WYSINWYX: What You See Is Not What You eXecute

G. Balakrishnah T. Reps:2, D. Melsk?, and T. Teitelbaurh

! Comp. Sci. Dept., University of Wisconsifibgogul,reps@cs.wisc.edu
2 GrammaTech, Inc{melski,tt @grammatech.com

Abstract. What You See Is Not What You eXecute: computers do not exemutee-code
programs; they execute machine-code programs that aresgeddrom source code. Not
only can the WYSINWYX phenomenon create a mismatch betweeat & programmer
intends and what is actually executed by the processorpitease analyses that are per-
formed on source code to fail to detect certain bugs and vaihil@ies. This issue arises
regardless of whether one’s favorite approach to assuhiaigprograms behave as desired
is based on theorem proving, model checking, or abstrastgretation.

1 Introduction

Recent research in programming languages, software esrgigeand computer secu-
rity has led to new kinds of tools for analyzing code for bugg security vulnerabilities
[23,41,18,12,8,4,9, 25, 15]. In these tools, static anaigsused to determine a con-
servative answer to the question “Can the program reach atbeP® However, these
tools all focus on analyzingource codewritten in a high-level language, which has
certain drawbacks. In particular, there can be a mismatthdam what a programmer
intends and what is actually executed by the processor.ecoestly, analyses that are
performed on source code can fail to detect certain bugs aim&rabilities due to the
WYSINWY X phenomenon: “What You See Is Not What You eXecufiie following
source-code fragment, taken from a login program, illueg¢he issue [27]:
nmenset (password, ‘\0', len);
free(password);

The login program temporarily stores the user’s passwordetdar text—in a dynam-
ically allocated buffer pointed to by the pointer variapkesswor d. To minimize the
lifetime of the password, which is sensitive informatidre tode fragment shown above
zeroes-out the buffer pointed to pysswor d before returning it to the heap. Unfortu-
nately, a compiler that performs useless-code eliminatiag reason that the program
never uses the values written by the callmemnset , and therefore the call on memset
can be removed—thereby leaving sensitive information sgddn the heap. This is
not just hypothetical; a similar vulnerability was discox during the Windows secu-
rity push in 2002 [27]. This vulnerability is invisible in ¢hsource code; it can only be
detected by examining the low-level code emitted by thenoigthg compiler.

The WYSINWY X phenomenon is not restricted to the presenabsence of pro-
cedure calls; on the contrary, it is pervasive:

— Bugs and security vulnerabilities can exist because of aadyf platform-specific
details due to features (and idiosyncrasies) of compiledsoptimizers, including

8 Static analysis provides a way to obtain information abtwet possible states that a pro-
gram reaches during execution, but without actually rugrire program on specific inputs.
Static-analysis techniques explore the program’s behdwiall possible inputs andll pos-
sible states that the program can reach. To make this feash® program is “run in the
aggregate”—i.e., on descriptors that represafiectionsof memory configurations [13].

e memory-layout details, such as (i) the positions (i.e setf) of variables in the
runtime stack’s activation records, and (ii) padding betwstructure fields.
register usage

execution order (e.g., of actual parameters)

optimizations performed

e artifacts of compiler bugs
Access to such information can be crucial; for instance, yreacurity exploits
depend on platform-specific features, such as the struofuaetivation records.
Vulnerabilities can escape notice when a tool does not h#eennation about ad-
jacency relationships among variables.

— Analyses based on source cbtigpically make (unchecked) assumptions, e.g., that
the program is ANSI-C compliant. This often means that adyaisdoes not ac-
count for behaviors that are allowed by the compiler (e rithmetic is performed
on pointers that are subsequently used for indirect funatédls; pointers move off
the ends of arrays and are subsequently dereferenced; etc.)

— Programs typically make extensive use of libraries, iniclgalynamically linked
libraries (DLLs), which may not be available in source-céaten. Typically, anal-
yses are performed using code stubs that model the effelitsarfy calls. Because
these are created by hand they are likely to contain errdmghamay cause an
analysis to return incorrect results.

— Programs are sometimes modified subsequent to compilatipnto perform opti-
mizations or insert instrumentation code [42]. (They mapdle modified to insert
malicious code.) Such modifications are not visible to toladg analyze source.

— The source code may have been written in more than one laegti&is com-
plicates the life of designers of tools that analyze soumdedecause multiple
languages must be supported, each with its own quirks.

