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Abstract—We consider a problem of optimal allocation of
a homogeneous resource in spatially distributed systems such
as communication networks, where both utilities of users and
network expenses must be taken into account. The network is
divided into zones which leads to a two-level vector optimization
problem and involves non-differentiable functions whose values
are computed algorithmically. We propose several approaches to
find a solution. Also, new simple subgradient type methods for
non-differentiable Pareto optimization problems are suggested.
Their performance is illustrated by computational results on test
problems.
Index Terms—Resource allocation, spatial systems, communi-

cation networks, multi-objective optimization, non-differentiable
functions, subgradient methods.

I. INTRODUCTION

The necessity of distribution of limited resources in spatially
distributed systems where locations of elements must be taken
into account arises now in various applied problems related
to contemporary telecommunications, for instance, in such
emerging technologies as mobile ad-hoc networks and sensor
networks; see e.g. [1], [2]. Mostly, the decision making proce-
dures here are based on solutions of the corresponding scalar
optimization problems. As a rule, they are often represented by
high-dimensional linear programming problems which admit
various decomposition approaches. However, the contempo-
rary models of telecommunication systems lead to complex
nonlinear high-dimensional problems. Moreover, experience
of dealing with these very complicated systems usually shows
that a proper decomposition/clustering approach, which can
be based on zonal, time, frequency and other attributes of
nodes/units, might be very efficient here; see e.g. [3], [4].
Also, due to the presence of different factors, which must
be taken into account, multi-objective optimization problems
seem more suitable to their formulation. In this paper, we
consider one of such problems of optimal allocation of re-
sources in spatially distributed systems. Its criteria involve
non-differentiable functions whose values are computed algo-
rithmically. In the scalar case, such problems can be solved by
the usual optimization methods; see [5], [6]. We first describe a
right-hand side decomposition approach for the initial problem
and then propose several subgradient type methods to define its

solution. We present also results of computational experiments
which confirm the applicability of the new methods.

II. NOTATION AND THE PROBLEM STATEMENT

Let us consider a network with nodes (attributed to users)
which is divided into zones (clusters). The problem of a
manager of the network is to find an optimal allocation of a
limited homogeneous resource (e.g., the bandwidth in telecom-
munication networks) among the zones. In what follows we
use the following notation:

• n is the number of zones;
• Ik is the index set of nodes (currently) located in zone k
(k = 1, . . . , n);

• R is the total resource supply (the total bandwidth) for
the system;

• xk is an unknown quantity of the resource allotted to
zone k and wk(xk) is the cost of implementation of this
quantity of the resource for zone k (k = 1, . . . , n);

• zj is the unknown resource amount allotted to node j
and Uj(zj) is the utility of node j from the resource
consumption value zj ;

• αj ≥ 0 and βj < +∞ are, correspondingly, the lower
and upper bounds for zj (j ∈ Ik, k = 1, . . . , n).

For each k we denote by fk(xk) the optimal value of the zonal
optimization problem:

max →
∑

j∈Ik

Uj(zj) (1)

subject to
∑

j∈Ik

zj ≤ xk, (2)

αj ≤ zj ≤ βj , j ∈ Ik. (3)

Hence, fk(xk) determines the total utility of consumers of
zone k if the resource value for this zone equals xk. However,
the implementation expenses wk(xk) for providing this quan-
tity of the resource for zone k must be taken into account by
the manager.
Therefore, the upper-level manager problem consists in

maximizing the total network utility and in minimizing the



total network implementation expenses by means of the opti-
mal resource allocation:

max →
n
∑

k=1

fk(xk) (4)

and
min →

n
∑

k=1

wk(xk) (5)

subject to
n
∑

k=1

xk ≤ R, (6)

xk ≥ 0, k = 1, . . . , n. (7)

Clearly, criteria in (4) and (5) need not be homogeneous in
general. Hence, we have obtained a two-objective optimiza-
tion problem. Note that both the separate scalar optimization
problems are separable, however, each function fk can be non-
differentiable and their values are computed algorithmically
without any explicit formula. If we set wk ≡ 0, the above
problem corresponds to the master one in the so-called right-
hand side decomposition approach; see e.g. [7] and the refer-
ences therein. That is, the main problem is then the following:

max →
n
∑

k=1

∑

j∈Ik

Uj(zj)

subject to
n
∑

k=1

∑

j∈Ik

zj ≤ R,

αj ≤ zj ≤ βj , j ∈ Ik, k = 1, . . . , n.

