
Towards a Worldwide Verification Technology

Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbrücken, Germany
wjp@wjpserver.cs.uni-sb.de

1 Introduction

Verisoft [1] is a large coordinated project funded by the German Federal Govern-
ment. The mission of the project is i) to develop the technology which permits the
pervasive formal verification of entire computer systems consisting of hardware,
system software, communication systems and applications ii) to demonstrate in
collaboration with industry this technology with several prototypes. During the
fall and winter of 02/03 this project was planned by a task force headed by the
author.

This task force had to face issues very closely related to what we have dis-
cussed in Zurich and we have lived now with the decisions made early in the
year 2003 for more than two years. Based on this—mostly positive—experience
we make eight scientific, technological and administrative suggestions for the
worldwide coordination of efforts in software verification.

2 Basic Research Versus Technology

Basic research identifies fundamental effects and laws. It also develops laboratory
prototypes. Laboratory prototypes demonstrate, how newly discovered laws and
effects may be applied: something like a laboratory prototype is expected to work
in engineering. Turning this prototype into a component of a technology is left
to the engineers. It requires the elaboration of details which are judged to be
boring from a basic research point of view.

A component of a technology must work as it is. And it does not work in
isolation. All components of a technology must work together as they are. The
world of engineering technology is a binary world; time to work out details is
(or at least should be) over: things work or they do not work. Imagine you are
dying in an airplane crash due to bad software. That fixing a single line of code
would have saved your life is no consolation whatsoever.

In the past, research in the field of verification has stressed the basic research
aspect, very much at the expense of the engineering aspect. As a consequence,
we now have CAV tools which are numerous, ingenious and often even powerful;
because that is appreciated and rewarded in basic research. But i) the land-
scape of our tools is still very poorly integrated and ii) for many of our tools
it is not clear whether they prove correctness with respect to exactly the right
specifications.



Clearly, something like the specifications we are presently using will even-
tually permit to prove the correctness of big pieces of software. But then, it is
also very likely that something like the original software would work in the first
place.

3 Right Specifications and Stacks

A specification can be bad for two reasons:
i) It does not capture the user’s intention. In general this cannot be discovered

by mathematical methods alone. ii) In a computer system with layers, it does
not permit to deduce desired properties of the next layer upwards or it cannot
be proven using properties from the layer below.

Fortunately there are no principal difficulties to test, whether a specification
works together with correctness theorems of other system layers. One simply
tries it. That it can be done has been demonstrated as early as 1989 in the
famous CLI stack [2]. Experiences since 2003 with far more complex stacks in
the Verisoft project are also very encouraging.

We therefore judge it necessary, that the development of a technology for
software verification has to be carried out in the context of the verification of
entire stacks.

A case study: compilers in stacks We inspect three well known sources of defini-
tions of programming language semantics: i) the classical Hoare/Wirth paper on
Pascal semantics [3] ii) the textbook of Nielson and Nielson [4] iii) the textbook
of Winskel [5].

In [4, 5] variables can range over the natural numbers. For a program running
on a finite processor there is no way to prove this. In contrast, int is a finite data
type in [3]!

Real programs run under operating systems and they perform I/O. Their
computations are interleaved with the computations of other programs. Mod-
elling this requires small steps semantics. Thus one cannot rely exclusively on
the (big steps) definitions in [3].

Nevertheless the definitions of [3] are a component of engineering technology.
Because theorems proven in Hoare logics hold in the corresponding small steps
semantics (for the proofs see e.g. [4, 5]) they can be used exactly as they are
to prove properties of terminating portions of programs. Experience from the
Verisoft project suggests that this should by all means be done: productivity
with Hoare logics is much higher than with small steps semantics alone.

If the verification of an operating system is also part of a project, then conven-
tional small steps semantics alone does not suffice either: one needs to consider
in line assembler code for the following reasons: i) arguing in high level lan-
guage alone is impossible: an operating system written in high level language
alone could see in its own variables neither the processor registers nor the user
processes. ii) arguing on the assembler language level alone (as was done in [2])
would not be productive enough.



