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Abstract. We reflect on the formal development models applicable to embed-
ded control systems in light of our experience with safety-critical applications
from the aerospace domain. This leads us to propose two complementary en-
hancements to Parnas' four-variable model, one elaborating the structure out-
side the control computer, and the other elaborating the structure inside the
control computer. We then identify several challenges which illustrate why
formal development in this domain is difficult, and report our own progress in
meeting these challenges. Finally, we outline the residual issues, which form
the agenda for our future work.

1 Introduction

It has often been argued that formal development is necessary in order to achieve the
extremely low failure rates demanded for safety-critical software. Accordingly, this
principle is embodied in a number of standards [1,2]. However, whilst there are good
examples of the application of static program analysis techniques to safety-critical
software, e.g. [3], there are very few examples of the use of “classical” formal ap-
proaches such as those based on the notion of refinement ([4] is a rare example). In-
deed, there are many practical and theoretical difficulties in applying such models.

The purpose of this paper is to outline a sound technical basis for the formal de-
velopment of safety-critical systems, identify recent progress in developing such a
process (along with associated tools), and highlight future research challenges.

The paper starts by considering development models applicable to safety-critical
systems, and uses them to reflect on the scope and limitations of classical approaches
to formal development. We propose two complementary, but orthogonal, enhance-
ments of Parnas’ four variable model. The first enhancement identifies additional
structure outside the control computer, whilst the second focuses on the structure in-
side the computer.

The analysis is then expanded by considering some of the challenges that arise in
the practical development of safety-critical systems, reflecting our experience with a
range of avionics applications. This is used to propose a model for formal develop-
ment of safety-critical software, to outline progress being made towards realising
such a model, and to identify residual research challenges.



2 Development Models

In developing safety-critical systems we need to model the environment (air, passen-
gers, roads, etc.), the top-level system, e.g. an aero-engine, which we term the “plat-
form”, the control, or embedding, system, e.g. a Full Authority Digital Engine Con-
troller (FADEC) and the embedded system (computing system and software). Few
software development models relate the software to the embedding sys-
tem/environment; counterexamples are Dave Parnas’ four variable model [5] and Mi-
chael Jackson’s Problem Frames [6]. Parnas’ model distinguishes:

monitored variables;
controlled variables;
input variables;
output variables.

The first two represent the environment and/or platform; the control system senses
the monitored variables and attempts to control the environment by influencing the
controlled variables (both the sensing and influencing processes may be indirect i.e.
via other real-world variables). For example a FADEC senses cockpit thrust demands,
various air temperatures and pressures along with engine shaft speeds (the monitored
variables), and modifies fuel flow (amongst other things) in order to influence the
level of thrust (the controlled variable) in the required way.

The input and output variables are the values seen or produced by the computer —
perhaps the output of an analogue to digital (A/D) converter at the input, and the con-
tents of a register which goes through digital to analogue (D/A) conversion to pro-
duce a current to drive a motor or valve.

Abstractly, requirements for the control system are stated in terms of relationships
over the monitored and controlled variables, whilst specifications for the computer
system are stated in terms of input and output variables. To give a complete specifica-
tion also requires a definition of the relationship between the monitored variables and
the inputs, as well as between the output variables and controlled variables. (Parnas’
approach does not distinguish between the environment and platform; our proposed
enhancement makes such distinctions explicit, in a way which we believe adds engi-
neering value.)

Jackson’s approach is not constrained to embedded systems, and so does not iden-
tify specific classes of variables. It does however introduce the notion of domain
models, which encapsulate properties of the wider system; these can be used to repre-
sent the nature of the environment, platform and embedding system. Thus, for exam-
ple, a domain model could be used to explain the relationship between the monitored
and input variables in Parnas’ approach. Both approaches are relevant to the devel-
opment of embedded systems; but experience with embedded systems such as
FADECs suggests the need for an elaboration of these models.

In Parnas’ approach the behaviour of the physical environment (Nature) is de-
scribed by a relation, NAT. The basic model is illustrated in Fig. 1, which shows the
system decomposition on the left and the relationship of elements of the specification
set on the right:
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Fig. 1. Representation of Parnas’ Four Variable Model

The arrows from the platform are the monitored variables; the reverse arrow is the
controlled variable. In the case of an engine controller many of the inputs are envi-
ronmental properties, e.g. air pressures, at defined points in the engine; other are spe-
cific properties of the engine, e.g. shaft speeds.

