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Abstract—Models describing DTNs proposed in the last few
years have been focusing on message replication policies able to
achieve high delivery probability at the cost of network resources,
e.g., message copies. To this respect, the duration of contact
events is the physical constraint that dictates how fine a large
message should be fragmented into packets in order to match
finite contacts duration. The price to pay, indeed, is that the
source has to deliver a larger number of packets per message.

In this paper we model the combined effect of message
fragmentation and buffering and describe the structure of the
forwarding process in closed form when the message is split into
K packets and delivered to the destination.

We consider the specific case of sequential forwarding, where
the source delivers fragmented message packets in order to
relays. In this case the interplay of forwarding and message
fragmentation can be expressed in closed form by coupling the
combinatorial structure for packet forwarding and fluid models
for the replication of packets in the network. By deriving the
closed form expression for the delivery probability, we are able
to derive the optimal fragmentation K∗ as a function of the
contact time distribution.

Finally, results on sequential forwarding are applied to derive
performance figures for the case when fountain coding is applied:
redundancy is added to the original information with the aim to
increase the message delivery probability. The paper is completed
by numerical results.

Index Terms—Delay Tolerant Networks, Contact Times, Frag-
mentation, Buffering, Fluid Approximations

I. INTRODUCTION

In Delay Tolerant Networks lack of persistent connectivity
suggests to use redundancy in order to reach destination
nodes. One technique is to store information on intermediate
carries, namely the relay nodes, in the form of additional
message copies. The typical envisioned scenario is that of
highly mobile wireless networks: in such systems the end-
to-end paths do not last long enough to sustain the operations
of standard protocols. The TCP protocol, for instance, works
under the assumption that timeouts are dimensioned for a
certain bounded round trip delay. In particular, the exchange
of messages between two nodes in a DTN is possible when
they come into radio range: when this happens it is said
that an intermeeting contact event occurs between the two
nodes. For such a reason, in order to characterize the exchange
of messages that is sustained among nodes in the network,
modeling of DTNs poses major focus on the intermeeting
process and on how it impacts the performance of such
communication systems.

Clearly, given a finite time horizon, not always a message
originated at a certain source node will be able to reach
the intended destination. In fact, two concurrent effects can
contribute to erasures of message copies. The first one is lack
of a set of intermeetings through which message copies can
reach the destination. The second one is due to the duration of
contact times: for some contact events, in fact, the transmission
time will not be sufficient to complete the message exchange
successfully. In the extreme case of a very large file, it
is possible that the size of the file hinders the possibility
to deliver to the destination irrespective of the intermeeting
pattern.

In order to overcome the latter issue, one can resort to
fragmentation, a customary technique in telecommunication
networks to cope with large sized messages. In the context of
DTNs, the effect is to produce a set of K packets that are
independently delivered to the destination. The destination, in
turn, needs to receive all such K packets to decode the original
message with success.

In order to make use of many intermeeting events, similarly
to what done with repetition codes, several identical copies of
each packet can be released. However, as known from coding
theory, this neither the unique nor the optimal way to achieve
robustness to messages erasures by adding redundancy.

In this paper, in particular, we will investigate the perfor-
mance of coding techniques in combination with the presence
of finite contact times durations. The main problem that
we aim to model is the performance of a DTN where we
make use of either coded or uncoded storage of packets at
intermediate relays. For the sake of simplicity, we assume that
no timeouts are used and two hop routing is employed. The
former assumption describes the case when the buffer of relays
is sufficient to store all packets; in the scope of this paper
we restrict to the analysis of a single message per source-
destination pair so that this assumption is not restrictive. We
observe that two hop is the simplest known protocol whose
per source-destination capacity does not vanish with increasing
number of nodes [1].

Our analysis starts from the case of sequential packet
delivery. This is a suboptimal scheme according to which the
source populates the nodes’ buffer with packets in sequential
order. For instance, the TCP protocol adheres to this model
since it delivers all the packets sequentially within a predefined
congestion window. Indeed, as it was showed in [2], [3], in the
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homogeneous case, it is optimal to distribute packets as evenly
as possible among the relays in order to maximize the success
probability. As a consequence, the sequential packet delivery
strategy described before cannot be optimal. However, as
showed in the following, it provides a tool that let us perform
a companion performance analysis of the second scheme that
we analyze in this paper, i.e., the case when fountain codes
are employed.

