
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Backprojection algorithm, to simplify not only the address calculation but also
the underlying memory hardware. Furthermore, we will demonstrate that the
address differences when the projection angle θ changes are also within a very
small and predictable range that could be also exploited to further optimize the
hardware memory design.

3.1 Address Difference for Adjacent Projections

For each pixel (x, y) and each projection angle (θi), the beam index tx,y,θi (i.e.,
address to the projection memory) is already shown as in (2). To illustrate the
inherent address patterns that were hidden in the algorithm, we show the address
to the next projection of angle θi+1 in (4):

tx,y,θi+1
=

(
x− r

2

)
· cos (θi+1)−

(
y − c

2

)
· sin (θi+1) + toffset. (4)

The address difference (δt1) between (2) and (4) could be as

δt1 =
(
x− r

2

)
· δcosθi +

( c
2
− y

)
· δsinθi , (5)

with δcosθi = cos(θi+1)− cos(θi) and δsinθi = sin(θi+1)− sin(θi).
δcosθi can be rewritten as:

δcosθi = cos θi+1 − cos θi = −2 sin
θi+1 + θi

2
sin

θi+1 − θi
2

(6)

For θi = 2πi
N , θi+1−θi

2 is the constant π/N , so δcosθi is simplified as

δcosθi = −2 sin
( π
N

)
sin

(
π(2i+ 1)

N

)
(7)

Similarly, we have:

δsinθi = 2 sin
( π
N

)
cos

(
π(2i+ 1)

N

)
(8)

So, (5) can be written as:

δt1 =
(
x− r

2

)
·
(
−2 sin(

π

N
) sin

π(2i+ 1)

N

)
+
( c

2
− y

)
·
(

2 sin(
π

N
) cos

π(2i+ 1)

N

)
(9)

Therefore, using trigonometric identities, we can compute the bound on (5)
as follows:

|δt1| ≤ |2 · sin
( π
N

)
· r

2
·
(

cos

(
π(2i+ 1)

N

)
− sin

(
π(2i+ 1)

N

))
|. (10)

(10) has a maximum bound of
√

2π · rN for relatively large N .
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Fig. 2. Interpolation in CT Backprojection

Here we assuming r = c is the dimension size of a square image and N is the
number of projection angles. It is shown that δtθ1 is restricted in a very limited
range when the ratio of r and N is relatively small. For example, δtθ1 must be
less than 1 when r

N ≤
1
8 .

This observation can easily extend to the scenario of computing the contribu-
tion of consecutive k projection angles to the same pixel (x, y). In this situation,
the address differences will be accumulated and the resulting accumulating ad-
dress difference between the next k projection memory of angle θk and the first
memory of angle θ1 for the same pixel P (x, y) will increase proportionally to k:

|δtk| = |tx,y,θi+k
− tx,y,θi | ≤

√
2π · r

N
· k· ≈ 4.44 · r

N
· k. (11)

For certain value of k, δtk will still be within a very small value.

3.2 Address Difference for Adjacent Pixels

In the above section, we have derived the beam index differences for a fixed
pixel when projection angles increment. Next, we will show that the address
differences when both pixel coordinate and projection angle increment are also
bounded by a limited range.

For demonstration purpose, we define the problem as to reconstruct four
neighborhood pixels in parallel, that is, (x, y), (x + 1, y), (x, y + 1), (x + 1,
y + 1). We will encounter this problem for parallel image reconstruction. For
example, Fig. 2 shows the example to compute four neighborhood pixels, (x,
y), (x + 1, y), (x, y + 1), (x + 1, y + 1), in parallel. The similar problem could
also happen in a higher-level interpolation, that is, the calculation of the non-
existing pixel P requires to compute its four neighborhood pixels first and apply
a bilinear interpolation afterwards.

We denote the address of the first pixel (x, y) in the first projection memory
θi as the reference address (tx,y,θi). Then, for other three pixels, (x + 1, y), (x,
y+1), (x+1, y+1) in the same projection memory of θi, their address differences
from tx,y,θi , can be estimated as shown in (12), (13), (14):

|tx+1,y,θi − tx,y,θi | = | cos(θi)| ≤ 1 (12)

|tx,y+1,θi − tx,y,θi | = | sin(θi)| ≤ 1 (13)
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|tx+1,y+1,θi − tx,y,θi | = | cos(θi) + sin(θi)| ≤
√

2 (14)