The input and output variables relate to the control computer and software. The
sensors (e.g. S1) map the monitored variables to inputs, represented by relation® IN,
and the actuators (e.g. A1) map the outputs to the controlled variables, represented by
relation OUT. (Here we have made the decision to align IN and OUT with elements
of the embedding system.) REQ gives the required behaviour in “real world” terms
(environment and platform); SOFTREQ is the analogous specification at the level of
computing system and software. A control interface is also shown; this would be a
cockpit interface if the platform were an engine. The interface can be thought of as a
further set of monitored, controlled, input and output variables, albeit with a very dif-
ferent inter-relationships determined by the design of other systems on the aircraft.

In problem frames, the domain models would encompass necessary properties of
the environment, platform, the embedding system, the sensors and actuators — NAT
(with a wide scope), IN and OUT in Parnas’ terms.

1 Note that by a relation Parnas is referring to a trajectory or time-indexed relation between variables.



3 Development Models — First Proposed Enhancement

An important practical consideration regarding domain modelling and the elucidation
of NAT, REQ, IN and OUT is how to manage the considerable complexity that may
be inherent. From our experience with aerospace applications we are aware of many
subtleties to be addressed. A key concern is to reflect better the role of the embedding
system, and to distinguish it from the environment and platform. Our view is that
such distinctions provide a useful basis for abstraction, and that they need to be ac-
knowledged and clarified within the development model. By achieving a greater
separation of concerns, we believe it will be easier to develop and validate specifica-
tions and to handle change.

A further problem that we need to contend with is the difficulty of sensing key
properties of the environment/platform. For example it is not practical to manage en-
gine thrust directly — although it is a key controlled variable — instead it is necessary
to use surrogates such as shaft speed or engine pressure ratio.

Our first proposal is, therefore, to enhance the environmental model by adding ad-
ditional variables. Thus, in addition to monitored/controlled variables and in-
puts/outputs, we might further distinguish:

e sensed and actuated variables: those real-world variables? which are affected di-
rectly by the system under development, and which are influenced by/influence the
monitored/controlled variables;

e embeddinginput and embeddingOutput variables: those variables which represent
the inputs and outputs of the embedding system.

Thus, for instance, whilst REQ might still define the high-level requirements
(thrust in terms of demand), we could also distinguish EFFECTREQ over sensed and
actuated variables and EMBEDDINGREQ over Embeddinginput and Embed-
dingOutput variables. We would also need to provide the equivalent of the IN/OUT
relations to define how the new variables are related. For example, INgy, could de-
scribe the relationship between the real-world “sensed” variables and the inputs to the
embedding system. See Fig. 2.

We can illustrate the above principle by revisiting the earlier engine example. The
monitored variables are demands, temperatures, pressures and shaft speeds; the con-
trolled variable is thrust. The sensed variables are the same as the monitored vari-
ables, whereas the actuated variable is fuel flow. The inputs to the embedding system
might be analogue electronic signals from several sensing devices (with multiplex re-
dundancy for some of the sensed variables). The output might be control signals to a
stepper motor which changes the “throat” on a control valve. Finally, the inputs to the
computer are digital representations of the analogue sensor inputs, and the output is a
digital representation of the stepper motor signal. The relation INgqy, in this context
would relate the sensed input signals to the real-world variables they are sensing —
this might reflect assumptions, for instance, about “noise”.

2 E g. shaft speed.
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Fig. 2. Elaboration of Environmental Model

It is now possible to state the relationships between the various abstractions:

EMBEDDINGREQL IN - SOFTREQ — OUT
EFFECTREQ L INgy, — EMBEDDINGREQ — OUTgy,

Where E is the appropriate refinement relation, and — represents composition
of Parnas’ relations.

The above is a generalisation of the usual relationship between REQ and IN,
SOFTREQ and OUT. However, once in the “real world” this generalisation, whilst
valid, may be impractical to define as the relationships between sensor/actuator vari-



ables and monitored/control variables are likely to be too complex to represent as
IN/OUT style relations between interface® variables (c.f. closed-loop control). Instead
we would propose the following:

NAT is defined as a relation over all monitored/controlled and sensed/actuated
variables, representing a model of the real world.

