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Abstract—In this paper we introduce a novel framework
for the distributed control of DTNs. The mechanism that we
propose tackles a crucial aspect of such systems: in order to
support message replication the devices acting as relays need
to sacrifice part of their batteries. The aim is thus to provide
a reward mechanism able to induce activation of relays in a
coordinated fashion. The proposed scheme functions in non-
cooperative fashion, and requires minimal message exchange
to operate. In particular, relays choose among two strategies:
either to participate to message relaying, or not to participate in
order to save energy. The base for our mechanism design is to
define the relays’ utility function according to a minority game;
in fact, relays compete to be in the population minority with
respect to activation. By tuning the activation level, the system
can hence control and optimize the DTN operating point in a
distributed manner. To this respect, we characterize extensively
the possible equilibria of this game. Finally, a stochastic learning
algorithm is proposed which can provably drive the system to the
equilibrium solution without requiring perfect state information
at relay nodes. We provide extensive numerical results to validate
the proposed scheme.

Keywords—Minority game, energy efficiency, delay tolerant net-
works, Nash equilibrium, learning algorithms, mechanism design

I. INTRODUCTION

Delay Tolerant Networks (DTNs) have gained much inter-
est in the research community in recent years [4, 14]. They
have been identified as a promising mean to transport data in
intermittently connected systems, i.e., where persistent connec-
tivity cannot be assumed [3]. Also, DTNs can be employed in
order to offload traffic from telecommunication networks with
respect of specific classes of data when no stringent delivery
requirements exist, e.g., video podcasting.

To date, the problem that attracted the most attention from
the research community is how to efficiently route messages
towards the intended destination(s). This problem is usually
solved by disseminating multiple copies of the message in the
network. Replication of the original message by the so called
epidemic routing protocol ensures that at least some copy will
reach the destination node with high probability minimizing
the delay to reach the intended destinations. In turn, the
standard optimization problem becomes how to maximize the
delivery probability under constraints on the resources spent
to forward it to destination. As a consequence, several papers
have further extended the possible optimizations to the use of
activation and/or forwarding control at relays [10].

However, any such optimization is made under the implicit
assumption that relays are willing to cooperate with the source
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node. But, due to limited energy or memory capacity, not
always relays can be active and participate to message routing.
More precisely, the core issue is whether owners of relay
devices, e.g., either smartphones or tables, are willing to have
battery depleted to sustain DTNs communications. From the
forwarding standpoint, in turn, massive de-activation of relays
becomes a core threat which hinders any possible attempt to
optimize network performance.

In different contexts, user participation to network opera-
tions is granted by means of appropriate incentive mechanisms.
The customary example is the usage of credit exchange in peer
to peer systems in order to discourage free riders. In the case
of DTNs, nevertheless, there is an additional technical issue
to be solved. In fact, the credit exchange mechanism cannot
be based on end-to-end communications between nodes due to
the fact that feedback messages in DTNs may incur into large
delays.

In this work we solve precisely the design of a credit-based
mechanism for relay participation in DTNs. In particular, it is
based on a mechanism design that attains a twofold objective.
First, the decision to participate to relaying or not is taken
autonomously by relays according to the incentive scheme.
Second, since incentives engender a competition among relays
that play strategies on their activation, they can be driven to
attain a desired operating point for the DTN. Such an operating
point, in turn, is precisely the solution of a joint optimization
problem involving the number of active relays.

To this respect, we rely on a novel and specific utility
structure rooted on the following trade off. The success of
a tagged relay depends explicitly on the number of opponents
met, namely, nodes adopting the same strategy. In fact, the
bigger the number of relays participating to the message
delivery, the higher the delivery probability for the message,
but indeed the less the chance for the tagged relay to receive
a reward from the system.

Rooting our approach in the theory of the Minority Game
(MG) [8] we can avoid explicit coordination among the relay
nodes. The MG tunes performance of competing relays and
welfare of the DTN (number of message copies and message
delivery probability). Hence, it configures as an appropriate
tool to drive the network to a desired operating point. We
thoroughly investigate the properties of our coordination game
in which relays compete to be in the population minority.