It can be observed that all the shown three address differences are all in a
very small range. For the same four pixels, let’s now analyze their addresses to
the next adjacent projection memory of angle θi+1. For the first pixel located at
(x, y), its address difference from tx,y,θi has been calculated in (10) and here we
repeated it in (15):

|tx,y,θi+1
− tx,y,θi | = |δtθ1 | ≤

√
2π · r

N
(15)

Similarly, for the other three pixels, we show their address differences from
tx,y,θi in (16), (17), (18) respectively:

|tx+1,y,θi+1
− tx,y,θi | = | cos(θi) + δtθ1 | ≤ 1 +

√
2π · r

N
(16)

|tx,y+1,θi+1
− tx,y,θi | = | sin(θi) + δtθ1 | ≤ 1 +

√
2π · r

N
(17)

|tx+1,y+1,θi+1
− tx,y,θi | = | cos(θi) + sin(θi) + δtθ1 | ≤

√
2 +
√

2π · r
N

(18)

It can be observed that all of these memory addresses in adjacent projection
angles i and i + 1 are all very close to reference address tx,y,θi . (18) presents
the largest possible address distance among them. This is because the pixel to
compute in (18) is located at (x+ 1, y+ 1), and it changes from the pixel p(x, y)
in both x dimension and y dimension while pixels p(x+1, y) and p(x, y+1) only
changes from the pixel p(x, y) in either x dimension or y dimension. Therefore,
the address difference between tx+1,y+1,θi+1 and tx,y,θi shown in (18) is relatively
larger than the other address differences from (15) to (17).

We could extend the observation to the addresses of these four pixels in the
next adjacent k projection memories, that is, for projection angles from θi and
θi+k. We can easily prove that the involved addresses are also very close to
tx,y,θi for the required k, and the maximum possible address difference to tx,y,θi
is introduced by the last pixel (x+ 1, y+ 1) in the last projection memory θi+k,

|δtmax| = |tx+1,y+1,θi+k
− tx,y,θi | = | cos θi + sin θi + k · δt1| (19)

(19) has the maximum value of
√

2 + 4.44 · rN · k and it is limited to small
range, e.g., the value must be less than four when r

N ≤
1
8 and k = 4.

The basic idea is, since the address differences for adjacent projections angles
and adjacent pixels are small, these addresses will activate the same or adjacent
wordlines when such memories are located horizontally in parallel with each
other. Such particular memory address pattern leads to opportunities to share
the memory decoder among these memories by programming extra “intelligent”
logic functionalities into the memory periphery.
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Fig. 3. Consecutive Access Memory. As the basic memory structure in the paper, our
customized memory can output consecutive memory entries in one clock cycle and
allows parallel memory banks to share the x-decoder.

4 Backprojection Smart Memory Design

In this section, we describe our approach to optimize the memory organization
and backprojection architecture based on the observed memory access patterns.

4.1 Interpolation Memory

As we mentioned, linear interpolation is required if the location of a pixel in a
specific view in not on a ray. As shown in Fig. 2 (b), if the beam index in a
projection memory, t, is not an integer and located in between [t2,t3], then the
neighborhood pixels t2 and t3 will be accessed and an linear interpolation will
be performed to compute the required pixel value t. To improve the processing
speed, the neighborhood pixels t2 and t3 need to be accessed from the memory
in one clock cycle. For the single port memory design, this requires to divide
the memory into two different memory banks. Therefore, to run two adjacent
backprojections in parallel, it requires to implement two separate projection
memories, and each memory is divided into two memory banks. Similarly, to
run more adjacent backprojections in parallel, it requires to implement more
multi-banking projection memories. However, we will show that it is possible
to significantly optimize the hardware implementation of such multi-banking
memory system if the discussed memory address patterns are well exploited.

4.2 Consecutive Access Memory

We have discussed that linear interpolation operation requires to access two
nearest neighborhood pixels from the projection memory in one clock cycle. We



A Smart Memory Accelerated Computed Tomography 9

would like to extend this operation to access more than two consecutive pixels
from the memory in one clock cycle (i.e., multiple consecutive access memory).
We will show later in section 4.4 that such multiple neighborhood pixels access
will be required to our smart memory design.

We will first introduce a smart memory structure which can output arbitrary
number of adjacent memory entries at arbitrary position in one clock cycle. As
we have mentioned, this is traditionally accomplished by distributing data across
multiple memory banks so that for any consecutive access all data elements are
retrieved from different banks without conflicts. Using multiple SRAM banks
incurs high overhead since every memory bank requires its own decoder logic.
In our previous work [12], we have proposed a rectangular-access smart memory
which is able to output an arbitrary rectangular block in a 2D data array. Its 1D
simplified version, called 1D Consecutive Access Memory, can be used to output
consecutive elements from a 1D data array.