4 Paper and Pencil Theory

Let us assume that we succeed to formally verify a complex stack. Then we can
necessarily produce a human readable transcript of the formal correctness proof.
This proof would be part of a big unified theory of computer science which would
i) be (at least!) as stringent as the classical mathematical theories, ii) include in
a unified way big parts of what is today called theoretical computer science, and
iii) have real systems as examples.

We believe that progress will be faster if this theory is developed first with
paper and pencil. In the language of G. Hotz these paper and pencil proofs then
can serve as building plans for the formal proofs.

A case study: from gates to user processes i) Hardware is easily specified in
the language of switching theory. ii) The random access machines of theoretical
computer science are appropriate for specifying instruction sets. iii) Small steps
semantics of high level languages is specified by abstract interpreters. iv) var-
ious models for distributed computation permit to treat communicating user
programs.

Clearly in a verified stack one needs simulation theorems between different
layers. Processor correctness is between models i) and ii). Compiler correctness
is between models ii) and iii). Operating system correctness—with the scheduler
abstracted away—is (because of the in line assembler code) between models
ii) and iv). In the Verisoft project the paper and pencil proof for operating
system correctness required the introduction of two more parallel models of
computation between models ii) and iv): one for operating system kernels and
one for operating systems without abstracting away the scheduler.

5 Standardizing Language and Tools

Worldwide cooperative effort is impossible without establishing a common lan-
guage. In software engineering there is a small number of standard programming
languages, among them C and Java. The semantics are admittedly not too well
defined, but compilers of a small number of large vendors establish a small num-
ber of de facto standards.

For the establishment of a worldwide verification technology we need as a
counter part a small number of standard CAV systems. They should be

1. cheap mass products maintained by companies
2. universal: formalization of arbitrary mathematical statements and arguments

should be reasonably straight forward. Presently interactive high order logic
provers seem the best candidates.

3. easily extendible by automatic tools; interfaces to do this must be open.
Without such interfaces we close the door to continuous increase in produc-
tivity.

Only with compatible standard tools can different groups of engineers ex-
change or trade (!) proofs. In the Verisoft project the standard tool is Isabelle/
HOL [6].



6 Standardizing Definitions

Some crucial formal definitions should be standardized and maintained (in stan-
dard language) in downloadable form on certain web sites. Examples are i) the
semantics of some standard instruction sets (note that this includes the IEEE
floating point standard). ii) small steps semantics and Hoare logics for C and
Java iii) the semantics of certain standard real time operating systems (such
standard systems exist for instance in the automotive industry).

7 Establishing Repositories of Verified Standard
Components

For all standard components of computer systems both i) verified constructions
and ii) their formal correctness proofs need to be made available in repositories.
Clearly, for an industry of computer system verification, formally verified compo-
nents from the following list are indispensable: i) processor with optional mem-
ory management units and I/O devices, ii) assembler and linker, iii) optimizing
compiler for object oriented languages, iv) operating system kernel, v) operating
system, vi) distributed real time operating system, vii) interface compiler sup-
porting port mapper and client-server RPC mechanisms, viii) TCP/IP, ix) mail
server, x) electronic signature server, and xi) several cryptographic protocols.

Except for compiler optimization and object orientation all items of the above
list are milestones of the current Verisoft project. Whenever possible, construc-
tions and arguments from established textbooks were taken as a starting point
for the development of the system components and the correctness proofs.

8 Rewarding Engineering Work

Even the best technical decisions are useless if they are not supported by project
members. Students will be reluctant to do work which will not lead to a thesis.
Researchers at universities will be reluctant to do work which they cannot pub-
lish. We must therefore give proper rewards for the engineering aspect of our
work. In particular we have to establish a forum for the following kind of results:

1. The integration of known automatic methods in known interactive provers
if that increases the productivity on large realistic benchmarks. This in turn
requires the publication of such benchmarks in a form which is easy enough
to read; putting existing large formal proofs on the web is not enough. In
the Verisoft project we are working on such benchmarks together with the
Southern Methodist University at Dallas.