Finally, the coordination scheme rules the number of active
relays via the rewarding mechanism: as such the message
source can tune the number of active relays so as to achieve
a target performance figure, e.g., the probability of successful
message delivery. Conversely, in order to spare network re-
sources, the source can lower performance requirements and
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thus reduce the number of relays actively routing the message
to destination.

A. Background and contribution

The minority game studies how individuals of a population
of heterogeneous agents may reach a form of coordination
when sharing resources for which the utility decreases in
the number of competitors. Upon introducing adaptation of
strategies based on each one’s expectation about the future, the
game can describe a dynamical system with many interacting
degrees of freedom where cooperation is implicitly induced
among agents. The MG was first introduced in literature as a
simplification of the El Farol Bar’s attendance problem [7, 8].
In the El Farol bar problem [5] N users decide independently
whether to go to the unique bar in Santa Fe that offers
entertainment. However, the bar is small, and they enjoy only
if at most Ψ of the possible N attendees are present, in which
case they obtain a reward r at a cost 0 ≤ c ≤ r for going to the
bar. Otherwise, they can stay home and watch stars with utility
0. Players have two actions: go if they expect the attendance
to be less than Ψ people or stay at home and watch stars if
they expect the bar will be overcrowded.

The extension of the game introduces a learning component
based on the belief of future attendance that every player has:
the only information available is the number of people who
came to El Farol in past weeks [12],[11],[9].

All those works consider an odd number of interacting
agents and do not suggest the exact analysis of equilibrium
points as we suggest in this paper; a further key added
value of our work is the application of a standard economic
estimator, namely, the logit belief model, which provides a
suitable convergence framework for our mechanism design.
Finally, from the application standpoint, and to the best of
our knowledge, it is the first time the concept of MG is
applied to DTNs with the aim to derive a mechanism to induce
coordination in a non-cooperative fashion.

Some proofs are not presented here due to lack of space,
the reader can refer to the technical report [13] for details.

II. NETWORK MODEL

In this section, we present the overall architecture and the
intuitions behind our design.

A. System architecture and reward mechanism

We consider a DTN with several source-destination pairs
si and a large number of mobiles acting as relay nodes in
the system. Each mobile is equipped with a wireless interface
allowing communication with other mobiles in their proximity.
Messages are generated at the source nodes and need to be
delivered to the destination nodes; however, each such message
is relevant for a time interval of length τ : this is also the
horizon by which we intend to optimize network performance.

The network is assumed to be sparse: at any time instant,
nodes are isolated with high probability.1 Nevertheless, due to

1This is also the case when disruption caused by mobility occurs at a fast
pace compared to the typical operation time of protocols, e.g., the TPC/IP
protocol suite.

mobility patterns, communication opportunities arise whenever
two nodes get within mutual communication range, i.e., a “con-
tact” occurs. The time between subsequent contacts between
any two nodes is assumed to follow a random distribution.2

Consider now a message generated at t = 0: each source
node attempts to deliver the message to its destination; it does
so eventually with several copies spread between the relays
nodes. Each such message contains a time stamp reporting its
age and can be deleted when it becomes irrelevant, e.g., after
time τ . Due to lack of permanent connectivity, we exclude the
use of feedback that allows the sources or other mobiles to
know whether the message has been successfully delivered
to its destination or not. For the same reason, the design
of our activation mechanism should not require centralized
coordination and any such scheme should indeed run fully
distributed on board of the relay nodes.