We exploit the fact that we always read a constant number of consecutive
elements per cycle for each operation. The core observation is that after address
decoding, the activated wordlines of all memory banks are always adjacent to
each other. Based on that, it’s possible to optimize the multi-banking memory
system to save the periphery overhead. We employ a customized multi-banking
SRAM design topology [13], which provides around 50% area and power sav-
ings compared with the traditional multi-banking memory design. We define the
functionality of memory to support one-clock-cycle access of 2b data points from
a 2n size data array. We build a parameterized memory which is divided into 2b

memory banks and they are located vertically parallel to each other. To control
the memory block aspect ratio, we let each word of a memory bank holds 2c

data points. Fig. 3 shows the organization of the memory block when n = 6,
b = 2, c = 1. The main idea is to let 2b memory banks in each memory block
share a modified X-decoder by using the same method described in [13]. The
X-decoder is specifically designed to activate two adjacent wordlines simultane-
ously. That is, when one block wordline is asserted, the next block wordline is
also asserted by the OR gate operation of every two adjacent wordline signals.
Another Y -decoder is used to select one of the two activated wordlines for each
memory bank with the AND operations. Each memory bank word holds 2c data
points but each time only one data point of them is required. A column MUX
is designed to select one data element for each memory bank and the column
MUX is controlled by the lower (b+ c) bits of address y (y[b+c−1:0]).

As shown in Fig. 3, both the first wordline (WL[0]) and the second wordline
(WL[1]) are initially activated by X-decoder but Y -decoder further selects the
WL[1] for the first two memory banks and WL[0] for the last two memory banks
with the additional AND operations. After the column MUX, this memory block
outputs data series of ‘4−5−2−3’, which are then reordered to be ‘2−3−4−5’.
So with some simple logic for data reordering, the smart memory outputs the
required 2b data points in order simultaneously. The distribution of address bits
to each memory component is parameterized. By specify these parameters, the
resulting memory architecture can be precisely determined. Therefore, we can
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Fig. 4. Data Layout in Adjacent Two Projection Memories. If t2 and t3 are required
in the first reference memory of the projection θi, then beam pixel required in the next
memory of projection θi+1 has three possible locations, that is, [t1,t2], [t2,t3] or [t3,t4].

program the smart memory at the RTL level. Compared with the conventional
multi-banking memory design, the amount of memory bank periphery circuits is
reduced from 2b to 1. As is observed in Fig. 3, the resulting memory architecture
has the embedded logic gates (e.g. the AND gates) which is tightly integrated
with the memory cells, and each logic gate communicates with its local memory
cells.

This consecutive access memory serves as the basic memory structure in our
method. However, this smart memory structure could be further optimized if
provided more knowledge from a particular application. In the rest of paper, we
will propose more advanced memory sharing strategies to further optimize the
consecutive access memory based on the observed memory access patterns in the
backprojection algorithm.

4.3 Decoder-mux and Output-mux

As a simple illustration, in Fig. 4 we show the physical data layout in our con-
secutive access memory. If the address of projection θi is located in between t2
and t3 (denoted by [t2, t3]), then in our previous discussed consecutive access
memory design, t2 and t3 should either be located in the same wordline or split
into two separate wordlines, as shown in the first memory array in Fig. 4 (a) and
Fig. 4 (b) respectively. In both situations, two wordlines, wl1 and wl2, are acti-
vated simultaneously. From the analysis of equation (10), we have derived that
the address difference of the two adjacent memories (δtθ1) is less than one when
r
N ≤

1
8 . This implies that the two adjacent memory addresses after rounding
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Fig. 5. Decoder-MUX. The wordlines of the first memory (wlai) are configured to
generate the wordlines for the next memory (wlbi), so that the decoder of the latter
memory could be eliminated.

must be either the same or adjacent to each other. Then for the addressed beam
index of the next projection memory of angle θi+1, it will has only three possible
locations, that is, [t1, t2], [t2, t3] or [t3, t4], as illustrated in the next three mem-
ory layouts of Fig. 4 (1) and Fig. 4 (2). In the illustration we also highlight the
corresponding active wordlines if implemented in the consecutive access memory.
It’s seen that if the active wordlines for the first memory are wl1 and wl2, then
in the next memory, the active wordlines must be the same in most situations.
The only exception is to access t2 and t3 from the first projection memory but
to access t1 and t2 from the second projection memory, as shown in the Fig. 4
(1). In this situation, the active wordlines are shifted upwards by one step. That
is, wl1 and wl2 are activated in the first projection memory but wl0 and wl1
are activated in the second projection memory. We use a control signal ct to
specify the relationship between the two sets of the activated wordlines of the
two neighborhood projection memories and ct can be determined by the input
address.

