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1 Introduction

When considering the program verification challenge [8] one should not forget a
lesson learned in the testing community: when it comes to industrial size pro-
grams, it is not realistic to expect programmers to formally specify their program
beyond simple assertions. It is well known that large parts of real code cannot be
described naturally with high level invariants or temporal properties, and fur-
ther that it is often the case that the process of describing what a code segment
should do is as difficult and at least as complicated as the coding itself. Indeed,
high-level temporal property-based testing, although by now supported by com-
mercial tools such as TEMPORAL-ROVER[4], is in very limited use. The industry
typically attempts to circumvent this problem with Regression Testing, which
is probably the most popular testing method for general computer programs. It
is based on the idea of reasoning by induction: check an initial version of the
software when it is still very simple, and then check that a newer version of the
software produces the same output as the earlier one, given the same inputs. If
this process results with a counterexample, the user is asked to check whether it
is a bug or a legitimate change. In the latter case the testing database is updated
with the new ‘correct’ output value. Regression Testing does not require a formal
specification of the investigated system nor a deep understanding of the code,
which makes it highly suitable for accompanying the development process, es-
pecially if it involves more than one programmer. We propose to learn from this
experience and develop techniques for Regression Verification. The underlying
proof engine is still a certifying compiler as envisioned by the grand challenge,
so this proposal should be thought of as another application of this technology
that makes the verification picture more complete.

While formally proving equivalence between two programs is generally un-
decidable, if one is willing to sacrifice completeness this becomes not only a
decidable problem, but also one that can be built on top of existing tools. With-
out completeness, the equivalence problem can be reduced to one of proving an
assertion on a merged program (see next section), for which functional verifica-
tion techniques can be used. Thus, Regression verification should be thought of
as an additional layer, or dimension, to be dealt with as part of the verification
challenge.



When can Regression-verification be useful? A natural question to ask
is whether proving equivalence is relevant in the context of a real software de-
velopment process, as in such a process the program is expected to produce a
different output after every revision. While this is in general true, consider the
following scenarios, all of which are targeted by our approach:

— Checking side-effects of new code. Suppose, for example, that from version
1.0 to version 1.1 a new flag was added, that changes the result of the com-
putation. It is desirable to prove that as long as this flag is turned off, the
previous functionality is maintained. The RV tool we propose will allow the
user to express a condition (the activation of the flag in this case) under
which the two programs are expected to produce equal outputs.

— Checking performance optimizations. After adding an optimization of the
code for performance purposes, it is desirable to verify that the two versions
of the code still produce the same output.

— Manual Re-factoring (a popular set of techniques for rewriting existing code
for various purposes). To quote Martin Fowler [6, 5], the founder of this field,
‘Refactoring is a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external behavior. Its
heart is a series of small behavior preserving transformations. Each transfor-
mation (called a ’refactoring’) does little, but a sequence of transformations
can produce a significant restructuring. Since each refactoring is small, it’s
less likely to go wrong. The system is also kept fully working after each small
refactoring, reducing the chances that a system can get seriously broken dur-
ing the restructuring.” Equivalence proof, before and after refactoring, seems
valuable in this case.

This list demonstrates, but does not exhaust, the scenarios in which such a tool
can be used.
O
At the Technion we are currently developing a method for formally verifying
the equivalence of two closely related C programs, under certain restrictions
inherited from the functional verification tool we use. One of the main challenges
is to find ways to benefit from the similarity of the two programs, in order to
scale-up the verification system beyond what is currently possible for verifying
a single program. In particular, we are trying to make the complexity depend
only on the differences between the two programs (including the propagation of
these changes to other parts of the program), rather than on their original sizes.
We dedicate the next section for giving a brief description of this project, after
which we will summarize what we believe are the main challenges in making
verification by regression widely used.

2 Proving equivalence of two C programs

In the rest of this note we concentrate on C programs. Automated (incomplete)
verification tools that work directly on widely used programming languages such



as C were first made available only a few years ago. We are aware of three
categories of such tools: 1) Predicate-abstraction-based tools such as BLAST [7],
SLAM [2] and MAGIC [3], 2) Symbolic search of a bounded model of the program,
as in SATURN [14] and cBMC [10], and 3) Explicit state tools such as SPIN
(in combination with FEAVER [9]) and CMC [11]. Each of the tools in these
three categories is a candidate for serving as an infrastructure for Regression
Verification, although adapting each one of them for this task presents a research
challenge by its own right.

Our prototype implementation uses CBMC as the underlying decision proce-
dure, since it is one of the two tools (together with CMC) that supports full C
and C++. In the rest of this note we exclusively focus on this category.

2.1 The ¢BMC tool

cBMC [10], developed by D. Kroening, is a Bounded Model Checking tool for
full ANSI-C and C++ programs. For each loop ¢ in the given program, the
user is required to specify a bound k; on the number of iterations. This enables
CBMC to symbolically characterize the full set of possible executions restricted
by these bounds, with a propositional formula f. The existence of a solution to
f A —a, where a is a user defined assertion, implies that there is a path in the
program that violates a. Otherwise, it is still possible that the given bounds are
not sufficiently high. ¢cBMC allows the user to check whether the bounds are high
‘enough’ by generating special unwinding assertions for each loop. An unwinding
assertion for a loop i, given k;, is satisfied iff the condition of this loop cannot
be true after iterating k; times. Thus, CBMC can be thought of as a complete
tool as long as all the loops are terminating.