Now assume that the system aims to achieve a target
performance (e.g., delivery probability or end-to-end delay).
Without loss of generality, we focus only on the probability
of successful delivery and our results can be extended to
any performance measures satisfying the monotonicity on the
number of active user nodes in DTNs. However, based on this
target and the parameters of DTNs (e.g., mobility, transmission
range, density of nodes), the system can estimate the number
of nodes which should participate, named Ψ, in order to
guarantee this target level. This value can be defined as the
minority threshold of our game. Now the question is how to
stimulate Ψ user nodes to participate to delivery message in a
distributed manner. A basic scheme to achieve this objective
is as follows: we introduce a reward mechanism, in which
each source-destination s in the system proposes a reward
rs for relays. For example this reward can be a number of
credits that relays may use to send their own messages into
the network. Furthermore, we assume that upon successful
delivery of a message, the relay node receives a positive reward
rs if and only if it is the first one to deliver the message
to the corresponding destination. Recall that the objective of
the payment scheme is to provide incentive for the node to
participate in forwarding. But, larger rewards engender more
nodes to be active which yields a higher delivery probability
at the expense of battery depletion and networks lifetime. This
trade-off rises the following question for the source: How to
define the reward in order to involve Ψ relay nodes as active
nodes such in a way to attain a given performance level? This
question will be investigated in the next subsection.

B. Network Game

In this subsection we detail the payoff for the relays. When
a message is generated by a source node, the competition takes
place during the message lifetime, i.e., with duration τ . Each
mobile has two strategies: either to participate to forwarding,
i.e., pure strategy transmit (T ), or not to participate, i.e.,
pure strategy silent (S). Mixed strategies, i.e., probability
distributions over the two possible actions, are also possible
and will be described later on.

Each strategy adopted by a relay corresponds to a certain
utility it receives. Clearly, the utility of the relay also depends

2We don’t consider any specific mobility pattern. Indeed several works on
mechanism design in DTNs have made, for the sake of tractability, specific
assumptions on nodes’ mobility (e.g. Random Walk, Random Waypoint).
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by the actions performed by N opponent mobiles. For each
player in the game, it is worth playing a given action if the
number of peer nodes that adopt the same strategy does not
exceed a given fraction of the total population of N interacting
nodes. Hence, the utility of player is designed in such a way
that, upon successful delivery of message to the destination,
an active mobiles may receive a positive expected reward
conditional to the fact that the actives mobiles represent the
minority and to the mechanism selected by network operator.
Other nodes receive in this case the opposite as a non-positive
expected reward. The customary way to interpret this non-
positive reward is that of a regret for abstention.

Formally, let N be the total number of nodes involved in
the competition. The probability that an active mobile relays
the copy of the packet to the destination within time τ is
denoted by 1−Qτ where Qτ is the probability for the tagged
relay for not succeeding in message relaying to destination.

At time t = 0, each relay plays T or plays S: players
who take the minority action win, whereas the majority loses.
Now, let N = NT + NS , where NT (resp. NS) is the
number of agents selecting strategy T (resp. S). A tagged relay
playing strategy T is member of the minority if NT ≤ Ψ,
otherwise it loses; silent agents win as NS ≤ N − Ψ. The
probability of receiving a reward R, for an active relay is a
function of inter-meeting rate, live time, reward mechanism
used by sources and number of active relays. The total reward
R =

∑

s r
sP s

succ(T, k, s) with Psucc(T, k, s), the probability
of an active node to receive a reward rs from source s when k
nodes are active. We denote by g the energy spent by a relay
node when it remains active during [0, τ ].

From the sources point of view, performance should be
guaranteed above some target level: Ds

succ ≥ Dth
succ, where

Ds
succ is the probability of successful delivery of a message:

Ds
succ(NT ) = 1−

NT
∏

k=1

Qτ (1)

and Dth
succ is the performance threshold imposed by the source.

The connection between the network performance and the
game depends on the total reward R set by sources for suc-
cessful delivery. Hence the value Ψ should obey the following
relation

∑

s

rs · P s
succ(T,Ψ, s) = gτ

where g ≥ 0 is a constant cost of activation per second for
each relay. Note that Ψ is chosen such as to equalize the
total energy cost spent by nodes for being active in [0, τ ] and
the expected reward obtained for a successful delivery. In the
homogeneous case (P s

succ = Psucc ∀s), in which the relay and
sources have similar physical characteristic, e.g. transmission
range, mobility patterns, energy capacities etc, the last relation
becomes nsr · Psucc(T,Ψ) = gτ where ns is the number of
sources in the network.

We now state the assumption required for the function
Psucc(T, k, s):

Assumption A
The function P s

succ(T, k, s) is decreasing in k, i.e., number of
active relays.