The use of fountain codes has two main advantages: first
of all no resequencing is needed at the destination; from
the modeling standpoint this is also the basic reason why
the sequential delivery protocol analysis can be adapted to
this case. Indeed, the best advantage that fountain codes give
compared to customary block coding, e.g., Reed Solomon
codes, is that the amount of redundancy introduced by fountain
codes is not fixed and information can be retrieved with any
combination of encoded packets, provided that the set of
received packets form a full rank matrix [4].

A. Related works

The problem of information fragmentation and reassembly
is a traditional topic in communication networks. However,
the idea of encoding fragments to ease the reconstruction
when some fragments may be lost appeared first in satellite
communications to cope with ACK implosion. Seminal work
[5] proposed first a solution using packet-level forward error
correction (FEC), namely, Reed–Solomon coding. A large
block of data can be split into several packets and coding
is a mean to avoid retransmission due to channel errors. This
becomes mandatory for collisions’ sake in order to reduce
the number of sites requesting concurrently the satellite to
retransmit. If one transmits additional H redundant packets, so
that K+H total packets are broadcasted, all stations receiving
K packets are able to decode. Several works combining FEC
and acknowledgment-based retransmission protocols [6], [7],
[8] appeared later on. In that context coding was to reduce
the potential delay due to retransmissions’ for multicasting
multimedia streams.
In DTNs, works [9] and [10] suggested to encode a file using
erasure codes and then distribute all the resulting code-blocks
to the relays. Under random mobility patterns, it is clear that
reconciliating erasures can increase the delivery probability;
a connection with standard replication-based routing (e.g.,
spray-and-wait, epidemic routing or two hop routing) would
relate those techniques to repetition codes. Those are known
to be the codes with highest overhead for a given codeword
length. [10] assessed first the performance gain of erasure
coding by means of extensive simulations and for different
routing protocols. [9] specialized to non-uniform encounter
patterns where the optimal successful delivery probability is
dependent on the path taken by each packet; also, the problem
is NP–hard. Routing protocols based on network coding are
proposed in [11] and tested when delivering multiple packets.
In [12] ODE based models are employed under epidemic
routing; in that work, semi-analytical numerical results are
reported describing the effect of finite buffers and contact

times; the authors also propose a prioritization algorithm. The
same authors in [13], [14] investigate the use of network
coding using the Spray-and-Wait algorithm and analyze the
performance in terms of the bandwidth of contacts, the energy
constraint and the buffer size. In [15] the integration of
the fountain codes and the Optimal Probabilistic Forwarding
(OPF) protocol is proposed. Data are encrypted and a forward-
ing rule is set to decide where a packet will be sent to.

In [16] the authors derive the performance analysis for a
unicast session, under spray-and-wait routing and inter-session
network coding, in the presence of background traffic in DTNs
with homogeneous mobility.

Novel contribution Compared to existing works, in this
paper we are able to provide a model that can jointly describe
the effect of buffering at relays and the effect of finite
contact times durations. This provides a connection between
the distribution of the duration of contacts and the message
delivery probability. The model is applied to fountain coding
providing a closed form solution for the message delivery
probability. To the best of the authors’ knowledge, the joint
impact of buffering and finite contact times durations has not
been investigated so far in DTNs.

II. NETWORK MODEL

We consider a DTN composed of a source node, N − 1
relay nodes and a destination node. A message is generated
at the source node at time t = 0 and needs to be forwarded
to the destination node. In this context a simple way to model
the intermeeting process is by means of a point process,
where arrivals model the intermeeting events that rule the
transmission opportunities between DTNs nodes. In our model
we adopt a Poisson process so that the time between contacts
of any two nodes is assumed to be exponentially distributed
with intensity λ > 0.

In modeling of DTN forwarding one may focus on contact
events and describe the forwarding process accordingly. In the
case of two hop routing, at each contact between the source
and a mobile that does not have the message, the message
is relayed to that mobile. If a mobile that is not the source
has the message and it is in contact with another mobile then
it transfers the message if and only if the other mobile is
the destination node. However, such reasoning can be refined
by including in the model the probability of transferring a
message during a contact event, which indeed relates to the
distribution of contact times.

The contact time between two mobile nodes is the period
of time during which two nodes have the opportunity to
communicate since they stay in radio range. Throughout the
variety of research works in this topic, most of research interest
focused on the inter-contact time under the assumption that the
contact is sufficient to exchange the message at each encounter.