2. The ‘mechanization’ of existing paper and pencil correctness proofs for major
system components in a CAV system, if similar proofs were not mechanized
before. In an engineering sense one can simply not trust paper and pencil
proofs alone; in this respect we agree with [7]. In contrast a mechanized proof
establishes not only trust in the verified component. It also shows, that the



line of arguments that is used is complete and hence should work in future
similar proofs.

Failing to reward the engineering aspects of our work as highly as the basic
research aspects will slow down the development of technology.

9 Summary of Suggestions

In order to help establish a worldwide technology of software verification the
author suggests to

1. clearly recognize the difference between basic research and engineering,
2. to study stacks in order to get specifications right,
3. produce paper and pencil proofs first,
4. recognize the need for a grand unified theory of computer science,
5. agree on a small number of standard tools permitting both interactive and

automatic work,
6. standardize key definitions,
7. make formally verified standard constructions available in repositories and
8. establish a proper reward structure for results with a strong engineering

flavor.

In Verisoft, the standard processor is a DLX machine with memory manage-
ment units [8]. Formal verification in PVS is complete; proofs are presently being
ported to Isabelle/HOL. The standard language is C0; in a nutshell this is Pascal
with C syntax. COA is C0 with in line assembler code. We are using small steps
semantics for C0 and C0A. A Hoare logic for C0 is used to increase productiv-
ity [9]. Formal verification of a non optimizing C0A-compiler is expected to be
completed in early 2006 [10]. Formal verification of an operating system kernel
written in C0A is expected in 2006 [11]. Paper and pencil theory for processors
with I/O devices and real time systems can be found in [12] and [13].

References

1. The Verisoft Consortium: The Verisoft Project. (http://www.verisoft.de/)
2. Bevier, W.R., Hunt, Jr. W.A., Moore, J.S., Young, W.D.: An approach to systems

verification. J. Autom. Reason. 5(4) (1989) 411–428
3. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language

PASCAL. Acta Inf. 2 (1973) 335–355
4. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction.

Wiley (1992, revised online version: 1999)
5. Winskel, G.: The formal semantics of programming languages. The MIT Press

(1993)
6. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)
7. Millo, R.A.D., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems

and programs. Commun. ACM 22(5) (1979) 271–280



8. Dalinger, I., Hillebrand, M., Paul, W.: On the verification of memory management
mechanisms. In Borrione, D., Paul, W., eds.: Proceedings of the 13th Advanced Re-
search Working Conference on Correct Hardware Design and Verification Methods
(CHARME 2005). Volume 3725 of LNCS., Springer (2005) 301–316

9. Schirmer, N.: A verification environment for sequential imperative programs in
Isabelle/HOL. In Baader, F., Voronkov, A., eds.: Logic for Programming, Artificial
Intelligence, and Reasoning, 11th International Conference (LPAR 2004). Volume
3452 of LNCS., Springer (2005) 398–414

10. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 com-
piler: Code generation and implementation correctness. In Aichernig, B., Beckert,
B., eds.: 3rd International Conference on Software Engineering and Formal Meth-
ods (SEFM 2005), 5-9 September 2005, Koblenz, Germany. (2005) 2–11

11. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of
operating system kernels. In Hurd, J., Melham, T.F., eds.: 18th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2005). Volume
3603 of LNCS., Springer (2005) 1–16

12. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the
context of pervasive system verification. In: ICCD ’05, IEEE Computer Society
(2005) 309–316

13. Beyer, S., Böhm, P., Gerke, M., Hillebrand, M., In der Rieden, T., Knapp, S.,
Leinenbach, D., Paul, W.J.: Towards the formal verification of lower system layers
in automotive systems. In: ICCD ’05, IEEE Computer Society (2005) 317–324