— Even if the source code is primarily written in one high-lelaguage, it may
contain inlined assembly code in selected places. Soekadbols typically either
skip over inlined assembly code [11] or do not push the aislysyond sites of
inlined assembly code [1].

In short, there are a number of reasons why analyses baseduocescode do not
provide the right level of detail for checking certain kirafgproperties:

— Source-level tools are only applicable when source is alkd| which limits
their usefulness in security applications (e.g., to anatyzode from open-source
projects).

— Evenif source code is available, a substantial amount ofinétion is hidden from
analyses that start from source code, which can cause leasijty vulnerabilities,
and malicious behavior to be invisible to such tools. Moe¥pa source-code tool
that strives to have greater fidelity to the program that tsally executed would
have to duplicate all of the choices made by the compiler ginizer; such an
approach is doomed to failure.

The issue of whether source code is the appropriate leveldnfying program
properties is one that should concern all who are interdst@dsuring that programs

4 Terms like “analyses based on source code” and “sourcé-deadyses” are used as a short-
hand for “analyses that work on intermediate represemsiidrs) built from the source code.”

behave as desired. The issues discussed above arise esgarfdivhether one’s favorite
approach is based on theorem proving, model checking, tragbterpretation.

The remainder of the paper is organized as follo§&presents some examples
that show why analysis of an executable can provide moreratzinformation than
a source-level analysi§3 discusses different approaches to analyzing executadles
describes our work on CodeSurfer/x86, as an example of hmpibssible to analyze
executables in the absence of source code.

2 Advantages of Analyzing Executables

The example presented §i showed that an overzealous optimizer can cause there to
be a mismatch between what a programmer intends and whatuallgexecuted by

the processor. Additional examples of this sort have bestudsed by Boehm [5]. He
points out that when threads are implemented as a libragy, fer use in languages
such as C and C++, where threads are not part of the languagdicgtion), compiler
transformations that are reasonable in the absence ofthozen cause multi-threaded
code to fail—or exhibit unexpected behavior—for subtlesmees that are not visible to
tools that analyze source code.

A second class of examples for which analysis of an exeaitzdt provide more
accurate information than a source-level analysis arisealse, for many program-
ming languages, certain behaviors are left unspecified @géimantics. In such cases,

a source-level analysis must account for all possible Herswhereas an analysis
of an executable generally only has to deal witke possible behavior—namely, the
one for the code sequence chosen by the compiler. For irstan€ and C++ the or-

der in which actual parameters are evaluated is not speciatdals may be evaluated
left-to-right, right-to-left, or in some other order; a cpiter could even use different
evaluation orders for different functions. Different evation orders can give rise to dif-
ferent behaviors when actual parameters are expressiansahtain side effects. For a
source-level analysis to be sound, at each call site it nakst the join of the abstract
descriptors that result from analyzing each permutatiothefactuals. In contrast, an
analysis of an executable only needs to analyze the patiseuence of instructions
that lead up to the call.

A second example in this class involves pointer arithmetit @n indirect call:

int (*f)(void);

int diff = (char*)& 2 - (char*)&1; // The offset between f1 and f2

f = &f1;

f (int (*)())((char*)f + diff); // f now points to f2

(*f)(); /1 indirect call;
Existing source-level analyses (that we know of) are igared to handle the above
code. The conventional assumption is that arithmetic ootfan pointers leads to un-
defined behavior, so source-level analyses either (a) a@s#uamh the indirect function
call might call any function, or (b) ignore the arithmeticasptions and assume that the
indirect function call call§ 1 (on the assumption that the code is ANSI-C compliant).
In contrast, the analysis described by Balakrishnan and [34] correctly identifies
f 2 as the invoked function. Furthermore, the analysis canctietken arithmetic on
addresses creates an address that does not point to thaibggifia function; the use

of such an address to perform a function “call” is likely to &dug (or else a very
subtle, deliberately introduced security vulnerability)

A third example related to unspecified behavior is shown @ Ei The C code on
the left uses an uninitialized variable (which triggers enpiler warning, but compiles
successfully). A source-code analyzer must assumel thahl can have any value,
and therefore the value of in mai n is either 1 or 2. The assembly listings on the
right show how the C code could be compiled, including twdarats for the prolog of
functioncal | ee. The Microsoft compiler (cl) uses the second variant, wincfudes
the following strength reduction:

The instructiorsub esp, 4 that allocates space fdrocal is replaced by

a push instruction of an arbitrary register (in this casecx).
In contrast to an analysis based on source code, an analysissaecutable can deter-
mine that this optimization results Inocal being initialized to 5, and therefokein
mai n can only have the value 1.