2.2 A Regression Verification tool for C programs

We started building a Regression Verification tool that generates a combined C
program that is unrolled and checked by ¢BMC. Our program performs several
simplifications and abstractions with Uninterpreted Functions as we explain in
Section 2.3. The user is involved in two phases:

— The user needs to supply a list of pairs
({label#1, expression#1), (label#2, expression#2)) . ..

representing his/her specification that expression#1 in the location specified
by label#1 in the first program, should always be equal to expression#2
in location label#2 in the second program. In other words, the sequence of
values of these two expressions in these locations should be equal regardless
of the inputs. A special case of this option is specifying that the outputs of
the program are equal.

— When a counterexample is found, the user needs to confirm whether it rep-
resents a bug or a legitimate change resulting from further development of



the investigated program. The problem is that there can be an exponential
number of examples due to a single change, so approving them one by one
is not a desirable option. We plan to give the user the option of describ-
ing symbolically the allowed changes between the two programs, and also of
determining dynamically the subset of outputs to concentrate on.

2.3 Optimizations with Uninterpreted Functions

Verification can be made simpler by using automated abstraction and decompo-
sition. In the context of proving equivalence, Uninterpreted Functions has proven
to be a highly effective tool (see, for example, the case of Translation Validation
[13,12]).

In the following description we use unprimed and primed variables to dis-
tinguish between variables that belong to the old (unprimed) and new (primed)
versions of the code. Consider, for example, a function intf(x;...x,) that is
syntactically equivalent to its counterpart int f/(z] ... z},) in the new code, and
assume that they do not call other functions. We would like in this case to hide
the content of f and f’ while assuring that if the input to both functions is
the same, then so is their output and side effects. Assume that f is reading the
values of the global variables in a set GG, and writes to a set of global variables
G (G, and G,, are not necessarily disjoint)!. We observe that if f and f’ are
called with the same arguments, and all variables in G, have the same values as
their counterparts in G. when f and f’ are called, then the return value of f and
f’ is the same, as well as the values in G,, and G/,. Based on this observation,
we represent the functions f and f/ with two new variables of type int, say f,
and f/, and add the following constraint:

(/\ Ty = :Ci AVg, € Gr.gr = gqlﬂ) - (fv = f{; AVGw € GG = g;u) (1)
=1

This type of (conservative) abstraction can be seen as a simple extension of a
method suggested by Ackermann [1], who considered the case in which there
are no side effects. There are various complications when using this kind of
simplification, some of which are:

— Recursive and mutually recursive functions require proofs by induction.

— A change in a function renders all its ancestors in the call-graph unsuitable
for replacement with Uninterpreted Functions. We attempt to minimize this
effect in two ways. First, we attempt to prove that although the two func-
tions are syntactically different, they are still semantically the same. Second,
we consider Uninterpreted Scopes, which are more fine-grained than Unin-
terpreted Functions, and hence less sensitive to the propagation of changes.

! We consider here local variables declared as static as a special case of global vari-
ables.



— Function arguments and global variables can be pointers, which makes Equa-
tion (1) unusable (obviously the two pointers represent different memory ad-
dresses). We are currently investigating various syntactic analysis methods
in order to be able to check, at least in some cases, whether two pointers
point to two isomorphic objects.

2.4 Summary

Comparing to existing C verification tools, all of which are property based, Re-
gression Verification has two things to offer. First, code that cannot be easily
checked against a formal specification can still be checked throughout the devel-
opment process by examining its evolving effect on the output (or, in fact, on
internal variables as well, which helps pin-pointing the cause for the difference).
Second, comparing two similar systems is in most cases computationally easier
than property-based verification?. The reason for this is that there are various
optimizations and decomposition opportunities that are only relevant when com-
paring two closely related systems. We described one such optimization based
on Uninterpreted Functions in section 2.3.

3 The road ahead

Verification by regression poses numerous technical challenges, some of which
are:

— Adapting other existing techniques for formally verifying a single program to
proving equivalence, most notably predicate abstraction. Our current choice
of the C language and the tool CBMC as a starting point is largely due to
the maturity of the tool rather than some deep theoretical reason.

— Achieving scalability and automation beyond what is possible in functional
verification. Abstracting portions of the program with uninterpreted func-
tions, as explained above, is one possible technique that is challenging by
itself in the presence of dynamic data structures, aliasing, arrays and so
forth. Various Static Analysis techniques (like Pointer Analysis and Shape
Analysis) seem relevant to this question.

— Identifying (either manually or automatically) what variables (outputs or
others) and in which locations should be equal in order to increase the con-
fidence in the correctness of the changes.

— Identifying the connection between functional properties and equivalence
properties: assuming that a certain early version of the program satisfies
some invariants or other high level property, which variables should be fol-
lowed through the evolvement of the program to guarantee that this property
still holds ? under which conditions this is decidable?

2 The same observation is well known in the hardware domain, where equivalence
checking of circuits is considered computationally easier in practice than model-
checking.



— Finding the ideal gap between two versions of the same program, for making

Regression Verification most effective. There is an apparent tradeoff between
larger gaps, which reduce the overhead of proving equivalence, and the ef-
fectiveness of comparing the two versions of the code.
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