However, the index sets Ik and user coefficients αj , βj may
be unknown to the upper level network manager, especially
in ad hoc wireless networks, and he/she should be oriented
on the total zonal utility depending on the resource share xk.
This justifies usefullness of this right-hand side decomposition
even in the scalar case.
Nevertheless, solution of problem (4), (6), (7) may meet

serious computational difficulties. In order to create efficient
solution methods for the upper-level manager problem we
should first define a suitable solution concept and then derive
additional properties of cost functions.

III. BASIC OPTIMIZATION FORMULATIONS
We first introduce the following natural assumptions. Let

n
∑

k=1

∑

j∈Ik

αj ≤ R,

let the function Uj be concave and continuous. Then problem
(1)–(3) has a solution, i.e., the value fk(xk) is defined if
min
j∈Ik

αj ≤ xk. It seems also reasonable to suppose that Uj

is monotone, i.e., Uj(αj) ≤ Uj(βj), j ∈ Ik. Moreover, it is
easy to see that fk is concave on R+, and then (4), (6), (7)
becomes a scalar concave maximization problem, however, fk

need not be differentiable. Also, if we suppose also that each
cost function wk is convex on R+, then (5), (6), (7) becomes
a scalar convex minimization problem.
We can apply the following approaches to formulation of

the optimality concept for problem (4)–(7).
1) Replace the multi-objective problem (4)–(7) by its
scalarization via assigning weights, say, γ1 > 0 and
γ2 > 0 to both criteria. This approach leads to the
concave maximization problem:

max →
n
∑

k=1

(γ1fk(xk)− γ2wk(xk)) (8)

subject to (6), (7). Clearly, the determination of these
weights may be rather difficult in the case where the
criteria in (4) and (5) are not homogeneous.

2) If there exists the maximal (or desirable) total cost limit
C, one can replace the minimization criterion in (5) with
the constraint

n
∑

k=1

wk(xk) ≤ C, (9)

thus obtaining the scalar concave maximization problem
(4), (6), (9), (7).

3) The general approach consists in considering the Pareto
optimization problem:

max" → F (x) =
n
∑

k=1

F (k)(xk) (10)

subject to (6), (7), where x = (x1, . . . , xn)T ,
F (k)(xk) = (fk(xk),−wk(xk))T , k = 1, . . . , n, (
denotes the usual Pareto relation:

x ( y ⇐⇒ xi ≥ yi ∀i and x ,= y.

That is, the problem is to find a feasible vector x∗ such
that there does not exist any other feasible vector x′ such
that F (x′) ( F (x∗); see e.g. [8].

First we observe that both the scalar optimization problems
above are separable, but involve non-differentiable functions.
Hence, we can apply suitable convex non-differentiable opti-
mization methods to find solutions of both (8), (6), (7) and
(4), (6), (9), (7); see e.g. [7], [9]. Also, we can combine
these methods with the dual Lagrangian methods. In this
case, we have a small-dimensional basic problem and several
inscribed nonlinear optimization problems for computation of
components of its cost function. Nevertheless, they are then
highly parallelizable problems.
If we follow the basic Pareto approach, we also should

take into account the non-differentiability of the functions fk.
The corresponding methods were presented e.g. in [10], [11]
(see also the references therein). Within this approach, we
intend to utilize the simplest relaxation subgradient method
for convex minimization (see [12] and also [13], [9]) as a
basis for construction of new methods. The description and
substantiation of these methods will be presented in Section
V.