Now we can introduce two utility functions for our game,
under the assumption that the population of sources is homo-
geneous: P s

succ(T, k, s) = Psucc(T, k) ∀s:

Scenario 1: Zero-sum utility

U(T,NT ) =
∑

s

rs·P s
succ(T,NT , s)−gτ, U(S,NS) = −U(T,NT )

Scenario 2: Fixed regret utility

U(T,NT ) =
∑

s

rs ·P s
succ(T,NT , s)−gτ, U(S,NS) = −α,

where in the second case the utility of non-active nodes
expresses the regret or satisfaction for not participating to
message relaying. In particular, we assume α ≥ 0, and we
define Nα

T such that U(T,Nα
T ) = −α.

The formulation of Scenario 1, requires nodes to estimate
Psucc. This can be calculated over time by interrogating neigh-
boring nodes and averaging their success rate: this amounts to
run a pairwise averaging protocol as in [6]. In case we want
to avoid the use of gossip mechanisms, we can model regret
of non-active nodes as a constant negative perceived utility,
which corresponds to Scenario 2.

III. CHARACTERIZATION OF EQUILIBRIA

In this section we provide the exact characterization of
the equilibria induced by the game: we distinguish pure Nash
equilibria and mixed Nash equilibria.

A. Pure Nash Equilibrium

The Nash Equilibrium in pure strategy for our game is
given by the relation :

U(S,NT ) ≥ U(T,NT + 1), U(S,NT − 1) ≤ U(T,NT )

Thus, no player can improve its utility by unilaterally deviating
from the equilibrium.

Proposition 1: Under assumption A, there exists a pure
Nash Equilibrium for our game. Moreover
(i) for scenario 1, there exists a unique NE obtained when
exactly Ψ among the total population of N nodes play T .
(ii) for scenario 2, there exists two Nash equilibria which are
obtained when the total number of active relays is such that:
NT ∈ {Nα

T , N
α
T − 1}

Proof: Refer to [13] for details of the proof.

Remark 1: A crucial design issue is how to relate the
parameters of the game to the performance of the DTN at the
equilibrium. From (1), the number of active nodes required

to attain Dth
succ needs to verify N th

T = log(1−Dth
succ)

log(Qτ )
. Besides,

from Proposition 1 it must be Ψ = N th
T , thus

r∗ = gτ
1

nsPsucc(T,N th
T )

Message reward r at the equilibrium is thus proportional
to energy cost g through a positive constant.
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B. Mixed Nash Equilibrium

Let’s consider now that relay nodes maintain a probability
distribution over the two actions. Compared to the pure strategy
game, in the mixed strategy game every node can define the
strategy by which it will be active only for a fraction of
the time and stay silent the rest of the time. This kind of
equilibrium is desirable for an homogeneous population of
nodes with similar energy constraints.

In the mixed strategy game, node i can choose to play
action T with probability pi and play S with probability
(1 − pi). We let, p = (p1, p2, ..., pN ), the mixed strategy
profile of our game. If 0 < pi < 1, ∀i then p is a fully
mixed strategy profile of the game. A standard companion
notation that we use for p is (pi,p−i): it denotes the strategy
profile of the game when relay i uses strategy pi and others use
p−i = (p1, .., pi−1, pi+1, .., pN). Let’s denote by V i(p̃,p−i)
the utility of node i playing action T with probability p̃.
We have the following definition of the mixed strategy Nash
Equilibrium:

Definition 1: (i) A mixed strategy Nash Equilibrium
specifies a mixed strategy p∗i ∈ [0, 1] for each player
i (where i = 1 . . .N) such that :

V i(p∗1, .., p
∗
i−1, p

∗
i , p

∗
i+1, .., p

∗
N) ≥

V i(p∗1, .., p
∗
i−1, pi, p

∗
i+1, .., p

∗
N), ∀pi (2)

(ii) We call a Fully mixed Nash Equilibrium a mixed
strategy Nash equilibrium p with pi &∈ {0, 1}, ∀i.

In the rest of the paper we will denote by the term ’mixer’ a
relay who uses a mixed strategy 0 < pi < 1. The following
proposition states that any mixed equilibrium p with pi &∈
{0, 1}∀i, is symmetric, i.e. pi = p ∀i.