REQ is defined as a relation over monitored and controlled variables, with the con-
dition that:

NATE REQ

i.e. that REQ is consistent with (a refinement of) NAT.
EFFECTREQ is defined as a relation over sensed and actuated variables, with the
condition that:

REQ \ ((monitored L controlled) \ (sensed L actuated)) = EFFECTREQ

i.e. that EFFECTREQ is consistent with REQ (where all monitored/controlled vari-
ables that are not also sensed/actuated variables have been hidden).

Finally, although we have distinguished an embedding system, for certain applica-
tions there may be a hierarchy of embedding systems. Thus, it may be desirable to
distinguish more than one set of embedding system variables and requirements etc.
We presented the “simple” case as an example of the general case.

4 Development Models — Second Proposed Enhancement

SOFTREQ is expressed rather monolithically. In fact there will be computing hard-
ware, application software and also other software elements, e.g. an operating system,
functions for managing faults, etc. Our second proposal is to elaborate the four vari-
able model as shown in Fig 3.

This expanded model shows further decomposition of the software specification,
reflecting the hardware structure of the embedding system. The control system soft-
ware will include device drivers (represented as I/P and O/P) which will map the out-
put of the sensors to meaningful values in software, e.g. the output of a 6 bit A/D con-
verter to a temperature in degrees C, represented as an Ada variable; similarly O/P
represents drivers for actuators (note these may be complex and read back values
from actuators, running them “closed loop™). A hardware abstraction layer (HAL), or
primitive operating system, provides basic services such as scheduling, timers, etc.

The controller computer hardware is usually multiplex redundant, and there are of-
ten multiple sources of sensed data. Thus there is fault management and accommoda-
tion (FMA), or data selection, logic deriving “healthy” values from the various inputs
to provide validated data to the application. A “disconnect” is shown between IN and
I/P, and O/P and OUT to reflect that input/output variables may correspond to differ-
ent embedding system inputs and outputs depending on which input values are se-

3 |.e. between monitored and sensed, and between actuated and controlled.



lected. In highly critical applications, e.g. aircraft flight control, the validation and
data selection logic (dealing with redundant processing hardware, sensors and actua-
tors) might account for 80% or more of the embedded code.
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Fig. 3. Representation of Software Structure

In problem frame terms, the controller structure is another (part of the) domain
model. There is another important factor in such a development, the introduction of a
software architecture to structure the code. Jackson has been developing problem
frames in this direction [7]; this is important, but for brevity we focus here on more
“black box” specifications. Finally the definition of HAL seems to be a “free choice”;
in practice the application-programming interface (API) is likely to be defined by a
standard, e.g. ARINC653 [8].



5 Challenges for Formal Development

At one level the challenge for formal development is stated simply; provide a formal
process which:

o acknowledges the structure of the environment (cf. sensed/actuated, Embeddingin-
put/EmbeddingOutput variables);

e respects and supports the relationship of physical design decomposition and speci-
fications outlined in Fig 3.

It is possible to illustrate the challenge by considering formal software develop-
ment alongside some of the essential features of embedded safety-critical systems.

o refinement — the development process sits uneasily with the usual rules of refine-
ment, e.g. weakening pre-conditions and strengthening post-conditions. For exam-
ple, requirements will be met under normal conditions and under certain classes of
input failure, but will be violated when inadequate input data is available. The im-
portant thing to note is that the precondition representing “inadequate input data”
can not easily be expressed over the program variables; it is a “real world” prop-
erty. Thus, without adequate treatment of the problem structure external to the
software, one might have no recourse but to weaken the post-condition in this
situation. From a development process perspective, one abstract data value (moni-
tored), e.g. air pressure, may have multiple representations at different points in the
environment and software — “real-world”, “raw” values from sensors, value after
fault accommodation for that sensor, value after voting between alternative data
sources or derivation from other sensors etc. These “design steps” are not sup-
ported by the classical rules of refinement;

