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Abstract. Difficulties in reasoning about functional correctness and relational
properties of object-oriented programs are reviewed. An approach using auxiliary
state is briefly described, with emphasis on the author’s work. Some near term
challenges are sketched.

Formal verification depends on scientific theories of programming, which answer
questions such as these: What are good models of computational behavior? What be-
havioral properties of components are needed for modular reasoning about a composed
system? How can such properties be specified and a component be verified, or even
derived from its specification? How can a program and justification of its correctness
be revised in accord with small revision of its specification? Such questions have well
developed answers that are adequate for small programs under strong simplifying as-
sumptions. But many useful programs are quite large and built from complicated com-
ponents that violate simplifying assumptions.

The longstanding challenge of compositional reasoning remains substantially un-
solved. Object-oriented programs pose several challenges that are the focus of my re-
cent research, in which auxiliary state is being used to specify encapsulation boundaries
and disciplined interdependence. Section [2] explains the approach, accomplishments,
and challenges in terms of invariants for shared mutable objects. Section [3] addresses
relational properties including data refinement and secure information flow. This line of
research has been carried out for Java-like programming languages; I argue in SectionT]
for the importance of such languages. Some additional challenges pertinent to object-
oriented programming, but not tied to the main theme, are discussed in Section il A
detailed tutorial on the state-based approach to encapsulation advocated here appears
elsewhere [33]].

Several near-term challenges (1-5 years) are presented here in the setting of sequen-
tial object-oriented programs. Because the approach taken here is based on the use of
assertions, it is also quite relevant to verification of concurrent object-oriented programs
and low level imperative code.

1 Why Java-like language?
In order to develop theory for modular reasoning about large programs, we need a cor-
pus of large programs and automated support for experiments. Since I would like to do
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science that contributes to human good through improved engineering, the primary ob-
jects of study should be representative examples of large programs that are significantly
deployed and used. This means confronting programs written in notations like C, Java,
and C#—though not necessarily handling all of their features without restriction. Aside
from obvious pragmatic reasons for interest in Java-like languages, there are technical
reasons why such a language is a good point in the language design space.

— The language is sufficiently rich to express higher order design patterns which are
needed for well structured programs and used in common practice.

— Despite the preceding item, the language is essentially “defunctionalized” [42} 4]
owing to the binding of methods to classes rather than to instances. Thus relatively
simple semantic models are adequate, at least for large fragments of the language.
For example, my work discussed in Sections[2|and[3/has been done using a straight-
forward Scott-Strachey denotational semantics, for a fragment of Java including re-
cursive types, inheritance, mutable objects, and other features without restriction;
this model has been encoded in PVS [34]. Nipkow’s group and others have obtained
strong results using straightforward operational models [26].

— The module system (packages, generic classes, public/private/protected visibility)
embodies most of what current theory offers for scope-based encapsulation.

— The Java type system is name-based; named types provide a convenient hook on
which to hang specifications and encapsulation boundaries. In particular, it helps
deal with inheritance, which is widely used if problemmatic.

— Pointer arithmetic is absent. Parameter passing is by value and identifiers cannot
alias. Method declarations are not nested, avoiding the semantic complexity of ref-
erence to variables in enclosing scopes other than global scopem

These features are not without cost. Java programs make much use of global variables
(“statics”)—global in that they are in outermost scopes; this is mitigated in that the
scope of visibility may be a single class or package. Reflection, at least in full generality,
is a feature I see as a very difficult and long-term challenge for verification. This is
exacerbated in that reflection, like threads and permission-based access control, appears
in the form of special libraries rather than being distinguished with separate syntax.

Perhaps the highest cost is the ubiquity of aliasing in the sense of shared references
to mutable objects in the heap.

2 Heap encapsulation using auxiliary state

For modular reasoning in object-oriented programming there are several challenges.

1. Non-hierarchical control flow due to callbacks leads, even in sequential programs,
to interference like that in concurrent programs.