A closer look reveals the distribution of contact times should
have an impact the delay and capacity of the network. In par-
ticular, since the contact time between two nodes sometimes is
not enough to transfer a copy of message to a relay, the source
should divide the message into K packets. In this paper, we
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describe in detail how fragmentation improves the efficiency
of the DTN’s operations by connecting the delivery probability
of a certain message and the number of packets K that the
source needs to split the message into.

In order to proceed with the analysis, we resort to fluid
approximations, where one models the evolution of the mean
value of the the underlying process. For a discussion on the
validity of such approximation model the reader can refer to
[3].

III. SEQUENTIAL FORWARDING

In the sequential forwarding mechanism, the source deliv-
ers the packets in order to relays. I.e., packets are labeled
1, 2, . . . ,K , and upon meeting a relay which has j−1 packets,
0 ≤ j ≤ K , the source will attempt to deliver packets from j
onward.

Let Xi(t) be the fraction of nodes excluding the source
which have the i first packets at time t. If at time t it encounters
a mobile which has i first packets, it gives it j packets i +
1, .., i+ j whenever the contact time is tj ≤ Tc < tj+1; here,
tj denotes the time needed to transmit j packets. The standard
fluid approximation for the forwarding process can be written
as

Ẋ0(t) = −λp1X0(t)

Ẋi(t) = λ
i−1∑

j=0

Xj(t)pi−j − λp1Xi(t) i = 1, ..,K − 1

ẊK(t) = −
K−1∑

j=0

Ẋj(t) (1)

where pj = P
{
tj ≤ Tc < tj+1

}
and p̄j = P

{
Tc ≥ tj

}
.

In particular, the first equation in (1) follows from a thinning
argument: λp1 is the frequency at which a relay which does
not have any packet meets the source and the contact time
lasts long enough to have at least one packet forwarded to
the relay. The equations for i = 1, . . . ,K − 1 follow using a
similar argument and the last one expresses the dynamics of
absorbing state K .

In particular, the dynamics corresponding to (1) can be
derived as follows. Denote X0(t) the fraction of nodes that
do not have packets at time t. Indeed it holds

X0(t) = e−λp1t
{t≥0}(t)

where A(·) is the standard indicating function of set A;
the system (1) can be solved iteratively using the Laplace
transform Xi(s) = L[Xi(t)|s],

sXi(s) = λ
i−1∑

j=0

Xj(s)pi−j − λp1Xi(s) i = 1, ..,K − 1

noticing that X0(s) = (s+ λp1)
−1.

Using the Laplace transform, we obtain

X1 = λp1X
2
0

X2 = λp2X
2
0 + λ2p21X

3
0

X3 = λp3X
2
0 + 2λ2p1p2X

3
0 + λ3p31X

4
0

X4 = λp4X
2
0 + λ2(2p1p3 + p22)X

3
0

+λ33p21p2X
4
0 + λ4p41X

5
0

X5 = λp5X
2
0 + 2λ2(p1p4 + p2p3)X

3
0

+3λ3(p21p3 + p1p
2
2)X

4
0 + 4λ4p31p2X

5
0 + λ5p51X

6
0

X6 = λp6X
2
0 + λ2(2p1p5 + 2p2p4 + p23)X

3
0 + λ3(3p21p4

+6p1p2p3 + p32)X
4
0 + λ4(4p31p3 + 6p21p

2
2)X

5
0

+5λ5p41p2X
6
0 + λ6p61X

7
0

· · ·

which leads to the general expression

Xi(s) =
i−1∑

j=0

X0(s)
j+2λj+1ai,i−j(p1, . . . , pi−j) (2)

In particular, we can derive from (2) the iterative calculation
in the time domain by taking the inverse transform as

Xi(t) =
i−1∑

j=0

ai,i−j(p1, . . . , pi−j)λ
j+1Θj+2

Here the combinatorial description of the sequential delivery
of packets is encoded by the coefficients ai,i−j : those are
monomials of degree j of the pis, where

ai,i−j(p1, . . . , pi−j) =
∑

{r:
∑

r=i−j}

∏
pr (3)

and ai,i−j is the probability of passing i packets in i − j
contacts. Also, Θi is the j-th self-convolution of X0(t), i.e.,
θ0(t) = X0(t) and θj+1(t) = θj ∗X0(t) and it also follows

that θj(t) =
tj−1

(j−1)!X0(t).
In order to understand the role of the coefficients ai,i−j we

can resort to the concept of partitions and ordered partitions

of an integer n into k parts. In general, the partition of n
into k parts is the solution of n = x1 + . . . + xk, for x1 ≥
x2 ≥ . . . ≥ 1. For example, (3, 2, 1) is an ordered partition
of n = 6 into 3 parts. From any such given solution we can
determine the number of corresponding unordered partitions
as k!/