A fourth example re- ns cqiieeint a, int b) {
lated to unspecified be- int local:
havior involves a function if (local == 5) return 1;
call that passes fewer ar- else return2;
guments than the proce-}
dure expects as parame; o
ters. (Many compilers ac- fpyc =5
cept such (unsafe) code aint d = 7:
an easy way to implement
functions that take a vari-
able number of parame-
ters.) With most compilers,

this effectively means that™])
the call-site passes somdid-1.Example of unexpected behavior due to compiler

parts of one or more lo- optimization. The box at the top right shows two variants
cal variables of the calling ©f code generated by an optimizing compiler for the pro-
procedure as the remainind®9 of cal | ee. Analysis of the second of these reveals
parameters (and, in effectthat the variablé ocal necessarily contains the value 5.

these are passed by reference—an assignment to such a paramée callee will
overwrite the value of the corresponding local in the cgll&n analysis that works on
executables can be created that is capable of determiniagtivh extra parameters are
[3, 34], whereas a source-level analysis must either makadec over-approximation
or an unsound under-approximation.

Standard prolog Prolog for 1 local
push ebp push ebp

mov ebp,esp mov ebp,esp
sub esp, 4 push ecx

mov [ebp+var_8],5
mov [ebp+var_C],7
mov eax, [ebp+var_C]
push eax

mov ecx, [ebp+var_8]
push ecx

call _callee

int v = callee(c,d):
What is the value of v here?
return O;

3 Approaches to Analyzing Executables

The examples i§2 illustrate some of the advantages of analyzing execwgabstead
of source code: an executable contains the actual ingtnscthat will be executed,
and hence reveals more accurate information about the tmek#ivat might occur dur-
ing execution; an analysis can incorporate platform-gjpedeétails, including memory
layout, register usage, execution order, optimizationd,atifacts of compiler bugs.

Moreover, many of the issues that arise when analyzing saade disappear when
analyzing executables:

— The entire program can be analyzed—including librariesdhalinked to the pro-
gram. Because library code can be analyzed directly, it is\aoessary to rely on
potentially unsound models of library functions.

— If an executable has been modified subsequent to compilatimm modifications
are visible to the analysis tool.

— Source code does not have to be available.

— Evenif the source code was written in more than one langueig®| that analyzes
executables only needs to support one language.

— Instructions inserted because of inlined assembly direstin the source code are
visible, and do not need to be treated any differently thaaemoinstructions.

The challenge is to build tools that can benefit from thesaathges to provide a level
of precision that would not otherwise be possible.

One dichotomy for classifying approaches is whether thegsgumes that informa-
tion is available in addition to the executable itself—sashthe source code, symbol-
table information, and debugging information. For ins&ribe aim otranslation vali-
dation[33, 32] is to verify that compilation does not change theaetics of a program.
A translation-validation system receives the source codetarget code as input, and
attempts to verify that the target code is a correct impldaatéem (i.e., a refinement)
of the source code. Rival [37] presents an analysis that alsstsact interpretation to
check whether the assembly code produced by a compiler ggEss¢he same safety
properties as the original source code. The analysis asstitaeboth source code and
debugging information is available. First, the source cadd the assembly code of
the program are analyzed. Next, the debugging informasiarsed to map the results
of assembly-code analysis back to the source code. If thdtseer the correspond-
ing program points in the source code and the assembly cedsoarpatible, then the
assembly code possesses the same safety properties asrtecae.

4 Analyzing Executables in the Absence of Source Code

For the paSt few years, CodeSurfer/x86

we have been work- — A~ ~

ing to create a platform IDA Pro User Scripts

to support the analy- executable| | Parse QWPDS*
. . Executable Path i

sis of executables in ¥ Comector | codesurfer Inspector

the absence of source Build Value-set

Decompiler

code. The goal of the ches Qralysis
work is to extend static
vulnerability-analysis tech-

Browse

Code
Rewriter

niques to work d|rect|y Tnitial estimate of ~ fleshed-out CFGs
. * code vs. data « fleshed-out call graph
on Strlpped eXeCutabIeS « procedures « used, killed, may-killed
« call sites variables for CFG nodes
We have developed a « malloc sites « points-to sets
« reports of violations

prototype tool set for
analyzing x86 executa-Fig. 2.Organization of CodeSurfer/x86 and companion tools.
bles. The members of

the tool set areCodeSurfer/x86WPDS++, and thePath InspectarFig. 2 shows how
the components of CodeSurfer/x86 fit together.