Based on this observation, we propose two “smart” memory approaches which
are named decoder-mux and output-mux respectively

Decoder-mux. In the first approach, called decoder-mux, we eliminate the
decoder of the second memory and let it share the same decoder with the first
memory by adding some configuration logic (which we also call decoder-mux) in
between the two sets of memory wordlines. This logic configures the wordlines
of the first projection memory (wlai) to generate the wordlines for the next
adjacent projection memory (wlbi). The relationship between the wordlines of
the two adjacent memories can be derived as

bi = (−ct) · ai + ct · ai+1. (20)
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Fig. 6. Output-MUX. The memories are configured to output four pixels simultane-
ously, and the output mux is used to select the required two pixels from the four outputs
for the liner interpolation in each backprojection.

The configuration can be implemented using only AND and OR logic gates,
which ensures the feasibility of the hardware implementation. In Fig. 5, we show
an example of the configuration logic involving six wordlines. In this example,
wla1 and wla2 are activated in the first memory array. After the decoder-mux
block, either the same wordlines, wlb1 and wlb2, are activated in the second
memory when ct = 0 (Fig. 5 (a)), or the neighborhood wordlines, wlb0 and wlb1,
are activated when ct = 1 (Fig. 5 (b)).

Output-mux. In the alternative approach named output-mux the two mem-
ories still share the decoder but the configuration logic is located outside of the
memory (see Fig. 6). In this approach, memories are designed as the 1×4 consec-
utive access memories to output more elements than required. In this example,
t2, t3 along with their nearest neighbors t1 and t4 are all read out from the mem-
ories. Then the configuration logic (output-mux ) is used to select the appropriate
two elements from the four outputs. In this approach, the active wordlines for
the two memories are always the same in all the situations.

4.4 Horizontal and Vertical Parallel Backprojection

The method of decoder-mux and output-mux can be further extended to let more
than two adjacent projection memories share one memory decoder. When more
projection memories are involved, the address differences will be accumulated.
As explained in the formulae (11), the address difference of the next k projec-
tion memory from the first reference memory is increasing proportionally with
k. Therefore, we will have to configure the smart memory design in order to
accommodate the increased address differences if we want to let more than two
adjacent projection memories share one memory decoder.
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To exploit the proposed smart memory mechanisms to obtain superior hard-
ware efficiency of the parallel backprojection, we propose two parallel approaches,
that is, horizontal and vertical parallel backprojection.

Horizontal parallel backprojection. The horizontal parallel backprojec-
tion can perform more than two backprojections in parallel and all the involved
projection memories share the same memory decoder using either decoder-mux
or output-mux approach. Fig. 7 shows the example of accessing in eight adjacent
projection memories. Assuming that the pixels addressed by the first memory
addresses are t3 and t4, we highlight the possible locations of the two pixels
accessed in the next seven memories. We observe that they are all clustered
locally around t3 and t4, and are bounded by t0 and t7. For example, the pix-
els required for projection θi+3 could be any two adjacent pixels within [t1, t6].
Required pixels spread out further from t3 and t4 for memories that are fur-
ther away from the first memory as explained by formulae (11). Similar to the
output-mux design shown in Fig. 6, we configure each projection memory as an
1 × 8 consecutive access memory to output all the shown eight pixels and use
another 8-to-2 output-mux to select the appropriate two outputs from the eight
outputs for each projection memory. In this way, all the eight memories could
share the same decoder and seven memories decoders are saved. However, as the
projection memories output more pixels than required, many memory outputs
are actually wasted. An approach to use these wasted pixels is applying vertical
parallel backprojection, as discussed next.