2. The conventional notion of layered abstraction is also subverted by non-hierarchical
control flow due to inheritance and method overriding.

! Compare the complexity of Idealized Algol models [44] with Modula-3 and Oberon, where
non-local references are restricted for those procedures that are passed as arguments or stored
in variables [32].



3. Design patterns that are essentially higher order are often used, but unlike in func-
tional programming the encapsulation aspects are not explicit in the program text,
owing to data representation based on shared heap objects.

4. Functional aspects of such patterns are also not specified formally, for lack of good
models (compare “map” in functional programming with the “Visitor” pattern).

The second challenge is addressed by the notion of behavioral subtyping which is well
understood [29], 20] except that the extant theories do not fully deal with the first and
third challenges.

For the fourth challenge, which we discuss in Section[d] one might argue that at best
we should aim for verifying simple safety properties. Indeed, in his VSTTE talk Bart
Jacobs said that full functional verification of nontrivial Java programs is impractical.
But for realistically complex systems, attempts to verify simple safety properties lead
to the need for more general properties, especially object invariants.

For the first and third challenges, progress is being made using auxiliary state to
express encapsulation using assertions. That is the topic of this section, which focuses
on object invariants. More extensive discussions and citations on these topics can be
found in Miiller’s VSTTE paper [31] and my survey paper [33]].

Non-hierarchical control flow. As an example of the first challenge, consider a sensor
playing the role of Subject in the Subject/Observer pattern [22]]. The sensor maintains a
set of registered Views: when the sensor value reaches the threshhold v.thresh of a given
view v, the sensor invokes method v.notify and removes v from the set. This description
is in terms of a set, part of the abstraction offered by the Subject; the implementation
might store views in an array ordered by thresh values. The pattern cannot be seen
simply as a client using an abstraction, because notify is what is known as an upcall to
the client. The difficulty is that v.notify may make a reentrant callback to the sensor.
Some callbacks are quite sensible, e.g., the view could query the sensor value. But
trouble is likely if v.notify invokes a method to enumerate the current set of views.
While notifications are under way, the array may be in an inconsistent state—is v in
the set? in the array?—ryet the enumeration method may assume as precondition the
sensor’s invariant. Non-hierarchical control flow renders naive reasoning about object
invariants unsound.

The problem is similar to interference in shared-variable concurrency, for which
there are several established and well understood solutions. For the reentrant callback
problem, which already occurs in sequential code, the situation is less settled, although
the probem is a frequent cause of insidious bugs. Various solutions have been proposed:

— Establish caller’s invariant before every method call. But this is impractical in many
cases: most calls do not result in reentrant callbacks and good use of abstraction in
design leads to many calls to substructures while a super-structure’s invariant is
temporarily violated.

— Use concurrency locks. But this leads to deadlocks in the sequential case.

— Use temporal specification of allowed calling sequences. This can be heavy handed
and violates abstraction by making method calls visible. Moreover, verification of
such properties requires the whole program in general.



A more promising approach begins by making the invariant an explicit precondition on
those methods that assume it, like the enumerator in the example. This precondition
cannot be established by client v attempting a reentrant callback, unless in fact the
sensor restores its invariant before invoking v.notify.

An object invariant Z ought not appear in the precondition of a public method, as
that could expose the internal representation. Various techniques have been proposed to
hide information, e.g., treating 7 in a precondition as an opaque predicate [14} [15], a
typestate [19]], a call to a pure method, or a model field [30} 25].

We advocate the approach of Leino et al [8l], known as the Boogie methodology
or the inv/own discipline. We give a simplified account sufficient for discussion. The
discipline uses a ghost (auxiliary) ﬁelcﬂ inv of type boolean which represents whether
the invariant of o is in force, just as a programmer might do using an ordinary field.
There are several associated proof obligations; together they embody a discipline that
ensures the following is a program invariant, i.e., it holds in all reachable states:

(Vo | oinv = Z(o0) ) (D

Informally: for each allocated object o, the object’s invariant holds if o.inv = true.
Thus within the body of a method with precondition inv, one can exploit the invariant
7 while exposing to clients not the predicate Z but only the boolean field inv.

