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Abstract. There has been significant progress in automated verification tech-
niques based on model checking. However, scalable software model checking
remains a challenging problem. We believe that this problem can be addressed
using a design for verification approach based on design patterns that facilitate
scalable automated verification. We have been investigating a design for veri-
fication approach based on the following principles: 1) use of stateful, behav-
ioral interfaces which isolate the behavior and enable modular verification, 2) an
assume-guarantee style verification strategy which separates verification of the
behavior from the verification of the conformance to the interface specifications,
3) a general model checking technique for interface verification, and 4) domain
specific and specialized verification techniques for behavior verification. So far
we have applied this approach to verification of synchronization operations in
concurrent programs and to verification of interactions among multiple peers in
composite web services. The case studies we conducted indicate that scalable
software verification is achievable in these application domains using our design
for verification approach.

1 Introduction

Automated software verification techniques based on model checking have improved
significantly in recent years. When combined with the increasing computing power,
these techniques are capable of analyzing complex software systems as demonstrated
by numerous case studies. However, most applications of software model checking suc-
ceed either by requiring some manual intervention or by focusing on a specific type of
software or a specific type of problem. It is still unclear if there is a general framework
for scalable software model checking.

Scalability of software model checking depends on extracting compact models from
programs that hide the details that are not relevant to the properties being verified. This
typically requires a reverse engineering step in which either user guidance or static anal-
ysis techniques (or both) are used to rediscover some information about the software
that may be known to its developers at design time. A design for verification approach,
which enables software developers to document the design decisions that can be useful
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for verification, may improve the scalability and therefore the applicability of model
checking techniques significantly.

We believe that it is possible to develop a general design for verification approach
based on stateful, behavioral interfaces which can be used to decouple behavior of a
module from its environment. This decoupling enables an assume-guarantee style mod-
ular verification strategy which separates verification of the behavior from the verifi-
cation of the conformance to the interface specifications. Interface verification can be
performed using software model checking techniques that work at the code level (e.g.,
[22]) whereas behavior verification can be performed using domain specific and spe-
cialized verification techniques (e.g., [25]). The modularity and the specialization of
the verification tasks are crucial for the scalability of our approach.

We proposed a set of design patterns which facilitate modular specification of in-
terfaces and behaviors. These design patterns are supported by a set of helper classes
which are used as is. Based on these helper classes we automate the model extraction
and environment generation steps required for model checking.

So far we have applied our design for verification approach to verification of syn-
chronization operations in concurrent programs [1, 2, 5, 25] and to verification of in-
teractions among multiple peers in composite web services [3, 4]. We believe that this
approach can be extended to a general framework in which software developers write
behavioral interfaces while they are building different modules, and these interfaces are
used by the model checking tools to achieve scalable software verification.

Related Work. Earlier work on design for verification focused on verification of UML
models [19] and use of design patterns in improving the efficiency of automated veri-
fication techniques [17]. There has been some work on behavioral interfaces in which
interfaces of software modules are specified as a set of constraints, and algorithms for
interface compatibility checking are developed [8]. Also, there has been work on ex-
tending type systems with stateful interfaces [9], suggesting an approach in which inter-
face checking is treated as a part of type checking. Assume guarantee style verification
of software components has also been studied [18] in which LTL formulas are used to
specify the environment (i.e., the interface) of a component. Automated environment
generation for software components has been investigated using techniques such as in-
serting nondeterminism into the code and eliminating or restricting the input arguments
by using side effect and points-to analyses [14, 20, 21]. Finally, ESC Java [11] uses an
approach based on design by contract and automated theorem proving which is similar
to what we are proposing here for model checking.

Below, we will first discuss interfaces and modularity and interface-based verifi-
cation in general terms. Later, we will discuss application of these principles to ver-
ification of synchronization operations in concurrent programs and to verification of
interactions among multiple peers in composite web services. We will end the paper
with a brief discussion of what needs to be done to generalize our approach.