Vertical parallel backprojection. From (12) to (19), we discuss the ad-
dress differences for performing the backprojections of four neighborhood pixels,
that is, (x, y), (x+ 1, y), (x, y + 1), (x+ 1, y + 1), concurrently. Backprojection
of each pixel per projection angle requires one linear interpolation and involves
memory accessing of two pixels, so totally it requires eight pixels to be accessed
from each projection memory. To analyze the address distribution of these pixels,
we compute all the involved addresses to the projection memories of projection
angle θi and projection angle θi+1 respectively, assuming r/N = 1/4. We let
tx,y,θi be the reference address, and we assume that it is located at t13 (see
Fig. 8). In the middle column of Fig. 8, we explicitly present the differences
of other addresses from the reference address tx,y,θi . And in the last column of
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Fig. 8 we indicate the possible locations of all the accessed pixels. It’s seen that
the addresses in the first memory array are all localized in between t11 and t15

, therefore, the access of them will only touch the middle six pixels. In the sec-
ond projection memory, the accessed pixels are localized in between t20 and t26,
and therefore any of shown eight pixels in the second memory array could be
touched. For a small r/N , it can be expected that the locations of accessing pix-
els in more adjacent memory arrays will also be localized in between the shown
eight pixels. In this way, we support the vertical parallel backprojection which
can perform the backprojections of multiple neighborhood pixels in parallel. The
memory architecture needs no changes for the vertical parallel backprojection
since we just take advantage of the unused memory outputs from the horizontal
parallel backprojection. By implementing both horizontal and vertical parallel
backprojection concurrently using the modified consecutive access memory, all
the memory outputs are utilized and a much higher throughput is achieved.

5 Parallel Backprojection Architecture

The CT image reconstruction naturally lends itself to parallel processing since
each backprojection can be processed independently. In this section, we will first
introduce the conventional pipeline parallel backprojection architecture. Then we
will develop a more advanced memory sharing pipeline parallel backprojection
architecture based on the smart memory structures that we have introduced.

5.1 Parallel Pipeline BackProjection Architecture

An existing efficient architecture for projectionbased processing is the parallel
pipeline backprojection engine (PPPE) [14, 1] due to its simplicity and poten-
tial speed. Fig. 9 (a) illustrates the structure of the PPPE based backprojection
system, which employs an array of identical IPEs to reconstruct the image re-
cursively, where each IPE performs the same tasks on a different projection. The
input image is presented to each IPE on the pipelined image bus, one pixel at a
time in a raster-scan format. In raster-scan format the x coordinate of the image
is incremented every clock cycle and the y coordinate is incremented every line.

To start the operation, the first IPE in the pipeline is fed a blank image and
adds the contribution of the first projection one pixel at a time. After the first
IPE adds its contribution, it passes the pixel to the next IPE in the pipelined
image bus and each IPE of the pipe adds its projection’s contribution to the
image. Therefore, each IPEn in the pipe performs the backprojection for the
angle θn, and add the resulting value to the input pixel, and then passes the pixel
onto IPEn+1 as it receives another pixel from IPEn−1. As the image pixel is sent
through the pipelined array, the pixel value is reconstructed after accumulating
the backprojected values from all the projections. The pipelined calculation and
the raster-scan input allow high data throughput of one pixel per clock cycle.
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Fig. 8. Address Differences Analysis

5.2 Advanced Memory Sharing Parallel Pipeline Backprojection
Architecture

If there are fewer IPE in the pipeline than angles (Nθ), then multiple passes
through the IPE array are required to reconstruct the image. However, the per-
formance will be decreased proportionally when the number of the IPE decreases.
As an effective solution to increase the performance but minimize the hardware
cost, we can modify the pipeline backprojection architecture to an more advanced
memory-sharing based parallel pipeline backprojection engine (MSPPPE) by
taking advantage of the our previous discussed horizonal and vertical backpro-
jection methods. MSPPPE is also composed of a pipeline of identical image
processing engines, however, each IPE will perform multiple backprojections to
multiple pixels concurrently.

Base on the horizontal parallel backprojection, we let each IPE perform more
than one backprojections simultaneously and each IPE needs to hold all of the
involved projection data on-chip. So conventionally each projection memory is
implemented as a multi-banking memory system in order to supply the data that
are required in the parallel CT backprojection. Based on the above horizontal
parallel backprojection approach, in each IPE we can combine all the projection
data memory into one large memory block by locating them horizontally in
parallel with each other so that all of these projection memories could share one
memory decoder. In this way, the large overhead that associate with the multiple
memory-banking design that were required in the parallel backprojection design
can be eliminated. On the other hand, to take advantage of the vertical parallel
backprojection, we increase the raster-scan bandwidth by letting more than one
pixels pass through the pipeline simultaneously. Although the calculation of the
contribution of every projection to every pixel needs to be performed in parallel,
only the ALU needs to be duplicated to enable the parallel computing. The
memory structure and its associate cost will be the same as above since we will
just reuse the redundant output from the horizontal parallel backprojection.