Proposition 2: Assume assumption A holds. At the equi-
librium, all mixers must use the same probability p, i.e.,
pi = pj ∀ mixer i, j.

Proof: Assume that the set of mixers is not empty and
let suppose that there are l relays that select pure strat-
egy T and r pure strategy S. Without loss of gener-
ality let the strategy profile at the equilibrium : p =
(p1, . . . , pN−l−r, 1, . . . , 1, 0, . . . , 0)

Scenario 1: The utility for a mixer relay i writes

V i(p̃,p−i) = (2p̃i − 1)F (p1, p2, . . . , pi−1, pi+1, . . . , pN)

with F (p1, p2, . . . , pi−1, pi+1, . . . , pN) =

N−l−r
∏

j #=i

(1− pj)U(T, l+ 1) +
N−l−r
∑

j #=i

pj

N−l−r
∏

j′ #∈{i,j}

(1− pj′ )×

U(T, l + 2) +
N−l−r
∑

j,j′ #=i

pjpj′
N−l−r
∏

j′′ #∈{i,j,j′}

(1− pj′′ )U(T, l+ 3) + ...

+
N−l−r
∏

j #=i

pjU(T,N − r).

Note about this function that:

• F is strictly decreasing by any unilateral increase
of pj by node j. This comes from the fact that the

utility function of an active node is decreasing with
the number of active nodes (assumption A).

• For any two mixers j &= j′, pj and pj′ are indifferently
interchangeable variables in F .

At mixed equilibrium p,
∂V i(p)
∂p̃i

= 0 ∀ i ∈ {1, . . . , N −
l− r}. This implies that: F (p1, p2, . . . , pi−1, pi+1, . . . , pN) =
0, ∀ mixer i. Now suppose that there exists two mixers i and
j, s.t. p∗i &= p∗j . Without lost of generality assume that p∗i < p∗j ,
then

0 = F (p, .., pi−1, pi+1, .., pj , .., pN ) > F (p1, .., pi−1, pi+1, .., pi, .., pN)

= F (p1, .., pj−1, pj+1, .., pN) > 0

which is absurd. Thus pi = pj , ∀ mixers i, j.

Scenario 2: Refer to [13] for details of the proof. !

From proposition 2 we conclude that any fully mixed
equilibrium p is symmetric, i.e. pi = pj ∀i, j. The following
proposition characterizes the existence and uniqueness of a
fully mixed Nash Equilibrium.

Proposition 3: Under assumption A, there exists a unique
fully mixed Nash Equilibrium p

∗. Moreover, p∗ is solution to:

• Scenario 1 :

A(N, p∗) =
N
∑

k=1

CN−1
k−1 (p∗)k−1(1 − p∗)N−kU(T, k) = 0.

(3)

• Scenario 2 :

A′(N, p∗) =
N
∑

k=1

CN−1
k−1 (p∗)k−1(1−p∗)N−k[U(T, k)+α] = 0.

Proof: Let p the symmetric mixed strategy adopted by every
node in the game, pi = p, ∀i.

Scenario 1: The utility of one relay i when the strategy profile
(pi, p−i) is played is given by:

V i(p̃i, p−i) = p̃i

N
∑

k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k) +

(1 − p̃i)
N−1
∑

k=0

CN−1
k pk−i(1− p−i)

N−k−1∗U(S, k + 1)

= (2p̃i − 1)
N
∑

k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k)

Let A(N, p−i) =
N
∑

k=1
CN−1

k−1 pk−1
−i (1 − p−i)N−kU(T, k)

if A(N, p−i) < 0, pi = 0 is the best response for player i and
conversely, p = 1 is a best response when A(N, p−i) > 0.
A mixed strategy is obtained when A(N, p−i) = 0. Also, we
have

A(N, 0) = U(T, 1) > 0 > A(N, 1) = U(T,N)

thus there exists a mixed symmetric Nash Equilibrium which
is unique since A(N, p−i) is strictly decreasing with p. The
mixed equilibrium is thus characterized by equation (3).
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Scenario 2: The proof is similar to the one of scenario 1. For
more details refer to [13].