IV. ADJUSTMENT FOR THE CASE OF MOVING NODES

In the above statement the numbers of nodes located at each
zone are assumed to be known and unchangeable (within the
planning time interval). However, the latter trends in telecom-
munications industry are aimed at data transmission without
any heavy and expensive equipment. Instead, mobile devices
are used both as receivers and transmitters of signals. In the
so-called ad hoc networks, there is no stationary infrastructure.
Then nodes locations are ever-changing. However, following
the approach suggested by I. Konnov (see e.g. [14]), we can
treat each node as a Markovian chain. This allows us to
evaluate the probability pjk for each node node j to stay in
zone k within some planning time interval.
We now denote by Ik the set of indices of nodes whose

probabilities to be in zone k are positive (or greater than
a certain positive threshold). Next, for each k we denote
by fk(xk) the optimal value of the modified optimization
problem:

max →
∑

j∈Ik

pjkUj(zj) (11)

subject to
∑

j∈Ik

zj ≤ xk, (12)

αj ≤ zj ≤ βj , j ∈ Ik. (13)

Of course, each function fk is again concave. So, we can
replace (1)–(3) with (11)–(13). Afterwards, we can utilize the
same basic problem (4)–(7), and (4), (6), (7) is also a concave
maximization problem.

V. RELAXATION SUBGRADIENT METHODS FOR PARETO
OPTIMIZATION PROBLEMS

For description of the methods we replace problem (10),
(6), (7) by a more general formulation. For vectors a, b ∈ Rm,
together with the standard Pareto preference relation above we
will utilize also its strict version:

a > b ⇐⇒ ai > bi ∀i.

Let ϕi : Rn → R, i = 1, . . . ,m, be concave functions and let
h : Rn → R be a concave function. Then we can define the
set D = {x ∈ Rn | h(x) ≥ 0} which is convex and closed.
Set ϕ(x) = (ϕ1(x), . . . ,ϕm(x)). In what follows we suppose
that
(A) There exists a point x̄ ∈ Rn such that h(x̄) > 0

(regularity).
Let us consider the corresponding Pareto maximization

problems:

max" → ϕ(x) subject to x ∈ D (14)

and
max> → ϕ(x) subject to x ∈ D. (15)

That is, a point x∗ is a solution of problem (14) if no point
x ∈ D exists such that f(x) ( f(x∗). Analogously, a point x̃
is a solution of problem (15) if no point x ∈ D exists such
that f(x) > f(x̃). That is, problem (15) yields weak Pareto

solutions. We denote by D∗

P and D∗

W the solution sets of
problems (14) and (15), respectively. Clearly, D∗

P ⊆ D∗

W .
Also, (10), (6), (7) is a particular case of (14) where ϕ(x) =
F (x), h(x) = min{R−

n
∑

k=1
xk, x1, . . . , xn}, m = 2.

We recall that the subdifferential ∂µ(x) of a convex function
µ : Rn → R at x is defined as follows:

∂µ(x) = {g | µ(y)− µ(x) ≥ 〈g, y − x〉 ∀y ∈ R
n}.

For a concave function φ : Rn → R we can define its
subdifferential at x as follows:

∂cφ(x) = {g | φ(y)− φ(x) ≤ 〈g, x− y〉 ∀y ∈ R
n},

i.e., ∂cφ(x) = −∂(−φ)(x).
In order to solve Pareto optimization problems (14) and

(15), we can utilize the following bifunction:

Φ(x, y) = min{ϕ1(y)− ϕ1(x), . . . ,ϕm(y)− ϕm(x), h(y)}.