Heap encapsulation. Besides its own fields, an object may depend on some objects that
serve as its internal representation. This can be represented using another auxiliary field
by which an object points to its direct owner, if any. An object’s invariant is allowed
to depend only on objects it transitively owns. An associated program invariant is that
o.inv implies p.inv for every object p owned by o. If an object is in a consistent state
then so are its representation objects. This invariant is maintained owing to a proof
obligation: update of a field of an object p has as precondition that p.inv = false. So,
if an object p is susceptible to update then not only may Z(p) be temporarily violated
but also if p is part of the representation of some object o then also 0.inv = false and
Z (o) may be temporarily violated.

Ownership imposes a forest structure on the heap, separating encapsulated data
from clients. Ownership types [18| 2] embody this idea and an account of the resulting
encapsulation has been given in terms of the theory of representation independence [J5].
But it has proved difficult to find an ownership type system that admits common de-
sign patterns and also enforces encapsulation sufficiently strong for modular reasoning
about object invariants. In particular, many examples call for the transfer of ownership
(e.g., in resource management) and this does not sit well with types.

An alternative to types is separation logic [45] [39]. In separation logic, owning an
object p has been equated with having a precondition dependent on p. A modest chal-
lenge is how to scale the logic up to classes (instantiable abstractions) instead of single-
instance modules. A bigger challenge is how to cope with the fact that in object-oriented

2 For our purposes, a model field is an auxiliary field, the value of which is defined as a func-
tion of other state, whereas the value of a ghost field must be updated by explicit auxiliary
assignments.



languages, the object is the unit of addressability but some fields are inherited and oth-
ers (to be added in subclasses) are not known to the modular reasoner. Parkinson and
Bierman [41} [14] have taken initial steps and their treatment of encapsulation has been
given an acount in terms of higher order separation logic [13| [15]. By contrast with
separation logic, the approach described here is compatibility with standard logics and
specification notions, which can leverage existing tools and programmer expertise.

One advantage of encoding ownership with a ghost field is that transfer is straight-
forward; the field is mutable. In combination with the invariant-tracking field inv, the
discipline [8} 28] expresses very directly the flow of control in and out of hierarchical
encapsulation boundaries even as those boundaries are mutated.

The most exciting advantage of the approch is that it generalizes to more elaborate
patterns. Ownership is concerned with a single object and its representation. Already the
pattern of iterators is problemmatic, in that an iterator needs access to the representation
objects of its associated collection but a collection is not owned by its iterators. There
are many situations where several publically-accessible objects cooperate to provide an
abstraction, so their individual invariants need to depend on non-owned objects. Just as
the owner field records a dependence that can be taken into account in reasoning, one
can use a ghost field to record the dependence between peer objects.

This idea has been developed in the simple case of one object’s invariant depending
on another: the “friendship” discipline [37, [10] imposes modular obligations on both
dependee and dependant, so (1)) is maintained even when an invariant Z depends on
non-owned objects. A field deps is used so that p.deps is a set of object references that
includes all o that could have an invariant currently dependent on p that is not licensed
by ownership.

The friendship discipline has been successfully applied to several design patterns
including iterators [38] and Subject/View [10], but it does not seem likely that there
is a single such discipline sufficiently general to handle every situation. I believe that
by using auxiliary state to record encapsulation boundaries for heap structure, we can
formalize a number of generally applicable specification patterns. Interactive theorem
proving or just pencil and paper can be used to show that the associated global invariant
is a consequent of the pattern’s stipulated annotation discipline. Automated first-order
provers may then be used to discharge the assertions in particular instances of the pat-
tern, treating program invariants like (1)) as axiom schemes.