The utility of one relay i when the strategy profile (p̃i, p−i)
is played is given by:

V i(p̃i, p−i) = p̃i

N
∑

k=1

CN−1
k−1 pk−1

−i (1 − p−i)
N−kU(T, k)−

α(1 − p̃i)

At the Nash equilibrium we have, ∀ player i, ∂V i(p∗)
∂p∗ =

A′(N, p∗) = 0 with

A′(N, p∗) =
N
∑

k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−k[U(T, k) + α]

Since α is a fixed positive constant, A′(N, p∗) has the same
properties as A(N, p∗) from the proof of scenario 1. Then we
easily conclude that, p∗ is unique and characterized by :

A′(N, p∗) =
N
∑

k=1

CN−1
k−1 (p∗)k−1(1−p∗)N−k[U(T, k)+α] = 0.

!

C. Equilibrium with mixers and non-mixers

We study here the existence of equilibrium when the
population of agents is composed of pure strategy players:
active or non-active, as well as mixers. In this case, a non-pure
Nash equilibrium can be represented by the triplet (l, r, p∗),
where l, r ∈ {0, 1, . . . , N} denote respectively the number
of agents choosing pure strategy T or S, and p∗ ∈ (0, 1)
the probability with which the remaining N − l − r mixers
choose strategy T . Moreover, we denote by vT (l, r, p)(resp.
vS(l, r, p)) the expected payoff to a player choosing T (resp. S).
The expressions of vT (l, r, p) and vS(l, r, p) write as follow:

vT (l, r, p) =
N−l−r
∑

k=0

CN−l−r
k pk(1− p)N−l−r−kU(T, l+ k)

vS(l, r, p) = −
N−l−r
∑

k=0

CN−l−r
k pk(1− p)N−l−r−kU(T, l+ k)

Proposition 4: Using the previous notations, a strategy
profile of type (l, r, p∗) is a Nash equilibrium with at least
one mixer if and only if:

vT (l + 1, r, p∗) = vS(l, r + 1, p∗) (4)

Proof: The condition (4) describes that a mixer is indifferent
whether it chooses a pure strategy T or S. This is a necessary
condition for the strategy profile (l, r, p∗) to be a Nash equi-
librium.
In order to show sufficiency, we need to show that pure strategy
players as well, cannot improve their expected utility through
unilateral deviation from the equilibrium profile. Without loss

of generality, suppose that there is at least one player using
pure strategy T , we have

vT (l, r, p
∗) ≥ vT (l + 1, r, p∗) = vS(l, r + 1, p∗)

≥ vS(l − 1, r + 1, p∗)

≥ p∗vT (l, r, p
∗) + (1− p∗)vS(l − 1, r + 1, p∗)

This last relation, states that an active user cannot improve
its expected utility by unilaterally deviating from the strategy
profile (l, r, p∗) using any strategy p∗ ∈ [0, 1), given relation
(4). As done for Scenario 1, in Scenario 2, we have,
vS(l, r + 1, p∗) = −α, let vS(l + 1, r, p∗) = −α then:

vT (l, r, p
∗) ≥ vT (l + 1, r, p∗) = −α ≥ vS(l − 1, r + 1, p∗)

≥ p∗vT (l, r, p∗) + (1− p∗)vS(l − 1, r + 1, p∗)

moreover,

vS(l + 1, r − 1, p∗) ≤ vT (l + 1, r, p∗) = −α = vS(l, r, p
∗).

This completes the proof. !

Discussion on existence of (l, r, p∗) type equilibria
It is possible to isolate several cases where the relation (4) that
characterizes a Nash Equilibrium of type (l, r, p∗), cannot be
satisfied. We denote by, p = 0+ (resp. p = 1−) the mixed
strategy infinitely close to 0 (resp. to 1), with which at least
one mixer selects to be active. Since, vT (l, r, p∗) is strictly
decreasing with l and p∗, we have, vT (l+1, r, p∗) = vS(l, r+
1, p∗)

⇐⇒

{

vT (l + 1, r, 0+) > −vT (l, r + 1, 0+)
vT (l + 1, r, 1−) ≤ −vT (l, r + 1, 1−),

(1) If l ≥ Ψ, then there is no Nash equilibrium of the
desired type. Indeed, l > Ψ, then vT (l, r+1, 0+) ≤ 0
and

vT (l + 1, r, 0+) ≤ 0 ≤ −vT (l, r + 1, 0+).