Note that Φ is concave in y, Φ(x, x) = 0 for all x ∈ D. So,
we can consider the scalar equilibrium problem: Find x∗ ∈ D
such that

Φ(x∗, y) ≤ 0 ∀y ∈ R
n. (16)

We denote by De the solution set of this problem.
Lemma 1: It holds that

D∗

P ⊆ D∗

W = De. (17)

PROOF. Suffice it to prove the equality in (17). Let x∗ ∈ D∗

W ,
but x∗ /∈ De. Then there exists z ∈ Rn, Φ(x∗, z) > 0, hence
h(z) > 0 and ϕi(z) > ϕi(x∗), i = 1, . . . ,m. It follows that
z ∈ D and ϕ(z) > ϕ(x∗). This is a contradiction, therefore,
D∗

W ⊆ De.
Conversely, let x∗ ∈ De, but x∗ /∈ D∗

W . Then there exists
z ∈ D such that ϕ(z) > ϕ(x∗). Set z(α) = αx̄ + (1 − α)z,
then due to the concavity of h we have

h(z(α)) ≥ αh(x̄) + (1− α)h(z) > 0 for α ∈ (0, 1).

Similarly, due to the concavity of ϕi, for α′ ∈ (0, 1) small
enough we have

ϕi(z(α
′)) ≥ α′ ϕi(x̄) + (1− α′)ϕi(z) > ϕi(x

∗).

For z̄ = α′x̄+(1−α′)z we obtain h(z̄) > 0 and ϕ(z̄) > ϕ(x∗).
This means that Φ(x∗, z̄) > 0, which is a contradiction. Hence,
De ⊆ D∗

W . !

So we intend to find a solution of problem (16) by a
relaxation subgradient method which combines the ideas of
methods from [12], [13], [10].
Lemma 2: A point x∗ ∈ D is a solution of problem (16) if

and only if
0 ∈ ∂cyΦ(x

∗, y)|y=x∗ . (18)

In fact, (16) means that

Φ(x∗, x∗) = sup
y∈Rn

Φ(x∗, y)

and (18) represents the usual necessary and sufficient optimal-
ity condition for this problem.



We shall also use the following condition:
(B) There exists an index l and a point x̃ ∈ D such that the

set Dl(x̃) = {x ∈ D | ϕl(x) ≥ ϕl(x̃)} is bounded.
From (B) it follows that

ϕ∗

l = sup
x∈D

ϕl(x) < +∞.

Moreover, take a fixed point z̄ ∈ Rn, then the function
Φ(z̄, y) is bounded from above in y. In fact, if y /∈ D, then

Φ(z̄, y) ≤ h(y) < 0.

Otherwise, if y ∈ D, then

Φ(z̄, y) ≤ ϕl(y)− ϕl(z̄) ≤ ϕ∗

l − ϕl(z̄) < +∞.

Besides, from (B) we have that there exists a point x̃ ∈ D
such that ϕ∗

l = ϕl(x̃), then x̃ ∈ D∗

W = De.
The basic part of the relaxation subgradient method applied

to problem (16) can be described as follows. For brevity, set
φk(y) = Φ(xk, y). We denote by NrX the element of X
nearest to origin.
Algorithm 1. Input: a point x0 ∈ D, numbers α > 0,

η > 0. Parameter: a number θ ∈ (0, 1). Output: a point z̃.
Step 0. Set k = 0.
Step 1. Choose g0 ∈ ∂cφk(xk), set i = 0, pi = gi.
Step 2. If ‖pi‖ ≤ η, set z̃ = xk and stop. Otherwise set
xk,i+1 = xk + α pi/‖pi‖.
Step 3. If

φk(x
k,i+1) ≥ θα‖pi‖, (19)

set xk+1 = xk,i+1, k = k + 1 and go to Step 1.
Step 4. Choose gi+1 ∈ ∂cφk(xk,i+1), set
pi+1 = Nr conv{pi, gi+1}, i = i + 1, and go to Step
2.

Note that xk ∈ D, hence z̃ ∈ D as well. We will call
one change of index i in Algorithm 1 as an inner step. By
construction, its expenses per step are similar to those in the
usual (non relaxation) subgradient method (see e.g. [7], [9]),
i.e. it requires no linear searches and no a priori constants to
be evaluated.
Lemma 3: If (A) and (B) hold, then the number of inner

steps in Algorithm 1 is finite.
PROOF. Suppose that k is fixed, but i → +∞. Then (19) does
not hold and

φk(x
k,i+1) < φk(x

k) + θα‖pi‖,

but

φk(x
k)− φk(x

k,i+1) ≤ 〈gi+1, xk − xk,i+1〉
= −α〈gi+1, pi〉/‖pi‖.