∑n
r=1 hr!, where hr is the number of occurrences of

integer r in the partition.
Back to (2), we need to express the combinatorial structure

of the message delivery once it is fragmented into packets.
In particular, the coefficients ai,i−j correspond to the ordered

partitions of the integer i into i− j parts, once we identify pi
with the integer i, i.e., the number of packets. For example,
for i = 6, the partitions into 2 parts are 2 of the kind
{1, 5}, 2 of the kind {2, 4} and just one of the kind {3, 3}.
In particular, the generic term ai,i−j is the probability of
the events according to which it is possible to transfer i
packets in exactly i− j contacts: for example, the coefficient
a6,3 = (3p21p4 + 6p1p2p3 + p32) describes the probability
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of transferring two single packets in two contacts and four
packets in one contact, plus the probability of transferring
one, two and three packets at each contact respectively; the
last addend accounts for the probability of transferring exactly
two packets per contact.

Let v(n, k) be the number of ordered partitions of n into k
parts and p(n, k) the number of partitions of n in k parts. In
Table I we enumerated partitions and ordered partitions up to
n = 6. In literature there exist several algorithms to determine
the partitions of an integer in k parts [17].

The number of terms that appear in the polynomial ai,i−j , in
the general case grows according to the number of partitions;
the coefficients in front of each monomial in the pis is the
number of ordered partitions. Notice that this observation
provides an algorithm to construct the expression of (2) for
example, a5,3 accounts for the partitions of 5 into 3 parts, and
corresponds to the following unordered partitions (3, 1, 1) and
(2, 2, 1). Using the correspondence above, the two monomials
p21p3 and p1p22 will appear in X5(s), both with coefficient
3 = 3!/2!.

In order to carry out our calculations, we will leverage the
following relation on the number of partitions

Lemma 3.1: Let n ≥ k ≥ 1, then v(n, k) =
(
n−1
k−1

)

Proof: By induction on n. The fact it is indeed true for
n = 2. Now, assume that it holds for n − 1, and for all k ≤
n− 1, then

v(n, k) =
n−k+1∑

h=1

v(n− h, k − 1) =
n−k+1∑

h=1

(
(n− 2)− (h− 1)

k − 2

)

=
n−k∑

h=0

(
(n− 2)− h

k − 2

)
=

n−2∑

r=k−2

(
(n− 2)− r

r

)
=

(
n− 1

k − 1

)

where the last step follows from the binomial identity∑N
r=M

(
r
M

)
=

(
N+1
M+1

)
.

Notice that from Lemma 3.1, the number of distinct monomi-
als that are accounted in the right-hand terms of (2) is 2i−1.

Finally, a simplified expression for (2) can be obtained in
the case of a geometric distribution, i.e., when pi = (1−p)pi,
i = 1, 2, . . ., for 0 ≤ p ≤ 1. Notice that in this case, in order
to write the dynamics, it is sufficient to use the number of
ordered partitions in (2) and observe that the expression there
writes

Xi(s) = pi
i−1∑

j=0

v(i, i− j)[λ(1 − p)]j+1X0(s)
j+2 (4)

From (4), the time-domain expression follows for i =
1, . . . ,K − 1:

Xi(t) = piX0(t)
i−1∑

j=0

v(i, i− j)
[λ(1 − p)]j+1tj+1

(j + 1)!

= piX0(t)
i−1∑

j=0

(
i− 1

j

)
[λ(1 − p)t]j+1

(j + 1)!
= piX0(t)X̃i(t) (5)

In the following derivation it will be relevant to have a
closed form expression for the dynamics of the fraction of

nodes having all the K packets, namely, XK : by combining
the above expressions we can derive

XK(t) = 1−X0(t)



1 +
K−1∑

r=1

pr
r∑

j=1

(
r − 1

j − 1

)
[λ(1 − p)t]j

j!





= 1−X0(t)



1 +
K−1∑

j=1

[λ(1− p)t]j

j!

K−1∑

r=j

pr
(
r − 1

j − 1

)



= 1−X0(t)[1 + FK(p)] (6)

where we used again the fact that
∑n

l=k

(
l
k

)
=

(
n+1
k+1

)
and we

defined FK(p) =
∑K−1

j=1
[λ(1−p)t]j

j!