Recovering IRs from x86 executables.To be able to apply analysis techniques like
the ones used in [23,41,18,12,8,4,9, 25, 15], one alreadgustters a challenging
program-analysis problem. From the perspective of the ipcuscking community,
one would consider the problem to be that of “model extractione needs to extract
a suitablemodelfrom the executable. From the perspective of the compilemanity,
one would consider the problem to be “IR recovery”: one neéedscoveintermediate
representationfrom the executable that are similar to those that would béave had
one started from source code.

To solve the IR-recovery problem, several obstacles musvbeome:

— For many kinds of potentially malicious programs, symtadd#¢ and debugging
information is entirely absent. Even if it is present, it nahbe relied upon.

— To understand memory-access operations, it is necessagtéomine the set of
addresses accessed by each operation. This is difficulubeca

e While some memory operations use explicit memory addrésgés instruc-
tion (easy), others use indirect addressing via addresessipns (difficult).

e Arithmetic on addresses is pervasive. For instance, evamiilie value of a
local variable is loaded from its slot in an activation ret,@ddress arithmetic
is performed.

e There is no notion of type at the hardware level, so addrdsesa&annot be
distinguished from integer values.

To recover IRs from x86 executables, CodeSurfer/x86 makesfiboth IDAPro
[28], a disassembly toolkit, and GrammaTech’s CodeSusfstesn [11], a toolkit for
building program-analysis and inspection tools.

An x86 executable is first disassembled using IDAPro. Intmidio the disassem-
bly listing, IDAPro also provides access to the followingammation: (1) procedure
boundaries, (2) calls to library functions, and (3) stdljcknown memory addresses
and offsets. IDAPro provides access to its internal ressixga an API that allows
users to create plug-ins to be executed by IDAPro. We createldg-in to IDAPro,
called the Connector, that creates data structures togeprthe information that it ob-
tains from IDAPro. The IDAPro/Connector combination iscaddle to create the same
data structures for dynamically linked libraries, and i lihem into the data structures
that represent the program itself. This infrastructuremperwhole-program analysis to
be carried out—including analysis of the code for all lilgrarnctions that are called.

Using the data structures in the Connector, we implementstétac-analysis al-
gorithm calledvalue-set analysiéV/SA) [3, 34]. VSA does not assume the presence of
symbol-table or debugging information. Hence, as a firgt, &tset of data objects called
a-locs (for “abstract locations”) is determined based estiatic memory addresses and
offsets provided by IDAPro. VSA is a combined numeric andpai-analysis algorithm
that determines an over-approximation of the set of numetices and addresses (or
value-seX that each a-loc holds at each program péiAtkey feature of VSA is that it
tracks integer-valued and address-valued quantitiesltsimaously. This is crucial for
analyzing executables because numeric values and adsli@ssandistinguishable at
execution time.

5VSA is a flow-sensitive, interprocedural dataflow-analyalgorithm that uses the “call-
strings” approach [40] to obtain a degree of context seitsiti

IDAPro does not identify the targets of all indirect jumpgdandirect calls, and
therefore the call graph and control-flow graphs that it tmiess are not complete.
However, the information computed during VSA can be usedigm#ent the call graph
and control-flow graphs on-the-fly to account for indirechps and indirect calls.

VSA also checks whether the executable conforms to a “stdihad@mpilation
model—i.e., a runtime stack is maintained; activation rds@re pushed onto the stack
on procedure entry and popped from the stack on proceduregxiocedure does not
modify the return address on stack; the program’s instastoccupy a fixed area of
memory, are not self-modifying, and are separate from tlognam’s data. If it can-
not be confirmed that the executable conforms to the modeh the IR is possibly
incorrect. For example, the call-graph can be incorrectgf@edure modifies the re-
turn address on the stack. Consequently, VSA issues anreport whenever it finds a
possible violation of the standard compilation model; ghepresent possible memory-
safety violations. The analyst can go over these reportslatetmine whether they are
false alarms or real violations.