The modified architecture is illustrated in Fig. 9 (b), where we show an
example that the input image passes through the IPE on the pipelined image bus,
four pixels at a time. Each IPEn in the pipe performs eight adjacent backprojects
from θi to θi+7 to the current four pixels (P (x, y), P (x+1, y), P (x, y+1), P (x+
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Fig. 9. Parallel Pipeline Backprojection Architecture.

1, y + 1)), and then passes these pixels onto the IPEn+1 as it receives another
four pixels from IPEn−1. As these pixels are sent through the pipelined array,
the pixel values are accumulated from the contributions of all the projections.

6 Design Automation

In this section we analyze the design space and describe our design automation
framework for the hardware synthesis of a user-specified backprojection design
point.

6.1 Design Tradeoff Space

Designing a CT image reconstruction system is a tradeoff problem involving
algorithmic constraints, performance, hardware cost, and image accuracy. The
discussion of address patterns in Section 3 shows that the ratio of image dimen-
sion size (r) and the projection numbers (N), r/N , is an important algorithm
constraint. Smaller r/N indicates smaller adjacent address differences, which
allows for more adjacent projection memories sharing the memory decoder, sav-
ing more hardware cost and computing latency. However, it also limits the use
of the method in applications with larger image size r and/or fewer projection
angles N . For larger r/N , the corresponding larger address difference will limit
the number of projection memories that can share the decoder. For example, in
Fig. 7, the last two projection memories of θi+6 and θi+7 may require to access
two pixels at the two ends, which are not accessible along with other eight pix-
els from the 1 × 8 consecutive access memory. To solve this problem we could
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increase the memory access width and apply more complicated configuration
logic. However, this would increase the hardware cost. Alternatively, to lower
hardware cost we could assign the nearest neighborhood pixels if the requested
pixels are not available, which would result in loss of image accuracy. This shows
that different design decisions will result in different tradeoffs. The combination
of these design choices constitutes a huge design space. Further, exploring the
design tradeoff space requires customized memory designs, which are tradition-
ally prohibitively expensive. Thus, a strong design automation tool is required
to make the hardware synthesis feasible.

6.2 Chip Generator And Smart Memory Synthesizer

Application-specific LiM requires to tailor logic and memory design to applica-
tion or algorithm specifics. Thus, a strong design automation tool is required to
make the approach feasible, as hand-designing of LiMs is prohibitively expen-
sive. We have developed a design generation and design space exploration tool
which will automate the design of proposed customized smart memory blocks.

Our tool provides designers with a graphical user interface to select design
parameters, and generate the corresponding hardware for the specified function-
ality. Un-specified parameters (free parameters) can be optimized by the system.
A designer then evaluates the obtained designs and can explore the design space
to optimize the design by varying the parameters. We encapsulate all of these
design tradeoffs in our automatic design framework and build the backprojec-
tion smart memory synthesizer, the user interface is shown in Fig. 10. It enables
an application designer to explore the design space to optimize the design by
simply varying the parameters and automatically generates the optimized smart
memory hardware IP.
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Design exploration and RTL generation. The tool frontend is built us-
ing our chip generator infrastructure “GENESIS” [15, 16] and it’s responsible
for application interfacing, design optimization and efficient RTL generation. To
achieve that, it allows designers to simultaneously code in two interleaved lan-
guages: a target language (SystemVerilog) to describe the behavior of hardware
and a meta-language (Perl) to decide what hardware to use for given specs. This
“dual-language programming” allows to design an entire parameterized family
of LiM designs, all at once. Design parameters are set in graphical user interface
(GUI) which is defined through XML files. An optimization engine selects opti-
mized values for free parameters. The system supports hierarchical composition
of modules and resolving of parameter constraints across modules through all
hierarchy levels.

Smart memory compiler. The automated design framework discussed
so far is capable of mapping LiM application specifications to optimal RTL.
Our system also relies on a backend “smart memory” compiler to physically
co-synthesize logic and memory. Today’s embedded memory is typically synthe-
sized using an SRAM compiler. But the use of commercial SRAM hardware IP
is unable to incorporate application-specific customization that are required in
the LiM design and also hinders comprehensive design space exploration. LiM
physical synthesis is enabled by our smart memory synthesis framework, which is
developed from the pattern construct based logic and memory co-design method-
ology [6, 7]. Using this framework, embedded logic in the LiM is synthesized to-
gether with the memory cells to a small set of pre-characterized layout pattern
constructs. Lithographic compliance between the co-designed logic and memory
ensures sub-20nm manufacturability of LiM circuits.