Then there is no possible Nash Equilibrium according
to relation (4).

(2) If l+r+1 > N−1, then there is no Nash equilibrium.
We already have l < Ψ, let l + r + 1 = N then,

vT (l + 1, r, p) = C1 ≥ 0 ∀ p and

vS(l, r + 1, p) = C2 > 0 ∀ p.

Since vT is decreasing with l, we have, 0 ≤ C1 < C2

which contradicts relation (4).

A Nash Equilibrium of type (l, r, p∗) exists then only for l < Ψ
and for l+r ≤ N−2, thus there are exactly Ψ(N−2)−Ψ(Ψ−1)

2
Nash equilibria. In the following proposition we go further
and decline some properties of the mixed strategy p∗ at the
equilibrium.

Proposition 5: The mixed strategy p∗ at the equilibrium
increases as r increase and reversely decreases as l increase.

Proof: Refer to [13] for details of the proof.



6

IV. DISTRIBUTED REINFORCEMENT LEARNING

ALGORITHM

In this section we introduce a distributed reinforcement
learning algorithm: it permits to relays to adjust strategies they
play over time in the framework of the DTN MG designed in
section II. The analysis of convergence of the algorithm relies
on a stochastic model that gives rise to an associated continu-
ous time deterministic dynamic system. It can be proved that
this process converges almost surely towards a stationary state
which is characterized as ε-approximate Nash equilibrium.

In DTNs, limited computational power and low energy bud-
get of relays requires adaptive and energy-efficient mechanisms
letting relays adapt to operating conditions at low cost. The
learning algorithm proposed here matches this reality of DTNs
since, as we shall see, it has the following attractive features:

• It is genuinely distributed: strategy updating decision
is local to relays;

• It depends uniquely on the realized payoffs: nodes uti-
lize local observations to estimate their own payoffs;

• It uses simple behavioral rule in the form of logit rule.

We assume that each relay node i has a prior perception
xi of the payoff performance for each action (To be active, or
not), and makes a decision based on this piece of information
using a random choice rule. The payoff of the chosen action
is then observed and is used to update the perception for that
particular action. This procedure is repeated round after round,
each round of duration τ generating a discrete time stochastic
process which is the learning process.

For notation’s sake, denote A = {T, S} the set of pure
strategies, and ∆i is the set of mixed strategies for relay
node i with i ∈ {1, ..., N}. Let V i(.) the payoff function for
relay node i. The algorithm works in rounds of duration τ ,
at round k, each relay node i takes an action aki according to
a fully mixed strategy pki = σi(xk

i ) ∈ ∆i. The fully mixed
strategy is generated according to the vector xk

i = (xk
ia)a∈A

which represents its perceptions about the payoffs of the
available pure strategies. In particular, relay node i’s fully
mixed strategies are mapped from the perceptions based on
the logit rule:

σia(xi) =
eβxia

eβxiT + eβxiS
(5)

where β is commonly called the temperature of the logit. The
temperature has a smoothing effect: when β → 0 it leads to the
uniform choice of strategies, while for β → ∞ the probability
concentrates on the pure strategy with the largest perception.
We assume throughout that σia is strictly positive for all a ∈ A.

At round k, the perceptions xk
ia will determine the fully

mixed strategies pki = σi(xk
i ) that are used by each relay node

i to choose at random action T (to be active) or S (to be silent).
Then each relay node estimates his own payoff ũk

i , with no
information about the actions or the payoffs of the other relay
nodes, and uses this value (ũk

i ) to update its perceptions as:

xk+1
ia =

{

(1− γk)xk
ia + γkũk

i if aki = a

xk
ia otherwise,

(6)

Algorithm 1 Distributed reinforcement Learning Algorithm

1: input: k = 1, each relay node i chooses its action (T or S)
according to distribution pi and set its initial perception value
x0
i = 0.