Once VSA completes, the value-sets for the a-locs at eagrguropoint are used to
determine each point’s sets of used, killed, and possibligeka-locs; these are emitted
in a format that is suitable for input to CodeSurfer. Codé&uhen builds a collection
of IRs, consisting of abstract-syntax trees, control-floapis (CFGs), a call graph, a
system dependence graph (SDG) [26], VSA results, the setsedf, killed, and possibly
killed a-locs at each instruction, and information aboetdtructure and layout of global
memory, activation records, and dynamically allocatedasje. CodeSurfer supports
both a graphical user interface (GUI) and an API (as well asripting language) to
provide access to these structures.

Model-checking facilities. For model checking, the CodeSurfer/x86 IRs are used to
build aweighted pushdown syst€lWPDS) [7, 35, 36, 31, 30] that models possible pro-
gram behaviors. Weighted pushdown systems generalize alrabdcking technology
known aspushdown systenfPDSs) [6, 19], which have been used for software model
checking in the Moped [39, 38] and MOPS [9] systems. Compé&seatdinary (un-
weighted) PDSs, WPDSs are capable of representing morerfud\wimds of abstrac-
tions of runtime states [36, 31], and hence go beyond thebd#fes of PDSs. For
instance, the use of WPDSs provides a way to address cemais &f security-related
queries that cannot be answered by MOPS.

WPDS++ [29] is a library that implements the symbolic redwlig algorithms
from [36, 31, 30] on weighted pushdown systems. We followstaadard approach of
using a pushdown system (PDS) to model the interprocedaraia-flow graph (one
of CodeSurfer/x86’s IRs). The stack symbols corresponadgiam locations; there is
only a single PDS state; and PDS rules encode control flowllasvia

[Rule |Control flow modeled |
q{u) = q{v) Intraprocedural CFG edge— v

q{c) = g{entryp r)|Call to P from ¢ that returns tor

q{z) = q{) Return from a procedure at exit node

In a configuration of the PDS, the symbol at the top of the stackesponds to the cur-
rent program location, and the rest of the stack holds retitenlocations—this allows
the PDS to model the behavior of the program’s runtime execstack.

An encoding of the interprocedural control-flow as a pushaeystem is sufficient
for answering queries about reachable control states éPalh Inspector does; see
below): the reachability algorithms of WPDS++ can detemrifran undesirable PDS
configuration is reachable. However, WPDS++ also suppeeightedPDSs, which
are PDSs in which each rule is weighted with an element of er{dsfined) semiring.
The use of weights allows WPDS++ to perform interproceddethflow analysis by
using the semiring’'extendoperator to compute weights for sequences of rule firings
and using the semiring'sombineoperator to take the meet of weights generated by
different paths [36, 31, 30]. (When the weights on rules amservative abstract data
transformers, an over-approximation to the set of reaehadahcrete configurations is
obtained, which means that counterexamples reported by $¥PDnay actually be
infeasible.)

The advantage of answering reachability queries on WPD®s conventional
dataflow-analysis methods is that the latter merge togeitieevalues for all states as-
sociated with the same program point, regardless of thesstahlling context. With
WPDSs, queries can be posed with respect to a regular laagfagjack configura-
tions [7, 35, 36, 31, 30]. (Conventional merged dataflow rimfation can also be ob-
tained [36].)

The Path Inspector provides a user interface for automatifety queries that are
only concerned with the possible control configurations$ #raexecutable can reach.
It uses an automaton-based approach to model checkingutry ¢ specified as a
finite automaton that captures forbidden sequences of @mnodpcations. This “query
automaton” is combined with the program model (a WPDS) uaingpss-product con-
struction, and the reachability algorithms of WPDS++ amedu® determine if an error
configuration is reachable. If an error configuration is hedude, therwitnessegsee
[36]) can be used to produce a program path that drives they @quéomaton to an error
state.

The Path Inspector includes a GUI for instantiating many mam reachability
queries [17], and for displaying counterexample paths édtsassembly listin§.In
the current implementation, transitions in the query awattam are triggered by pro-
gram points that the user specifies either manually, or usisgt sets from CodeSurfer
queries. Future versions of the Path Inspector will supporre sophisticated queries in
which transitions are triggered by matching an AST pattegairesst a program location,
and query states can be instantiated based on pattern gindin

Related work. Previous work on analyzing memory accesses in executahfedédalt
with memory accesses very conservatively: generally, ggister is assigned a value
from memory, it is assumed to take on any value. VSA does a rhettier job than
previous work because it tracks the integer-valued andesderalued quantities that
the program’s data objects can hold; in particular, VSAksdbe values of data objects

6 We assume that source code is not available, but the teamigxtend naturally if it is: one
can treat the executable code as just another IR in the tolteaf IRs obtainable from source
code. The mapping of information back to the source code avoelsimilar to what C source-
code tools already have to perform because of the use of thepgtgeessor (although the kind
of issues that arise when debugging optimized code [24 44 dmplicate matters).

other than just the hardware registers, and thus is notdaeive up all precision
when a load from memory is encountered.