End-to-end LiM design framework. In our tool chain we are combining
the architectural frontend and physical backend to build an end-to-end LiM
design framework. Its input is the design specification and the output is ready
to use hardware (RTL, GDS, .lib, .lef). When generating a specified design point,
our framework also reports the area, power and latency and send them back to
the frontend user interface, from which the designer can evaluate the resulting
design and reset the design specs for redesign if necessary. Our LiM framework
allows an application designer to generate the optimized “silicon” templates by
simply tuning the “knobs”.

7 Evaluation and Results

In this section, we evaluate the smart memory architectures with respect to area,
power, latency, and accuracy. The design framework is used to generate various
design points. Area and power are measured from the physical implementations
of the design on a commercial sub-20nm SOI CMOS process at 500MHz and the
shown results are all normalized.
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Fig. 11. Consecutive Access Memory Evaluation

7.1 Consecutive Access Memory Evaluation

The smart consecutive access memory is the basic memory structure that we
use to implement various backprojection smart memory designs, therefore we
evaluate its design efficiency first as shown in Fig. 11. To be consistent with the
previous design, we implement the smart consecutive access memory to readout
eight consecutive pixels from 1D data arrays from size 256 to size 4096. For
comparison purpose, we also built the traditional multi-banking memory designs
with the same functionalities. In Fig. 11 (a), we demonstrate the power-delay-
product of the proposed smart consecutive access memory compared with the
traditional multi-banking memory design (i.e., dumb memory), and it shows
that the proposed smart memory are one order magnitude more efficient. To
better understand the design structure of the smart consecutive access memory,
we implement three different consecutive assess memories with different access
bandwidths, that is, consecutive assess of two pixels, four pixels and eight pixels.
We plot their hierarchical memory periphery area distribution in Fig. 11 (b). We
see from the plot that the increase of the access width will decrease the area of the
x-decoder while at the same time will increase the area of most other periphery
circuit components (e.g., y-decoder, reorder-mux, write-driver and IO registers).
This is because when the access width increases, the memory is getting wider
and shorter as there will be more memory sub-banks sharing the x-decoder. Cell
area is not plotted since it is assumed to be approximately the same for all the
designs. For the same reason, the localized wordline AND logic (i.e., wl and) area
is the same for all the designs as each memory cell is associated with one AND
gate in the customized x-decoder design. In Fig. 11 (c) and (d), we show the
overall memory area for smart memory designs with different consecutive access
widths at different memory sizes and different memory wordlengths respectively.
One important observation is that the increase of the consecutive access width
will not increase the overall smart memory area, and sometimes it even decreases
the overall memory area for those larger-size memory designs (e.g., memory of
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size 4096). This is because larger-size memory is associated with larger memory
periphery circuits in the x-dimension (e.g., x-decoder) which can be reduced
more in designs with larger access widths. However, the increase of the access
width tends to cost more memory area for memories with larger wordlengh since
in this situation the periphery circuits in the y-dimension (e.g., y-decoder) is
getting larger and more complicated.

7.2 Backprojection Smart Memory Cost Evaluation

Decoder-mux and output-mux evaluation. In Fig. 12 (a), we first com-
pare the hardware cost of two smart memory approaches (decoder-mux and
output-mux ) to the conventional rectangular access smart memory approach.
The memories studied here have the size of 4,096-words and wordlength of 16
bits, and we only consider two memories implemented as 1×8 consecutive access
memories sharing the decoder with each other. We observe that the output-mux
approach is more cost-efficient as saves around 30% area and 20% power while
decoder-mux only achieves around 5% area saving and 10% power saving. The
similar results can be seen in Fig. 12 (b), in which we plot the overall area-
power-delay of the three designs at four different memory sizes. As expected,
output-mux approach saves on average 20%− 40% in terms of area-power-delay
product. On the other hand, decoder-mux performs much worse compared with
the output-mux. The reason is that in decoder-mux each wordline is accompanied
by a set of configuration logic (two AND gates and one OR gate), and each set
of logic communicates with its local wordline. This explains also why decoder-
mux achieves relatively higher power-efficiency compared to its area-efficiency.
In contrast, output-mux only requires a single large configuration logic at the
memory output while its memories have large access width as they output more
pixels than required. Due to the superiority of the output-mux method, it will
be used for our backprojection system in the following discussions.
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As the main idea of the memory sharing strategy is to reduce the hardware
cost by sharing the x-decoder, in order to understand the distribution of the
hardware cost of the different components in the memory structure, in Fig. 12 (c)
we plot the hierarchical memory area for all the three methods. It is observed that
although memory cell array occupies most of the memory area, the periphery
area also accounts for a large proportion of overall memory area. As the memory
cell area of the three designs are the same, in Fig. 12 (d) we particularly plot the
hierarchical memory periphery area for the three methods and we see that the
memory periphery is dominated by the x-decoder and the embedded localized
wordline AND logic (i.e., wl and) gates. As we discussed in 4.2, the localized
wordline AND logic (i.e., wl and) gates are tightly integrated with the memory
cell for local wordline activation. As can be seen, both of the decoder area and
the local wl and gates area are largely reduced in the output-mux approach as
they can be directly shared by all the memory banks.