It follows that

α〈gi+1, pi〉/‖pi‖ ≤ θα‖pi‖,

i. e.,
〈gi+1, pi〉 ≤ θ‖pi‖2.

Hence, the sequence {pi} satisfies the known decreasing
property (see, e.g., [12], [13])

‖pi‖ ≤
C

(1− θ)
√
i+ 1

,

where C ≥ ‖gi‖, i = 0, 1, . . . It follows that

i ≤
(

C

(1− θ)η

)2

+ 1.

Next, if k → +∞, then by (19),

Φ(xk, xk+1) = φk(x
k+1) ≥ θα‖pi‖ ≥ θαη > 0.

Therefore, xk+1 ∈ D and

ϕl(x
k+1)− ϕl(x

k) ≥ Φ(xk, xk+1)
≥ Φ(xk, xk) + θαη = θαη.

(20)

We now obtain

ϕ∗

l ≥ ϕl(x
k) ≥ ϕl(x

0) + kθαη,

or
k ≤

ϕ∗

l − ϕl(x0)

θαη
.

Thus, the total number of inner steps must be finite. !

Set
G(x,α) = conv

⋃

y∈B(x,α)

∂cyΦ(x, y),

where B(x,α) = {z | ‖z − x‖ ≤ α }. Since the subdifferen-
tial mapping of a concave function is upper semicontinuous
(u.s.c.), using the properties of compositions of u.s.c. map-
pings, we conclude that the mapping (x,α) 2→ G(x,α) is
also u.s.c. on Rn × [0,+∞).
Now we describe the construction of a converging iteration

sequence.
Basic Scheme. Choose a point z0 ∈ D, sequences {αs} ↘

0, {ηs} ↘ 0, and a number θ ∈ (0, 1).
For each s = 1, 2, . . ., we have a point zs−1 ∈ D, numbers αs

and ηs, apply Algorithm 1 with x0 = zs−1, α = αs, η = ηs,
and set zs = z̃.
Theorem 1: It (A) and (B) hold, then the sequence {zs} has

limit points and all these limit points are solutions of problem
(16) or, equivalently, (15).
PROOF. First we note that (20) gives

zs ∈ D and ϕl(z
s+1) ≥ ϕl(z

s),

but the set Dl(z0) must be bounded, hence {zs} is a bounded
sequence and has limit points. Next, by construction, for each
s we have

‖ds‖ ≤ ηs,

where ds ∈ G(zs,αs). If z̄ is a limit point of {zs}, then z̄ ∈ D
and

0 ∈ G(z̄, 0) = ∂cyΦ(z̄, y) |y=z̄ .

On account of Lemma 2 we obtain that z̄ ∈ De and the result
follows. !



We can also utilize a modification of Algorithm 1 with
explicit usage of constraints. Set

Ψ(x, y) = min{ϕ1(y)− ϕ1(x), . . . ,ϕm(y)− ϕm(x)}

and ψk(y) = Ψ(xk, y).
Algorithm 2. Input: a point x0 ∈ D, numbers α > 0,

η > 0. Parameter: a number θ ∈ (0, 1). Output: a point z̃.
Step 0. Set k = 0.
Step 1. Choose g0 ∈ ∂cψk(xk), set i = 0, pi = gi.
Step 2. If ‖pi‖ ≤ η, set z̃ = xk and stop. Otherwise set
xk,i+1 = xk + α pi/‖pi‖.
Step 3. If

ψk(x
k,i+1) ≥ θα‖pi‖, h(xk,i+1) ≥ 0,

set xk+1 = xk,i+1, k = k + 1 and go to Step 1.
Step 4. Choose

gi+1 ∈
{

∂cψk(xk,i+1) if h(x) ≥ 0,
∂ch(xk,i+1) if h(x) < 0,

set pi+1 = Nr conv{pi, gi+1}, i = i+ 1, and go to Step 2.