The basic goal of the algorithm proposed by Debray et al. [4&jmilar to that
of VSA: for them, it is to find an over-approximation of the sétvalues that each
registercan hold at each program point; for us, it is to find an overrapmation of
the set of values that each (abstract) data object can helachtprogram point, where
data objects includmemory location addition to registers. In their analysis, a set of
addresses is approximated by a set of congruence valugskebe track of only the
low-order bits of addresses. However, unlike VSA, theioaithm does not make any
effort to track values that are not in registers. Conseduehey lose a great deal of
precision whenever there is a load from memory.

Cifuentes and Fraboulet [10] give an algorithm to identifyimtraprocedural slice
of an executable by following the program’s use-def chdiwmwyever, their algorithm
also makes no attempt to track values that are not in regjstad hence cuts short the
slice when a load from memory is encountered.

The two pieces of work that are most closely related to VSAtleealgorithm for
data-dependence analysis of assembly code of Amme et anfPihe algorithm for
pointer analysis on a low-level intermediate represematif Guo et al. [22]. The al-
gorithm of Amme et al. performs only antraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences batweemory locations. The
algorithm of Guo et al. [22] is only partially flow-sensitivietracks registers in a flow-
sensitive manner, but treats memory locations in a flowrsisege manner. The al-
gorithm uses partial transfer functions [43] to achievetegnsensitivity. The transfer
functions are parameterized by “unknown initial valuesl\(s); however, it is not clear
whether the the algorithm accounts for the possibility dfechprocedures corrupting
the memory locations that the UIVs represent.

Challenges for the future. There are a number of challenging problems for which
additional research is needed. Most of these are similangachallenges one faces
when analyzing source code:

— efficiency and scalability of analysis algorithms, incluglhow to create summary
transformers for procedures

accounting for non-local transfers of control (eget j np/l ongj np and C++
exception handling)

analysis of variable-argument functions

analysis of multi-threaded code

analysis of heap-allocated data structures

As with source-code analysis, it would be useful to develogcglized analyses for
particular kinds of data or particular programming idioingjuding

— how strings are used in the program

— the “macro-level” effects of loops that perform array ogtienas (e.g., that an array-
initialization loop initializes all elements of an arrayl]j2

— the effects of loops that perform sentinel search
— analysis of self-modifying code [20]

References

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

. PREfast with driver-specific rules, October 2004. Windd#ardware and Driver Central

(WHDC) web site, http://www.microsoft.com/whdc/devtskibols/PREfast-drv.mspx.

. W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Dagmndepce analysis of assembly

code.Int. J. Parallel Proc, 2000.

. G. Balakrishnan and T. Reps. Analyzing memory accessg8@rexecutables. IComp.

Construct, pages 5-23, 2004.

. T. Ball and S.K. Rajamani. The SLAM toolkit. l@omputer Aided Verifvolume 2102 of

Lec. Notes in Comp. Scpages 260-264, 2001.

. H.-J. Boehm. Threads cannot be implemented as a libnraBLDI, pages 261-268, 2005.
. A. Bouajjani, J. Esparza, and O. Maler. Reachability gsialof pushdown automata: Appli-

cation to model checking. IRroc. CONCUR1997.

. A.Bouajjani, J. Esparza, and T. Touili. A generic applo@che static analysis of concurrent

programs with procedures. POPL, pages 62-73, 2003.

. W.Bush, J. Pincus, and D. Sielaff. A static analyzer fatifig dynamic programming errors.

Software—Practice&Experienc80:775-802, 2000.

. H. Chen and D. Wagner. MOPS: An infrastructure for exangnsecurity properties of

software. InConf. on Comp. and Commun. Sgrages 235-244, November 2002.

C. Cifuentes and A. Fraboulet. Intraprocedural stditbing of binary executables. Imt.
Conf. on Softw. Maintpages 188-195, 1997.

CodeSurfer, GrammaTech, Inc., http://www.grammatech/products/codesurfer/.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.8s&eanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java sourde.cmICSE, 2000.