2 Interfaces, Modularity and Interface-Based Verification

Modularization of the verification task is necessary for its scalability. Modularization
requires specification (or discovery) of the module interfaces. In order to achieve mod-



ularity in verification, the module interfaces have to provide just the right amount of
information. If the interfaces provide too much information, then they are not helpful
in achieving modularity in verification. On the other hand, if they provide too little in-
formation, then they are not helpful for verifying interesting properties. Interface of a
module should provide the necessary information about how to interact with that mod-
ule without giving all the details of its internal structure.

Current programming languages do not provide adequate mechanisms for repre-
senting module interfaces because they provide too little information. Think of an ob-
ject class in an object oriented language. The interface of an object class consists of
names and types of its fields, and names, return and argument types of its methods.
Such interface specifications do not contain sufficient information for most verification
tasks. For example, such an interface does not contain any information about the or-
der the methods of the class should be called. In order to achieve modular verification,
module interfaces need to be richer than the ones provided by the existing programming
languages.

We believe that finite state machines provide an appropriate tool for specification of
module interfaces. Such interface machines can be used to specify the order of method
calls or any other information that is necessary to interact with a module. As an exam-
ple, consider the verification of a concurrent bounded buffer implementation. Access to
the buffer operations can be protected with user defined synchronization operations. For
example, one requirement could be that the synchronization method read-enter should
be called before the read method for the buffer is called. Such constraints can be spec-
ified using an interface machine which defines the required ordering for the method
calls. For complex interfaces one could use an extended state machine model and pro-
vide information about some of the input and output parameters in a module’s interface.
Another possible extension is to use hierarchical state machines for interfaces [3].

Behavioral interfaces enable an assume-guarantee style verification strategy which
separates behavior and interface verification steps. Interfaces enable isolation of the be-
havior of interest by separating it from its environment. The behavior of interest could
be the behavior of an object encapsulated in an object class or it could be the interac-
tion among multiple components in a distributed system. A behavioral interface for the
object class can be used to isolate the object behavior by decoupling it from its environ-
ment. Similarly, interfaces of different components can be used to isolate the interaction
among multiple components from the component implementations.

Behavior Verification: In our interface-based verification approach, during behavior
verification it is assumed that there are no interface violations in the software. Based on
this assumption, interfaces are used as environment models. Environment generation is
a crucial problem in software model checking [14, 21]. We are suggesting the use of a
design for verification approach to attack this problem. Software developers are required
to write interfaces during the software development process so that these interfaces can
then be used as a model of the environment during behavior verification. Using such
interfaces we can encapsulate the behavior in question and perform the verification
on this encapsulated behavior separately. Note that, interfaces should represent all the
constraints about the environment that are relevant to the behavior of interest, i.e., the
interfaces should provide all the information about the environment that is necessary



to verify the behavior. This is analogous to requiring programmers to declare types to
enable type checking.

During behavior verification one could use domain specific verification techniques.
Recall the concurrent buffer example above and assume that this buffer is implemented
as a linked list. During behavior verification we can assume that the threads that ac-
cess to this buffer obey its interface and we can verify the correctness of the linked
list implementation without worrying about the interface violations. For the verification
of the linked list we can use specialized verification techniques such as shape analy-
sis [23] or infinite state model checking [6, 24]. Since, interfaces allow isolation of the
behavior, application of domain specific verification techniques (which may not be ap-
plicable or scalable in general) becomes feasible. These domain specific verification
techniques may enable verification of stronger and more complex properties than that
can be achieved by more generic techniques.

Interface Verification: During interface verification we need to verify that there are
no interface violations. If interfaces of different modules are specified uniformly, for
example using finite state machines, then they can be verified using a general inter-
face verification technique. The verification techniques developed for the purpose of
applying model checking directly to existing programming languages can be used for
interface verification [13, 22].

During interface verification, the interfaces can be used to abstract the behavior that
is verified during behavior verification. Recall the concurrent buffer example. Interface
verification step for this example requires that each thread which has access to the
concurrent buffer has to be checked for interface violations. During the verification
of a thread, the behavior of the concurrent buffer can be abstracted by replacing the
concurrent buffer by its interface machine. Note that, here, we are assuming that the
concurrent buffer itself does not make calls to its methods directly or indirectly. If that
is not the case, the behavior of the concurrent buffer and any other part of the code
which is not relevant to the interface violations can be abstracted away using static
analysis techniques such as slicing, since we are only interested in interface violations.