The creation of the main iteration sequence and substanti-
ation of Algorithm 2 are similar to those of Algorithm 1 and
omitted.

VI. COMPUTATIONAL EXPERIMENTS
We first tested the efficiency of the above methods on the

following two-criteria problem:

max" → {ϕ1(x), ϕ2(x)}

subject to
x1 + x2 ≤ 12, x1 ≥ 0, x2 ≥ 0.

Here ϕ1(x) = −(x1−15)2−x2
2+225, ϕ2(x) = −(x1+15)2−

x2
2+225. Evidently, the set of Pareto-optimal solutions for this
problem is the segment [(0, 0); (12, 0)]. We performed 100
experiments with the basic scheme utilizing Algorithm 1, ran-
domly choosing initial points from the square [0; 20]× [0; 20]
(and deleting the points that do not belong to the admissible
set). We chose the initial values of parameters as follows:
α0 = 1.5, η0 = 0.01 and put αs = α0/s, ηs = η0/s for each
s ≥ 1; we fixed θ = 0.9. For the stopping criterion we used
the following rule: the time consumed exceeds 0.5 seconds
and/or the neighboring points of the constructed sequence are
sufficiently close (the Euclidean norm of their difference does
not exceed 0.1). See Table I for results of the first 10 tests
(the rest results are analogous).
In the next series of 100 tests we used the same initial values

of parameters α0 = 1.5 and η0 = 0.01 tending them to zero
in a geometric rate with the common ratio q = 1/1.3. See
Table II for results of the first 10 tests (the rest results are
analogous).
We have also performed 100 numerical tests for solving the

same problem by the basic scheme utilizing Algorithm 2. We
used the same stopping criterion and the same initial values
of parameters. We also varied the parameters as harmonic or

TABLE I
RESULTS FOR ALGORITHM 1 WITH αs = α0/s, ηs = η0/s

N Initial point Appr. solution
1 ( 3.16, 7.78) ( 0.43, 0.30)
2 ( 0.06, 6.83) ( 0.00, 0.08)
3 ( 1.04, 8.26) ( 0.12, 0.07)
4 ( 4.52, 4.34) ( 2.11, 0.03)
5 ( 1.13, 9.95) ( 0.08, 0.01)
6 ( 6.06, 2.91) ( 4.51, 0.02)
7 ( 5.33, 5.98) ( 1.16, 0.01)
8 ( 3.77, 6.78) ( 0.67, 0.04)
9 ( 1.28, 8.44) ( 0.12, 0.02)
10 ( 6.83, 2.86) ( 5.27, 0.04)

TABLE II
RESULTS FOR ALGORITHM 1 WITH αs = qsα0 , ηs = qsη0

N Initial point Appr. solution
1 ( 9.55, 1.21) ( 9.49, 0.05)
2 ( 3.80, 6.45) ( 0.71, 0.34)
3 ( 1.02, 10.43) ( 0.04, 0.09)
4 ( 2.21, 6.70) ( 0.32, 0.07)
5 ( 2.59, 4.22) ( 0.69, 0.12)
6 ( 1.73, 6.82) ( 0.23, 0.08)
7 ( 4.24, 7.13) ( 0.63, 0.03)
8 ( 3.43, 1.15) ( 3.36, 0.00)
9 ( 8.03, 1.28) ( 7.95, 0.13)
10 ( 9.68, 1.16) ( 9.62, 0.01)

TABLE III
RESULTS FOR ALGORITHM 2 WITH αs = α0/s, ηs = η0/s

N Initial point Appr. solution
1 ( 4.76, 6.45) ( 0.96, 0.14)
2 ( 0.94, 3.75) ( 0.23, 0.09)
3 ( 0.08, 4.49) ( 0.00, 0.00)
4 ( 2.40, 7.13) ( 0.34, -0.04)
5 ( 2.90, 6.49) ( 0.42, 0.02)
6 ( 8.57, 2.86) ( 6.97, 0.15)
7 ( 4.18, 3.10) ( 2.76, -0.02)
8 ( 2.49, 4.44) ( 0.78, 0.35)
9 ( 1.01, 6.69) ( 0.13, 0.01)
10 ( 2.92, 2.57) ( 1.58, 0.10)