P. Cousot and R. Cousot. Abstract interpretation: A edifattice model for static analysis
of programs by construction of approximation of fixed paintsPOPL, 1977.

D.S. Coutant, S. Meloy, and M. Ruscetta. DOC: A practpgdroach to source-level debug-
ging of globally optimized code. IRLDI, 1988.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitivgrpro verification in polynomial
time. InPLDI, 2002.

S.K. Debray, R. Muth, and M. Weippert. Alias analysisx#@itable code. IROPL, 1998.
M. Dwyer, G. Avrunin, and J. Corbett. Patterns in propefecifications for finite-state
verification. InICSE 1999.

D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checkingtesn rules using system-specific,
programmer-written compiler extensions.@p. Syst. Design and Imppages 1-16, 2000.
A. Finkel, B.Willems, and P. Wolper. A direct symbolicpapach to model checking push-
down systemsElec. Notes in Theor. Comp. S@, 1997.

R. Gerth. Formal verification of self modifying code Rroc. Int. Conf. for Young Computer
Scientistspages 305-313, 1991.

D. Gopan, T. Reps, and M. Sagiv. A framework for numerelsis of array operations. In
POPL, pages 338-350, 2005.

B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Ramand D.I. August. Practical and
accurate low-level pointer analysis. 3nd Int. Symp. on Code Gen. and QR005.

K. Havelund and T. Pressburger. Model checking Javaranog using Java PathFinder.
Softw. Tools for Tech. Transfez(4), 2000.

J.L. Hennessy. Symbolic debugging of optimized co@iEans. on Prog. Lang. and Syst.
4(3):323-344, 1982.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Llatzstraction. IlPOPL, pages
58-70, 2002.

10

26

27.
28.
29.
30.
3L
32.
33.
34.
35.
36.
37.
38.
39.

40.

41.

42.

43.

44,

. S. Horwitz, T. Reps, and D. Binkley. Interproceduratiski using dependence grapfisans.
on Prog. Lang. and Syst12(1):26—60, January 1990.

M. Howard. Some bad news and some good news. MSDN Oc-
tober 2002. http://msdn.microsoft.com/library/defagdp?url=/library/en-
us/dncode/html/secure10102002.asp.

IDAPro disassembler, http://www.datarescue.corbAde/.

N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ lilbyefor weighted pushdown
systems, 2004. http://www.cs.wisc.edu/wpis/wpds++/.

A. Lal and T. Reps. Improving pushdown system model dngckn CAV, 2006.

A. Lal, T. Reps, and G. Balakrishnan. Extended weightethgown systems. IBAV, 2005.
G. Necula. Translation validation for an optimizing qolar. In PLDI, 2000.

A. Pnueli, M. Siegel, and E. Singerman. Translationdedion. INTACAS 1998.

T. Reps, G. Balakrishnan, and J. Lim. Intermediateesgmtation recovery from low-level
code. InPart. Eval. and Semantics-Based Prog. ManBf06.

T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systedhtheir application to
interprocedural dataflow analysis. 3AS 2003.

T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted puaihdystems and their appli-
cation to interprocedural dataflow analys&ci. of Comp. Prog58(1-2):206—263, October
2005.

X. Rival. Abstract interpretation based certificatidmssembly code. IWMCAI, 2003.

S. Schwoon. Moped system. “http://www.fmi.uni-stattgde/szs/tools/moped/”.

S. SchwoonModel-Checking Pushdown SysterhD thesis, Technical Univ. of Munich,
Munich, Germany, July 2002.

M. Sharir and A. Pnueli. Two approaches to interprocaidiata flow analysis. In S.S. Much-
nick and N.D. Jones, editorBrogram Flow Analysis: Theory and Applicatigrehapter 7,
pages 189-234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first stepards automated detection of
buffer overrun vulnerabilities. INetwork and Dist. Syst. Securtifyebruary 2000.

D.W. Wall. Systems for late code modification. In R. Giggeand S.L. Graham, editors,
Code Generation — Concepts, Tools, Technigpages 275-293. Springer-Verlag, 1992.
R.P. Wilson and M.S. Lam. Efficient context-sensitivinper analysis for C programs. In
PLDI, pages 1-12, 1995.

P.T. Zellweger.Interactive Source-Level Debugging of Optimized ProgrambD thesis,
Univ. of California, Berkeley, 1984.

11