(
K−1
j

)
.

A. Success probability

Here, we are interested in the success probability of the
full message, i.e., the probability by which the sequential
transmission can deliver all the K packets to the destination
by a given deadline. In particular, let TK be the message
delivery delay, i.e, the time elapsing from when the first
packet is generated at the source to the time when the last
packet K is delivered to destination. The distribution of the
delay TK is denoted by DX(t) = P(TK ≤ t). Let yd(t)
a random variable which represents the number of packets
received by the destination during [0, t]. We can express the
success probability in receiving the message by t as

DX(t+ dt)−DX(t) = P(t < TK ≤ t+ dt)

=
K−1∑

i=0

P(t < TK ≤ t+ dt, yd(t) = i)

=
K−1∑

i=0

P(TK ≤ t+ dt|yd(t) = i, TK > t) ·

· P(yd(t) = i|TK > t)P(TK > t)

=
K−1∑

i=0

dtλ(1 +NXK(t))p̄K−i
NXi(t)

N −NXK(t)
(1−DX(t))

= dtλN
( 1

N
+XK(t)

)K−1∑

i=0

Xi(t)p̄K−i

1−XK(t)
(1−DX(t))

In the above calculation, P(Tc ≤ t + dt|yd(t) = i, TK >
t) represents the probability that the destination receives all
packets conditioning on the fact that it has already i packets
at time t. This occurs if the destination meets a node having
all packets and the contact is sufficient to exchange K − i
packets. The probability that the destination has i packets at
time t is represented by the term P(yd(t) = i|TK > t); then
P(yd(t) = i|TK > t) is the probability that the destination is
among the nodes that have i packets at time t (observe that
there are N such nodes).

Thus we obtain the separable ODE

dDX(t)

dt
= λN

( 1

N
+XK(t)

)K−1∑

i=0

Xi(t)p̄K−i

1−XK(t)
[1−DX(t)]

(7)
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n k p(n) partition ordered partitions v(n, k)

1 1 1 (1) (1) 1
2 1 2 (2) (2) 1

2 (1, 1) (1, 1) 1
3 1 4 (3) (3) 1

2 (2, 1) (2, 1) (1, 2) 2
3 (1, 1, 1) (1, 1, 1) 1

4 1 5 (4) (4) 1
2 (3, 1) (3, 1)(1, 3) 3

(2, 2) (2, 2)
3 (2, 1, 1) (2, 1, 1)(1, 2, 1)(1, 1, 2) 3
4 (1, 1, 1, 1) (1, 1, 1, 1) 1

TABLE I
THE NUMBER OF PARTITIONS AND THE VALUE v(n, k) FOR SMALL VALUES OF k.

which can be easily be integrated as

∫ t

0

dD

1−D
= λN

∫ t

0

[
1

N
+XK(s)

]K−1∑

i=0

Xi(s)p̄K−i

1−XK(s)
ds

Finally, we can derived a closed form expression of
DX(t) by integrating by parts and noticing that ẊK(s) =
λ
∑K−1

i=0 Xi(s)p̄K−i in order to rearrange the following cal-
culation

DX(t)=1−exp

{

−λN
K−1∑

i=0

∫ t

0
ds

[
1

N
+XK(s)

]
Xi(s)p̄K−i

1−XK(s)

}

= 1− exp

{

−N

∫ t

0

[
1
N +XK(s)

]
ẊK(s)

1−XK(s)
ds

}

=1−exp

{
N
(
XK(t)−XK(0)

)
+(N + 1) log

( 1−XK(t)

1−XK(0)

)}

where we used
∫

x
1−x = −x− log(1− x).

The main result from the above analysis is that under a
sequential packet delivery protocol, the success probability
DX(t) at any given time does not depend on the trajectory
of each packet, i.e., on the Xis. But, it only depends on the
final state of XK(t). From this last observation it is possible
to verify with a simple calculation that the expression above
is increasing in the XK variable. Thus, we can state

Lemma 3.2: DX(t) is a function of XK(t) only and it is
increasing in XK .

As a consequence of Lemma 3.2, when we want to charac-
terize the success probability as a function of the distribution
of the number of packets that can be transmitted during a
contact, by the monotonicity property we can simply focus on
the effect of such distribution on the variable XK .