Parallel backprojection architecture evaluation. In Fig. 13 (a) we eval-
uate the hardware cost of the MEPPPE memory architecture for reconstructing
a 256× 256-size image from 1,024 projections. The x-axis is the parallel degree
Pd, which is defined as the number of adjacent backprojections that are per-
formed in each IPE concurrently and its value varies from two to eight. In our
implementation these Pd projection memories will all share the same memory
decoder. The y-axis shows the relative area and power compared to the conven-
tional design where no memory sharing strategies are used. We see that more
than 40% area savings and more than 30% power savings can be achieved with
the increase of Pd. Fig. 13 (b) shows that the latencies are decreasing propor-
tionally with the increase of Pd as expected. Moreover, we achieve a four times
performance improvement by computing four pixels in parallel in each IPE.

7.3 Backprojection Accuracy Evaluation

As we gain in both of hardware cost and performance, the impact on accuracy
needs to be evaluated. In Fig. 14 (a), we show the distribution of the locations of
the accessed data in eight adjacent projection memories for a real application. We
first observe that the locations of the accessed data in eight adjacent projection
memories are all localized to the location of center. Therefore we could design
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all the eight projection memories to output the pixels within the range between
center−3 and center+3 so that they could share one memory decoder based on
our output-mux design. However, it can also be seen that the range of possible
locations of the accessed data are increasing when we go from projection memory
of angle i to the projection memory of angle i + 7. For example, starting from
projection angle θi+4, all the shown seven locations will be intensively touched.
It can be expected that if we let more adjacent projection memories share the
decoder, they could require pixels that are beyond the smart memory outputs.
We could approximately assign the nearest pixels if the required pixels are not
available but it will then sacrifice the resulting image quality in such situations.

We measure the mean square error (MSE) of the reconstructed image com-
pared to the reference image and plot the results in Fig. 14 (b) for parallel
degrees (Pd) from one to eight. As expected, the error increases when either Pd
or algorithm parameter (r/N) increases. This is because that we let Pd projec-
tion memories share the same memory decoder, and it will introduce error if the
address differences of these Pd projection memories are not small enough which
could happen when Pd and (r/N) are large. In our implementation, we carefully
manipulate the data precision so that the numerical errors can be ignored in the
accuracy comparison. In Fig. 15 we display the reconstructed head phantom im-
ages from hardware simulation, which indicates fairly high image quality for all
the studied parallel degrees. We also observe the gradual deterioration of the im-
age quality for higher parallel degree, which allows us to tradeoff image accuracy
with hardware cost in applications where minor distortion is acceptable.

8 Conclusion

The emergence of construct-based design facilitates the robust synthesis of cost-
effective smart memory blocks that are customized for specific applications. This
cutting-edge design methodology creates opportunities to re-design algorithms
and re-architect the hardware structure to match the advanced technology ca-
pabilities. In this paper we propose smart memory architectures and the end-
to-end design framework to implement them for the CT image reconstruction
problems. The results in a sub-20nm CMOS process demonstrate significant im-
provements in area, power and performance. Moreover, we present the opportu-
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Fig. 15. Display of Reconstructed Image

nities to tradeoff hardware cost with acceptable image accuracy based on appro-
priate algorithm tuning. This paper demonstrates that the embedded memories
in data-intensive computing can exploit the smart memory design methodology
and the inherent address pattern of the algorithm to achieve superior power and
performance efficiency.
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