For patterns that can be specified using just ownership, the Spec# system imple-
ments the Boogie methodology using a first-order prover as discussed in the VSTTE
paper of Barnett et al [9]. Ownership can also be encoded in the JML specification
language which is being used in a number of verification systems, as discussed in the
VSTTE paper of Leavens and Clifton [27]. There is impressive agreement about syn-
tax but the semantics is neither formalized nor entirely consistent between projects.
Within a 5-year time frame it should be possible to provide a foundational logic for
JML, encompassing encapsulation (via scope and via auxiliary state), reentrancy, and
behavioral subtyping. This would serve to integrate and assess, in particular helping to
ensure that the axiomatic semantics embodied in some tools is sound with respect to
an (idealized) operational semantics. Concurrency specification is less developed but a
sound treatment using strong atomicity assumptions should be within reach [46].



3 Relational properties

By relational property I mean notions like simulation, where a pair of programs preserve
some relation. The most important relational property is preservation of a simulation be-
tween implementations of an abstract data type —yielding modular proof of program
equivalence or data refinement. Another is noninterference in the sense of secure infor-
mation flow and dependency analyis [[1,/47], which in turn can be used to justify use of
impure method calls in specifications [36]]. Sampaio et al developed a refinement cal-
culus for a subset of Java [[16] and implemented a tool that applies general refactoring
transformations that are validated on the basis of a theory of data refinement [[17].

The latter theory is only sound in the absence of heap sharing. Anindya Banerjee
and I have adapted the inv/own discipline to support representation independence [7]],
i.e., soundness of simulations for proof of program equivalence with heap sharing. In
five years it should be possible to integrate these theories to encompass refinement and
shared heap objects, allowing as units of encapsulations multiple classes and more im-
portantly small configurations of cooperating objects (e.g., a set and its enumerators).
An associated milestone would be a refactoring tool, say for Java’s Eclipse develop-
ments environment, that applies semantically validated transformations.

Benton [12] and Yang [S0] propose relational Hoare logics in which the basic cor-
rectness condition takes the form

Ry, (P) @

where S and S’ are commands, R and @) are relations. The meaning is that running
S in parallel with S’ on a pair of R-related states yields P-related final states. Amtoft
et al |3] axiomatize a relational Hoare logic for the special case of noninterference,
using special syntax in assertions to specify relations between heap regions for precise
reasoning about sharing. These logics merit further development and machine support.

Relational properties can be proved using extant tools for ordinary correctness. The
idea is make two copies of the state space and somehow compose the related programs
together in such a way that relations are predicates and the relational property is reduced
to a Hoare triple [21}, 43} [23] 49| [11]]. Essentially, is reduced to {R}S; S’{P}. This
has been called the auxiliary variable technique, Reynolds’ method, and pair compo-
sition among others. Making two copies of a state given by explicit variables is easy;
just make a renamed copy of the variables. For the heap, the relevant relations typi-
cally involve a partial bijection on addresses [, 6] and this needs to be encoded in a
single heap. I have recently used ghost variables to encode heap-based relations and
thereby adapt the pair composition technique to Java programs [35]]. This technique can
leverage existing verification tools; experiments using ESC/Java2 and Spec# have been
promising.

There is a difficulty with this technique. It already appears in the special case of
noninterference, where in S’ is a renamed copy of S. Terauchi and Aiken [49)]
experimented with this case, called self composition, and found that even when R, P
are very weak, a strong assertion is needed at the semicolon in {R}S;S’{P}. They
also show how type-based analysis that conservatively approximates noninterference



can facilitate automation of self composition technique, by justifying transformation of
S; S’ into a better, interleaved form. Similar transformations are especially useful for
the ghost assignments needed to use the technique with the heap As I point out in [35]],
such transformations are exactly the kind Benton aims to account for [12].