B. Fragmentation

In the following we will develop the analysis of XK as a
function of K . Looking at (6), we shall be studying the impact
of the distribution of the packets transmitted per contact on
the dynamics of XK . Namely, since we assume a geometric
distribution, we need to study the impact of the parameter p,
i.e., the success probability of transmitting a packet over a
contact; we write p = pK to recall that such a probability
is a function of the number of fragments generated from the
original message and we make a rather natural assumption
here:

Assumption 3.1: pK is non decreasing with K: pK+1 ≥ pK
for K = 1, 2, . . .

Clearly, if the probability of delivering a shorter packet
over a single contact is not better off than delivering using
a larger packet size, the increased number of packets to be
delivered to the destination becomes a penalty. In the extreme
case when pK is a constant, the message delivery probability
is decreasing compared to the case when the message is not
fragmented. However, this is the trivial case when there is no
benefit in fragmenting the message.

In general, the assumption above states that we expect that
p = pK is a non decreasing function of K , according to the
intuition that it is easier to transmit a single packet during
a contact if the transmission time is smaller. I.e, typically
we expect that the effect of fragmentation is beneficial in
order to deliver more packets over single contacts, so that the
dependence of p on K should not be a constant. For the sake
of notation, in what follows, we will still denote XK be the
fraction of nodes having K packets when exactly K fragments
are released from the original message: however, starting form
(6) we should account for the fact that XK depends on K also
through pK . The above observations are formally captured by
the following

Theorem 3.1: i. If pK < pK+1, then XK+1 > XK

ii. If pK = pK+1, XK < XK+1

Proof: i.) It follows by inspection of (6). ii.) In order to
prove our statement, we adopt a variational argument by using
a linear interpolated function of the original expression as it
appears in (6). In particular, let us define the transformation
of X : [0, 1] → [0, 1]

X : y → XK(y) = 1− e−xp(y)∆ky −

e−xp(y)



1 +
K−1∑

r=1

p(y)r
r∑

j=1

(
r − 1

j − 1

)
[λ(1 − p(y))t]j

j!





where we let, x = λτ , ∆k = pK+1
xK(1−pK+1)

K

K! . In particular,
let us define

p(y) = pK + δpK
y, where δpK

= pK+1 − pK > 0

We observe that XK(0) = XK(t) and XK(1) = XK+1(t):
we are going to prove that the transformation is increasing
in the parameter y so that XK(t) = XK(0) < XK(1) =
XK+1(t).
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In fact, we can simply observe that

d

dy
XK(y) = δ

d

dp
XK(p)−

d

dy

(
e−p(y)x∆ky)

= δ
d

dp
XK(p) +∆ke

−p(y)x
(
− 1 + xδy

)
(8)

and we can derive

XK+1(t)−XK(t) = XK(1)−XK(0)

=

∫ 1

0
δ
d

dp
XK(p)dy +∆ke

−pKx

∫ 1

0
e−xδy

(
− 1 + xδy

)

≥ ∆ke
−pKx

∫ xδ

0
e−v

(
− 1 + v

)
= 1− xδe−xδ > 0

The first inequality follows from the fact that d
dp
XK(p) ≥ 0,

whereas the final strict inequality can be written once we
observed that for x ≥ 0, the function xe−x attains its
maximum at x = 1, where its value is e−1 < 1. Since the
reasoning holds irrespective of the packet number K , this
concludes the proof.

Remark 3.1: Proof of Thm. 3.1 provides us with insight
into the impact of fragmentation: there are two opposite effects
that can be visualized in (6). One is a local effect and the other
is a global effect. The global effect is the polynomial increase
in the product term that appears within the summation: it
accounts for the increased number or packets and tends to
decrease the message delivery probability simply because one
more packet has to be delivered. Conversely, the local effect
is the increased probability of transmitting a packet during a
contact, which causes a decrease of the exponential term that
multiplies the summation. Basically, Thm. 3.1 tells us that
when case ii holds, the local effect takes over the global one,
whereas in the case i. the global effect dominates.
Now, combining Lemma. 3.2 and Cor. 3.1, we obtain a
result that characterizes the efficiency of the fragmentation
mechanism.

Theorem 3.2: Let p∗ = sup{pK ,K = 1, 2, . . . ,∞} and
denote K∗ = inf{K : pK = p∗}, then

DX(K∗) = sup{DX(K) : K = 1, 2, . . . ,∞}

From the above result, we understand that the sup is attained
only in the case when the intermeeting process is such that that
there exists a finite K∗ such that pK∗ = pK for all K ≥ K∗,
i.e., above K∗ the success of a single packet transmission
during a contact is saturated at some maximum value p∗.