TABLE IV
RESULTS FOR ALGORITHM 2 WITH αs = qsα0 , ηs = qsη0

N Initial point Appr. solution
1 ( 1.94, 2.74) ( 0.90, 0.03)
2 ( 5.77, 5.73) ( 1.33, 0.01)
3 ( 3.41, 5.34) ( 0.80, 0.06)
4 ( 9.52, 1.55) ( 9.41, 0.05)
5 ( 4.03, 3.50) ( 1.58, 0.05)
6 ( 0.30, 4.51) ( 0.00, 0.02)
7 ( 6.03, 5.71) ( 1.47, 0.09)
8 ( 2.18, 2.75) ( 1.05, 0.09)
9 ( 6.43, 5.53) ( 1.70, 0.10)
10 ( 2.42, 8.70) ( 0.25, -0.01)



geometric series (see Tables III and IV, respectively, for the
results of the first 10 tests).
According to the performed numerical experiments, both

the algorithms give points close to Pareto optimal ones within
0.5 seconds independently of the initial point and their results
are rather similar.
Next, due to the similarity of results, we applied Algorithm

1 to several vector two-level problems of form (10), (6),
(7), where all the utility functions were chosen quadratic
and strongly concave and all the implementation expense
functions were chosen linear, i.e. wk(xk) = wkxk, where
wk > 0 for all k. We chosen value 10 × n (sec) of the
processor time as stopping criterion. The results for four
examples are given in Tables V– VIII. The obtained points also
approximated solutions of the scalarized problem (8), (6), (7)
with γ1 = γ2 = 1 computed by scalar optimization methods.

TABLE V
TWO-LEVEL PROBLEM 1: 2 ZONES, 10 NODES, R = 210

zone nodes wk xk utility expense
1 7 1 99.1227 4915.37 99.1227
2 3 5 23.1227 1087.58 115.964
total 10 122.245 6002.95 214.736

TABLE VI
TWO-LEVEL PROBLEM 2: 3 ZONES, 12 NODES, R = 295

zone nodes wk xk utility expense
1 3 8 63.2889 2718.37 506.311
2 5 1 87.96 3793.11 87.96
3 4 3 37.6608 3127.71 112.982
total 10 188.91 9639.19 707.254

TABLE VII
TWO-LEVEL PROBLEM 3: 6 ZONES, 20 NODES, R = 474

zone nodes wk xk utility expense
1 3 8 34.1179 1795.36 272.943
2 4 1 76.1179 3091.89 76.1179
3 8 3 64.1179 6581.25 192.354
4 1 9 11.1179 204.356 100.061
5 1 12 10.1179 497.233 121.415
6 3 6 46.1179 2649.37 276.707
total 20 241.707 14819.5 1039.6

VII. CONCLUSIONS
In this work, we considered a vector problem of managing

limited resources in a network. We proposed a new decompo-
sition approach, which extends the so-called right-hand side
decomposition one. In order to solve the problem obtained we
suggested some subgradient type methods whose efficiency is
confirmed by the results of numerical experiments.
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TABLE VIII
TWO-LEVEL PROBLEM 4: 12 ZONES, 24 NODES, R = 559

zone nodes wk xk utility expense
1 2 8 32.1877 1546.13 257.502
2 3 1 46.1877 1257.26 46.1877
3 2 3 42.1877 2022.44 126.563
4 3 9 30.1877 1090.31 818.617
5 1 12 24.1877 1817.43 290.253
6 1 6 36.1877 1202.45 217.126
7 2 8 32.1877 1521.13 257.502
8 3 12 18.1877 240.783 218.252
9 2 8 32.1877 1051.16 257.502
10 3 2 44.1877 1990.72 88.3755
11 1 7 4.1877 29.3633 29.3139
12 1 9 30.1877 2886.03 271.69
total 24 372.253 16655.2 2331.96
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