3 Applications

So far we have applied the approach discussed above to verification of synchronization
operations in Java programs and to verification of interactions among multiple peers
participating to a web service implemented in Java.

3.1 Application to Concurrent Programming

We applied the above principles in developing a design for verification approach for
concurrent programming in Java with the goal of eliminating synchronization errors
from Java programs using model checking techniques [1, 2, 25]. We developed a de-
sign pattern, called concurrency controller pattern, in which synchronization policies
for coordinating the interactions among multiple threads are specified using concur-
rency controller classes. The behavior of a concurrency controller is specified as a set
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Fig. 1. Concurrency Controller Pattern Class Diagram

of actions (forming the methods of the controller class) where each action consists of a
set of guarded commands. The controller interface is specified as a finite state machine
which defines the order that the actions of the controller can be executed by each thread.

Figure 1 shows the class diagram for the concurrency controller pattern. The Con-
trollerInterface is a Java interface which defines the names of the controller ac-
tions. The Controller class contains the actions specifying the controller behavior.
The Action class is the helper class containing a set of guarded commands and imple-
ments the semantics of action execution. This class is provided with the concurrency
controller pattern, i.e., the developers do not need to modify it. Same holds for the
GuardedCommand Java interface. The ControllerStateMachine class is the con-
troller interface. This class has an instance of the StateMachine which is a finite state
machine implementation provided with the pattern and can be used as is. The Shared-
Interface is the Java interface for the shared data. The actual implementation of the
shared data is the Shared class. The class SharedStub specifies the constraints on
accessing the shared data based on the interface states of the controller.

Recall the concurrent buffer example. We can coordinate the concurrent accesses to
this buffer with a controller class which implements a bounded buffer synchronization
protected by a reader-writer lock. The synchronization strategy implemented by this
controller will allow multiple threads to read the contents of the buffer at the same
time but it will only allow a thread to insert or remove an item from the buffer when
there is no other thread accessing the buffer. Additionally, this concurrency controller
will ensure that a thread that wants to insert an item to the buffer will wait while the
buffer is full. Similarly, a thread that wants to remove an item from the buffer will wait
while the buffer is empty. We call the concurrency controller which implements this
synchronization BB-RW.

The BB-RW controller can be implemented using four variables and five actions. The
variables are nR denoting the number of readers in the critical section, busy denoting
if there is a writer in the critical section, count denoting the number of items in the
buffer, and size denoting the size of the buffer. The actions are r enter, r exit,
w enter produce, w enter consume, and w exit. A part of the BB-RW controller
implementation is given in Figure 3. The interface of the BB-RW controller is shown in
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class BBRWController implements BBRWInterface{
int nR; boolean busy; int count; final int size;
r_enter=new GuardedCommand() {

public boolean guard() {return (!busy);}
public void update() {nR = nR+1;}};

r_exit=new GuardedCommand() {
public boolean guard() {return true;}
public void update() {nR = nR-1;}};

w_enter_produce=new GuardedCommand() {
public boolean guard() {

return (nR == 0 && !busy && count<size);}
public void update() {

busy = true; count=count+1;}};
w_exit_consume=new GuardedCommand() {

public boolean guard() {
return (nR == 0 && !busy && count>0); }

public void update() {
busy = true; count=count-1;}};

w_exit= new GuardedCommand() {
public boolean guard() { return true; }
public void update() { busy = false; } };

...
}

Fig. 3. BB-RW Controller Implementation

Figure 2 where the transitions of the interface machine are labeled with the actions of
the BB-RW controller.