In that case, this also corresponds to the optimal number of
packets by which the message should be fragmented. Denote
Tm the transmission time of the message, and let Tm(1+Kζ)
be the transmission time of the message once it is fragmented.
The term ζ > 0 accounts for the overhead, which is possibly
due to transmission time and to the protocol operations, e.g.,
beaconing interval and/or handshake procedures.

Then we recall that in the geometric case p = p1 = P{Tc ≥
t1} so that

p = P

{
Tc ≥ ζ +

Tm

K

}
= 1− FTc

(
ζ +

Tm

K

)

where FTc
(·) is the CDF of the contact time. Thus, if K∗ < ∞,

we can translate the optimal packet number K∗ as the one for
which it holds

Corollary 3.1: Given per contact overhead ζ ≥ 0, the
optimal fragmentation

K∗ = min{K : pK = 1− FTc
(ζ)} (9)

That is optimal fragmentation is the smallest one that saturates
the success probability to the value that corresponds to the bare
overhead transmission over a contact.

IV. FOUNTAIN CODES

Now, let us assume that the source uses additional redundant
packets to improve the efficiency of the DTN. Using fountain
codes, for any ε, the destination is able to decode the K
packets with at least probability 1 − ε if it has received at
least M := K log(Kε ) coded packets. Saying it in a different
way, this means that any M := K log(K/δ)) encoded packets
let decode the original K packets with at least the probability
Ps = 1 − δ by on average O(K log(1/δ)) operations [18].
Using fountain coding, the source node is able to release
newly generated packets at each contact with relays, so that
the sequential order of packets becomes irrelevant in this case:
in particular, this means that the analysis of the sequential
transmission scheme still holds, but the decoding is performed
irrespective of the order by which packets have been received
at the destination.

We define the network state, the coded packet distribution
on relay nodes by a M -tuple (X1, .., XM ), where Xi(t),
i = 0, ..,M − 1 denotes the number of nodes having i coded
packets and XM (t) denoted the number of nodes having more
than M coded packets. Then we introduce the same standard
fluid approximation (based on mean field analysis) done in the
first case, but we change the K values for the M values, i.e.,
we consider δ fixed.

Now we want to write the number of nodes having at least i
packets as a function of the number of nodes having exactly i
packets to get the closed form as it follows. By the previously
stated equations we have that:

Y0 = Y1 +X0

Yh(t) = Yh+1(t) +Xh(t)

YM−1(t) = YM (t) +XM−1(t)

YM (t) = XM (t)

So, as XM (t) is given by equation (6) we can perform
the recursive backwards calculation and achieve all the Yi

values.1 Let TM be the message delivery delay, i.e, the time
from when the first packet is generated at the source to
the time when the M th coded packet is delivered to the
destination. The distribution of the delay TM is denoted by
DY (t) = P(LM ≤ t). Let yd(t) a random variable which
represents the number of coded packets received by destination
during [0, t]. Let Yi(t) denote the number of nodes having at

1We are implicitly assuming that let B is the buffer size of a node, then
B > M .
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Fig. 1. (a) Dynamics of Xj(t), (b) Dynamics of Yj(t) for j = 1, 5, 8 and (c) message delivery probability DX(t) and DY (t)for K = 8 = M − 1. (d)
Message delivery probability DX(t) and DY (t) for K = 33 = M − 2.

least i packets, i.e., Yi(t) =
∑M

j=i Xj(t). Hence it follows that
Xi(t) = Yi(t) − Yi+1(t). The success probability calculates
similarly to what done before in the uncoded case.

dDY =
M−1∑

i=0

P(t < TM ≤ t+ dt, yd(t) = i)

= dtNλ
M−1∑

i=0

p̄M−i

( 1

N
+ YM−i(t)

) (Yi(t)− Yi+1(t))

1− YM (t)
.

where we recall that p̄i = P(Tc ≥ ti). The separable
expression integrates to provide the final expression

DY (t) = 1− exp
(
Nλ

M−1∑

i=0

∫ t

0
ds p̄M−i

( 1

N
+ YM−i(s)

)
·

·
(Yi(s)− Yi+1(s))

1− YM (s)

)

where in the geometric case p̄M−i = pM−i.