e continuous (e.g. closed loop) control — most embedded safety-critical systems use
some form of continuous control, at least for part of the system. Thus the software
is required to implement discrete approximations to continuous transfer functions,
transforming not just the values of interest but also their integrals and differentials.
The control engineers are interested in properties such as jitter, stability, etc. The
issue for formal development is linking the discrete specification (e.g. SPEC) back
to the continuous requirement, i.e. REQ;

e abstraction — it is hard to employ abstraction. The data being manipulated is a sim-
ple reflection of real-world properties, e.g. temperatures and pressures, making
classical data abstraction of little value. Other approaches, e.g. loose or algebraic
specifications, are also of limited relevance — it is necessary to specify precisely
what happens under all physically permissible circumstances to ensure safety, and
S0 on. Some state abstraction is possible, but abstraction is a “much weaker tool”
for embedded systems than in more classical “IT” systems;

¢ non-functional properties — the non-functional properties, e.g. timing, numerical
accuracy (to ensure stability of control algorithms) etc. are crucial aspects of “cor-



rectness”. Further, the functional and non-functional properties are not always
separable. For instance, the functional requirements for fault detection will depend
on timing requirements (e.g. the larger the interval between one reading and the
next, the wider the error bands which have to be set on valid inputs).

There are some proposed approaches to these problems, e.g. the work on re-
trenchment [9] and some direct approaches to deriving control system specifications
[10], but none of these address the range of problems outlined above.

6 Models for Safety-Critical Formal Development

Producing a formal development process which fully addressed all of the issues out-
lined above would be an enormous undertaking — and also, we would argue, unhelp-
ful. To address the above issues within a single formal notation it would be necessary
to formalise the relevant aspects of physics, including atmospheric and oceanic mod-
els for aircraft and ships, respectively, thermal properties of materials, e.g. fuels, sen-
sor dynamics, and so on. Clearly this is not practical — and, in any event, there are
well-established approaches for dealing with such issues in engineering practice. No
one (formal) technique can adequately incorporate all of the essential features of the
control system. For example, embedding control theory into a discrete formal method
is impractical (if not impossible), and one cannot rigorously analyse discrete software
elements in control theory.

Thus it seems that the strategy that should be adopted is to formalise “where for-
mality adds engineering value”, and make the links between formal development of
software and the relevant aspects of domain models external to the formalism itself.
However, this approach yields a secondary meta-modelling problem.

In many cases different dimensions to the problem space can be “separated” and
targeted by different forms of analysis, e.g. the concerted use of control theory, for-
mal specification and refinement, numerical analysis, scheduling theory and probabil-
istic/risk-based analysis. However, it is vital that the relationships between the vari-
ous techniques are properly understood, in order for example to ensure their mutual
consistency. The meta-modelling problem is crucial to the successful application of
formal methods.

In the approach we have been developing, known as Practical Formal Specification
(PFS), the interpretation of “where formality adds engineering value” has been to re-
cord assumptions which reflect the key parts of the domain models, and to conduct
validation of the specifications in the context of these assumptions. The term assump-
tion is used because these are properties which have to be assumed by the software
developers, and which cannot be “proven” as part of the (pure) software development
process. These assumptions often reflect properties of the embedding system or plat-
form, e.g. maximum rate of change of temperature (given thermal mass, and software
iteration rate). Thus the assumptions bring relevant parts of relations such as INgy,
into the realm of formal analysis.



7 Progress on Practical Formal Development

Our work on PFS initially started as a general analysis of where formality can add
most value; more recent work has centred on Matlab/ Simulink/Stateflow (MSS), the
development tool suite widely used by control systems engineers in industry. Our aim
has been to add formalism to MSS specifications in a non-obtrusive manner so that
the approach can be used by those already familiar with the tool without the need for
substantial retraining. There are three core elements to PFS [11]:

e notational restrictions to ensure that sound specifications are produced (MSS is, in
effect, a graphical programming language and it is possible to write very poor
specifications in MSS);

o representation of assumptions about the domain through annotations on the MSS
specifications, e.g. on the states of Stateflow (state machine) diagrams, represent-
ing the maximum rate of change of the model variables. These can be proven con-
sistent with assumptions on the root state, which are in turn rewritten (in weakest-
precondition style) into assumptions on the domain variables (these need to be
validated with domain experts, and can not be further analysed formally);

o rules for “healthiness” of specifications, e.g. disjointedness/completeness of transi-
tion triggers, self-consistency of specification and assumptions. These rules are
checked by an analysis tool known as SSA [12,13] (Simulink/Stateflow Analyser)
which extracts a semantic model of the MSS specification, a representation of the
assumptions and generates proof obligations for the healthiness conditions. These
conditions are discharged formally using a combination of automated proof and
model checking.