We developed a modular verification strategy based on the concurrency controller
pattern. We first verify automatically generated infinite state models of concurrency
controllers using the symbolic and infinite state model checker Action Language Veri-
fier [24], assuming that the threads using the controllers obey their interfaces. Next, we
verify this assumption using the explicit and finite state model checker Java PathFinder
[22]. In this modular verification strategy the two verification steps are completely de-
coupled. Moreover, during the verification of the threads for interface violations there
is no need to consider interleavings of different threads since we are only interested in
the order of calls to the controller methods by each individual thread, and since the only
interaction among different threads is through shared objects that are protected using
the concurrency controllers, i.e., we can verify each thread in isolation [5].

We conducted two case studies to demonstrate the effectiveness of this approach.
The first case study was a concurrent editor which was implemented with 2,800 lines of
Java code using a client-server architecture [2]. The concurrent editor allows multiple
users to edit a document concurrently as long as they are editing different paragraphs
and maintains a consistent view of the shared document among the client nodes and
the server. In this case study there were 4 mutex controller instances, one reader-writer
controller per paragraph, one bounded buffer (with mutex lock) controller per para-
graph, and one barrier controller. The concurrent editor had 4 threads in the client node
and 2 threads in the server node. The second case study [5] was conducted on a safety
critical air traffic control software called Tactical Separation Assisted Flight Environ-
ment (TSAFE) [10]. We reengineered the distributed client-server version of TSAFE
which consists of 21,000 lines of Java code. The server node stores flight trajectories in
a database, receives current flight data from a radar feed through a network connection
to update the database, and monitors the conformance of the flights to their trajectories.



The client nodes display the flight status information. The reengineered system used
2 reader-writer controller instances and 3 mutex controller instances. TSAFE had 3
threads in the client node and 4 threads in the server node. In both of these case studies,
the behavior verification of the controllers took less than a few seconds and used less
than 11 MB memory. In these case studies we isolated the threads for interface verifica-
tion with automatically synthesized drivers and stubs, i.e., the interface verification was
performed thread modularly. Interface verification for some threads took several hun-
dreds seconds and for some of them it took a few dozen seconds. The longest interface
verification time we recorded was 1636.62 seconds. The maximum memory consump-
tion recorded during interface verification was less than 140 MB.

3.2 Application to Web Services

We also developed a design for verification approach for verification of web services
based on the above principles [3, 4]. We focused on composite web services which
consist of asynchronously communicating peers. Our goal was to automatically verify
properties of interactions among such peers. We modeled such interactions as conver-
sations, the global sequence of messages that are exchanged among the peers [7]. We
proposed a design pattern for the development of such web services which enables a
modular, assume-guarantee style verification strategy. In the proposed design pattern,
called peer controller pattern, each peer is associated with a behavioral interface de-
scription which specifies how that peer will interact with other peers. Assuming that
the participating peers behave according to their interfaces, we verify safety and live-
ness properties about the global behavior of the composite web service during behavior
verification. During interface verification, we check that each peer implementation con-
forms to its interface. Using the modularity in the proposed design pattern, we were
able to perform the interface verification of each peer and the behavior verification as
separate steps. Our experiments showed that, using this modular approach, one can au-
tomatically and efficiently verify web service implementations.

ThreadContainersessionId

ApplicationThread

CommunicationInterface

+message1()

PeerServlet

+send(SOAPMessage,Endpoint,Endpoint)
+receive()
+wrap(Message)

CommunicationController

Communicator

+receive()

StateMachine

+sendTransition()
+receiveTransition()

Fig. 4. Peer Controller Pattern Class Diagram



The class diagram of the peer controller pattern is shown in Figure 4. The ap-
plication logic is implemented with the ApplicationThread. Each instance of this
thread is identified with a session number. The application thread communicates asyn-
chronously with other peers through the Communicator which is a Java interface that
provides standardized access to the communication implementation. The Communica-
tionController class is a servlet that performs the actual communication. Since it
is tedious to write such a class, we provide a servlet implementation (PeerServlet)
that uses JAXM [16] in asynchronous mode. The PeerServlet is associated with a
ThreadContainer which contains application thread references indexed by session
numbers. When a message with an associated session number is received from the
JAXM provider, it is delegated to the thread indexed with that session number. The
behavioral interface of each peer is written as an instance of the Communicator-

Interface class and contains a finite state machine specification written using the
provided StateMachine helper class.