V. NUMERICAL RESULTS

In this section we provide a numerical characterization of
the models obtained before. We reported in Fig. 1 the behavior
of the sequential transmission and of fountain coding schemes
predicted by the model in the case of two sample number of
packets, i.e., K = 8 and K = 33 and for the same value
p = 0.4. In particular, in Fig. 1a) we observe the transient
behavior of the fraction of infected nodes having j = 1, 5 and
K = 8 packets for sequential delivery and in Fig. 1b) the
predicted dynamics of the corresponding Yi variables when
using fountain codes. As it can be seen there, all Xis for
0 < i < K peak in order and then decrease as expected;
conversely, the Yi variables are monotonically increasing.
Thus, despite the final number of infected XM = YM is the
same for both the schemes, the coded scheme provides a sharp
improvement: the key gain in performance is indeed due to
the fact that the coded forwarding scheme does not constrain
packets forwarding to occur in order ad thus enables much
faster message reconstruction at the destination node.

In particular, we can compare the behavior of the dynam-
ics in the case of K = 8 and K = 33, Fig. 1c) and
Fig. 1d), respectively: clearly, as from Thm. 3.2, since we used
p8 = p35 = 0.4, the increase in the number of packets has a
detrimental effect in the delivery probability. But, we can see

that the relative gain of coding combined with the unordered
delivered of packets provides indeed a larger relative gain for
larger number of packets.

The effect of p on the delivery probability is reported
in Fig. 2a): the increase of p from 0.1 to 0.4 configures
as an acceleration of the dynamics, which in turn reflects
onto the delivery probability. We observe again how the gain
of DY over DX in terms of delivery probability is much
larger for lower values of p, which follows from the fact that
the delivery is unordered in the coded scheme. Finally, the
effect of the increase of p is reported for a given value of
x = λτ : in that case, we can observe a sharp transition of
the delivery probability as a function of p, i.e., the packet
transmission probability per contact. This result resembles
phase-transitions effects showed in [2], where the parameter
was actually the forwarding control operated at the source
node in order to reduce the number of infected nodes and
spare network resources. However, in that context nodes were
modeled as having single packet buffer.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have presented an analysis of the combined
effect of buffering and fragmentation in DTNs. We considered
the case when sequential packet forwarding is operated after
a message is fragmented at the source node into K packets:
this is done in order to cope with finite contact durations. The
model can be extended immediately to the case when fountain
codes are employed at the source node in order to increase the
delivery probability.

Given a certain contact duration distribution, the success
probability can be expressed in closed form, providing an
explicit relation with the probability of transmission of a
packet during a single contact, which is a local property of
the contact pattern, and the full message delivery probability,
which is a global property of the forwarding process. In turn,
this relates to the optimal fragmentation level which becomes
a function of the contact duration distribution through the
overhead for single packet transmission.

Finally, in the derivation we leveraged on simple memory-
less models for the intermeeting process, i.e., intermeeting
times were assumed memoryless. But, general contact time
duration distribution could be accounted for: for instance,
depending on the mobility, contact durations may possess
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Fig. 2. a) Dependence of DX and DY on the per packet transmission probability p = 0.1 and p = 0.4, respectively.b) Dependence of DX and DY on
the packet delivery probability p for two values of x = λτ

heavy-tail distributions or finite support distributions. For such
a reason, an interesting research direction would extend the
monotonicity result on the impact of fragmentation onto the
message delivery probability to the case of general intermeet-
ing times. In the general case, in fact, in order to understand
the impact of the distribution of contact durations on the
intermeeting process, one should be able to characterize the
interplay of the local and global effect. When the exponential
distribution rules the local effect onto the increase of delivery
probability, we found that all contact times distributions are
equivalent as long as the evaluation corresponding to the over-
head coincides. In the case of general intermeeting processes,
one should determine how the pK should increase in order to
make fragmentation convenient. Future work will validate the
model for general mobility and contact traces to compare the
cases where such assumptions of the model hold, e.g., in the
case of RWP, and where they do not, e.g., real-world traces.

VII. ACKNOWLEDGEMENT

The work of F. Albini has been funded by the CAPES
foundation process #9830/12-0. The work of R. El-Azouzi and
F. De Pellegrini has been supported by the European Com-
mission within the framework of the CONGAS project FP7-
ICT-2011-8-317672, see www.congas-project.eu. The authors
would like to thank Dr. Eitan Altman for the useful discussions
and suggestions on the technical contents of this work.

REFERENCES
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