The PFS approach and SSA tool are influenced by the development models out-
lined above, and are intended to be a step towards resolving the identified challenges
for formal development. In terms of these challenges, progress (within PFS and SSA)
is as follows:

o refinement — the approach allows for the sorts of development steps outlined
above, especially stating and relating assumptions at different levels and checking
healthiness properties of the specifications. The relationships between the assump-
tions at different levels are checked, but the rules are probably too strict making
engineering practicalities, such as requirements concessions (for example to deal
with loss of sensor data), difficult to handle. There is an issue here regarding the
right balance between formally justifying model assumptions and relying on vali-
dation by other means;

e continuous (e.g. closed loop) control — as stated earlier, a controller represents a
transfer function, which maps inputs plus their differentials and integrals into out-
puts plus their differentials and integrals. Crucially, the PFS weakest precondition
analysis is based on (discrete representations of) differential pre- and post-
conditions, which allows us to do meaningful analysis of the transfer function
properties of the model. Currently, we can analyse, for example, simple assump-
tions which can be justified in terms of transfer function behaviour (e.g. a differ-



entiator or integrator). However, the analysis is never going to be a substitute for
control theory, and again there is a trade-off to be made between formalisation and
other forms of validation;

o abstraction — PFS and SSA support as much relevant abstraction as possible. Loose
definition of sub-system behaviour allows for a compositional approach. Loose
definitions are especially important for abstracting away from the details of con-
tinuous functions — such as those derived empirically from the domain. Such sub-
systems can at one level be described relationally — as function envelopes — carry-
ing enough information to ensure consistency with other parts of the model. In ad-
dition rate of change assumptions are particularly useful for abstraction in re-
quirements modelled as state-machines. The assumptions effectively scope the set
of circumstances to which the state-machine must react;

o non-functional properties — these are largely outside the scope of the method and
toolset at present. There are good tools for dealing with timing properties, but this
does not address the meta-modelling issue of their integration into the overall for-
mal development process.

PFS and SSA focus on validation of specifications; they are complementary to ap-
proaches, such as ClawZ [14,15], which focus primarily on the verification of code
against Simulink models.

8 Residual Research Challenges

There is much to be done towards an effective model of formal development; the
PFS/SSA approach addresses only some of the issues identified. There remain many
open problems, both at the modelling and meta-modelling levels, including:

e adequate treatment of control laws, i.e. validation of important control properties
such as stability. Note that this requires addressing timing properties within the
formal models;

o review of current restrictions on the approach with a view to enabling a wider class
of specifications to be addressed (without imposing any unnecessary constraints on
control engineers);

o dealing with non-functional properties in specifications;

e providing stronger links with the safety4 process, including effective treatment of
failure management code — for example, by using a concession-like approach such
as “otherwise clauses”, or by auto-generating fault accommodation code from
safety analysis results, e.g. failure modes and effects analyses.

Some of these issues are being addressed by projects of which the authors are
aware (many outside York); producing an integrated and usable approach remains a
major challenge.

4 Including probabilistic and risk-based analyses.



9 Conclusions

Development of safety-critical software is, in many respects, a “natural” domain for
application of formal methods. Despite the dictates of standards and some successes,
the use of “classical” formal techniques on embedded safety-critical code remains the
exception, not the rule. This paper has tried to articulate the technical (as opposed to
commercial and cultural) reasons for the limited use of formal methods on safety-
critical software, and outlined some of the characteristics which a formal develop-
ment process would need to have to be useful in such a domain.

We have outlined some of our work which addresses part of this broad challenge —
but acknowledge that there is much to be done, and many other “pieces of the jigsaw”
which need to be put in place to provide a fully fledged formal development process
for safety-critical software. It is hoped that, by articulating the vision for such a proc-
ess, it will help foster a better understanding of the technical challenges which need to
be met in this area, and thus stimulate constructive and collaborative work on the is-
sues.
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