It is debatable whether a specialized relational property like noninterference merits
much attention in the Program Verifier project. But the importance of data refinement
seems clear. While the pair composition technique is attractive in that it can encode
relations in an ordinary specification logic like JML, such logics are not so expressive
in terms of high level mathematical abstractions. For my small experiments [35]],  used
ad hoc specifications but in general what is needed is to express the pair encoding of
heaps using something like friendship invariants.

Within five years we should be able to develop a theory of relational Hoare logic
encompassing the heap and inheritance that is complete and which supports the nonin-
terference transformations as derived laws. We should also be able to extend the theory
and implementations of verifiers like ESC/Java2 and Spec# to support a sufficiently ex-
pressive specification language for pair composition. This would avoid the need to build
tools specific to relational Hoare logic.

4 Design patterns, higher order logic, and refinement

Regions of the heap, such as a small configuration of objects and their transitively
owned representations, are often the focus of reasoning. Why are heap regions sec-
ond class? In separation logic, quantification over predicates is needed for interesting
specifications, in part because patterns of heap structure are expressed using separation
at the level of predicates. Moreover, sound reasoning about invariants depends on them
being supported by a definite region of the heap [40]. In the inv/own discipline, rele-
vant sets of objects are determined by owner paths. In neither case are regions directly
manipulated. Why not expressions describing regions? Reynolds [45] mentions ghost
variables ranging over heaps, but this is not available in extant work on higher order
separation logic [15}13].

Kassios introduced something akin to expressions for regions [25]. He uses model
fields to express encapsulation in a way somewhat different from the Boogie approach.
Whereas the latter protects Z (o) by restricting it to depend on objects p that record
the dependence in an auxiliary field of p (i.e., p.own or p.deps), Kassios uses a field
of o to hold the refs to all objects on which Z(0) currently depends. The fact that this
field conservatively approximates the current footprint of Z (o) can itself be expressed in
assertions Kassios” methodology is quite flexible, in a way reminiscent of separation
logic, and it elegantly handles some of the leading examples for the Boogie/friendship
discipline. But the development is at an early stage.

In five years it should be possible to specify and verify programs such as application
level resource managers by directly describing the heap regions on which they act —

3 A suitable type-based analysis for Java-like programs was developed in [6].

* The construct “f frames E” says that the heap objects on which expression F depends are
contained in object set f. This is a second order condition, but there appear to be adequate first
order laws for reasoning with this as an uninterpreted predicate.



thus making transparent their frame properties. Better still, comparative case studies
would serve to assess the alernative approaches we have mentioned.

Region notation would be especially useful for describing configurations of objects
in design patterns, now expressed informally with various diagrams. I am aware of no
convincing functional specifications for basic design patterns such as Visitor or Ob-
server. Are there useful first-order specifications? Higher order? Absent a general func-
tional specification, how can an instance of the pattern be specified in order to verify
“structural integrity” of a system [24] and even functional correctness of the particular
instance?

In five years it should at least be possible to verify absence of runtime errors in a
10Kloc Java application making use of inheritance and design patterns such as these.

An interesting aspect of the popularity of design patterns is that software engineers
are increasingly familiar with the distinction between abstraction and modular structure
in design versus in coding. Java, for example, offers classes and packages but no spe-
cialized construct for the visitor pattern or for the iterator pattern. Furthermore, “model
driven development” emphasizes the construction of multiple linked artifacts, where
again some high level structure need not be manifest in the lower level artifacts such as
source code. This trend is hardly surprising to formal methods researchers and indeed
it was emphasized long ago by Parnas. It offers some hope in moving away from rigid
attachment to feature-rich monolithic languages (see also Abrial’s VSTTE paper).

Since object-oriented design patterns show how to embody, in a conventional lan-
guage, abstractions that are not directly expressed, one can hope for formal specification
of a pattern as a refinement. This could provide an alternative to annotations as means
to move software engineers towards writing formal specifications.
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