!orderBook!orderCD ?orderBook?orderCD

?Bill!Payment
?Receipt

?Payment!Bill
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(b) Supplier(a) Client

!CheckOut ?CheckOut

Fig. 5. Client-Supplier Example

Consider a composite web service with two peers: one client and one supplier. The
client peer places arbitrary number of CD and book orders. After ordering the products,
the client issues a CheckOut message. The supplier calculates the total price and sends
a bill to the client. Client sends the payment and gets a receipt from the supplier. The
state machines defining the contracts of these peers are shown in Figure 5. We verified
the behavior of this example with different queue sizes using the Spin model checker
[15]. Note that, using the behavioral interfaces in the peer controller pattern, we can
easily extract the behavior specification characterizing the interactions of a web service
composition. For the example shown in 5, the state space of the behavior specification
increases exponentially with the size of the queues. In fact, the number of reachable
states for this example is infinite if unbounded queues are used. The exponential growth
in the state space affects the performance of the Spin model checker significantly. In
fact, Spin ran out of memory when the queue size was set to 15.

We adapted the synchronizability analysis [12] into our framework in order to verify
properties of composite web services in the presence of asynchronous communication
with unbounded queues. A composite web service is called synchronizable if its global
interaction behavior (i.e., the set of conversations) does not change when asynchronous
communication is replaced with synchronous communication [12]. The synchronizabil-
ity analysis enables us to reason about global behaviors of composite web services with
respect to unbounded queues. It also improves the efficiency of the behavior verification
by removing the message queues, which reduces the state space. Our automated syn-



chronizability analyzer identified the client-supplier example discussed above as syn-
chronizable. With synchronous communication the reachable state space contained only
68 states and the behavior verification succeeded in less than 0.01 seconds using less
than 1.5 MB of memory.

We applied the above design for verification approach to a loan approval system
with three peers [4], a travel agency system with five peers, and an order handling sys-
tem with five peers [3]. We used hierarchical finite state machines for specifying the
peer interfaces of the latter two examples. The behavior verification for all these exam-
ples took a few seconds. Using the automated synchronizability analysis, we identified
that all of these examples are synchronizable. This result lead to improvements in the
behavior verification since synchronous communication results in less number of states.
The travel agency system mentioned above had an infinite set of reachable states. Using
synchronizability analysis, we were able to verify the global behavior of this example
for unbounded message queues. During the verification of the peer implementations,
we used the peer interfaces to isolate the peers. This caused a significant reduction in
the state space which improved the performance of the interface verification. The inter-
face verification for any of the peers in these examples took a few seconds (at most 9.72
seconds) and did not consume a significant amount of memory (at most 19.69 MB).

4 Conclusions

Our experience in design for verification of concurrent and distributed software sys-
tems leads us to believe that software model checking can become a scalable verifi-
cation technique as long as the software developers write behavioral interfaces which
can be exploited for modular verification. In the application domains discussed above,
we implemented this approach by providing design patterns that enable specification of
behavioral interfaces in existing programming languages. Alternatively, one can extend
the programming languages with primitives that allow the specification of behavioral
interfaces. Either way, for scalability of model checking, we need to investigate more
ways of collecting information about the structure of software during the design phase
rather then reverse engineering programs to discover their structure during verification.

There are numerous challenges to be addressed in the behavior and interface verifi-
cation steps discussed above. We need a large set of domain specific verification tech-
niques to handle different types of behavior verification. The interface-based verifi-
cation approach discussed above can be used to integrate a diverse set of verification
techniques under a single framework. One of the biggest challenges in the presented ap-
proach is the development of a uniform interface verification technique. Although this
is a challenging problem it is less challenging than the general software model checking
problem since it only focuses on interface violations. Automated abstraction techniques
may be used more effectively to exploit this focus, and, when combined with a modular
verification strategy, this can lead to scalable verification.
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