2: while max(|xk+1
iT − xk

iT |, |x
k+1
iS − xk

iS|) > ε do
3: Each relay node i updates its fully mixed strategy profile at

iteration k according to (5).
4: Relay node i selects its actions using its updated fully mixed

strategy profile.
5: Relay node i estimates its payoff ũk

i .
6: Relay node i updates its perception value according to (7).
7: k ← k + 1
8: end while

where γk ∈ (0, 1) is a sequence of averaging factors that
satisfy

∑

k γ
k = ∞ and

∑

k(γ
k)2 < ∞ (examples of such

factor are γk = 1
k or γk = 1

1+k log k ). A relay node only
changes the perception of the strategy just used in the current
round and keeps other perceptions unchanged. Algorithm (1)
summarizes the learning process. The discrete time stochastic
process expressed in (6) represents the evolution of relay node
perceptions and can be written in the following equivalent
form:

xk+1
ia − xk

ia = γk[wk
ia − xk

ia], ∀i ∈ {1, .., N}, a ∈ A (7)

with

wk
ia =

{

ũk
i if aki = a

xk
ia otherwise.

(8)

In what follows we will prove that this algorithm can attain
a steady state for the coordination process among relay nodes.
Also, the information it needs to operate is minimal.

A. Convergence of the Learning Process

Based on the theory of stochastic algorithms, the asymp-
totic behavior of (7) can be analyzed through the corresponding
continuous dynamics [1]:

dx

dt
= E(w|x) − x, (9)

where x = (xia, ∀i ∈ {1, .., N}, a ∈ A) and w = (wia, ∀i ∈
{1, .., N}, a ∈ A).

Let us make equation (9) more explicit by defining the
mapping from the perceptions x to the expected payoff of user
i choosing action a as Gia(x) = E(V i|x, ai = a).

Proposition 6: The continuous dynamics (9) may be ex-
pressed as

dxia

dt
= σia(Gia(x)− xia) (10)

Proof: Using the definition of the vector w, the expected value
E(w|x) can be computed by conditioning on relay i’s action:

E(wia|xia) = piaU(a, p−i) + (1− pia)xia

= σiaGia(x) + (1− σia)xia (11)

which with (9) yields (10). !

This can be interpreted as follows: when the difference
between the expected payoff and the perception value is large,
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the perception value, from (7), will be updated with a large
expected value wk

ia − xk
ia and this difference will be reduced.

In the following theorem, we prove that the learning
process admits a contraction structure with a proper choice
of the temperature β .

Lemma 1: Under the logit decision rule (5), if the temper-
ature satisfies β < 1

nsr
, then the mapping from the perceptions

to the expected payoffs G(x) = [Gia(x), ∀i ∈ {1, .., N}, a ∈
A)] is a maximum-norm contraction.

Proof: We give only a sketch of the proof in sev-
eral points. For the full proof refer to [13].Let relay
i action is to be active (action T ). Then GiT (x) =
∑N

j=0 nsrPsucc(T, j)CN
j (σiT (xi))j(1− σiT (xi))N−j − gτ

• We show that |GiT (xi)−GiT (x̂i)| ≤ nsr|σiT (xi)−
σ̂iT (x̂i)| for any two perceptions xi and x̂i of a relay
node i.

• Then we prove that σiT (xi)− σ̂iT (x̂i) ≤ β||x− x̂||∞

• This allows to conclude that |GiT (x) − GiT (x̂)| ≤
βnsr||x − x̂||∞

Observing that since by the minority game rule
GiT (·)GiS(·) ≤ 0, then if β < 1

nsr
, indeed G(x) is a

maximum-norm contraction. !

Based on the property of contraction mapping, there exists
a fixed point x∗ such that G(x∗) = x∗. In the following
theorem we show that the distributed learning algorithm also
converges to the same limit point x∗.

Theorem 1: If G(x) is a ||.||∞-contraction, its unique fixed
point x∗ is a global at tractor for the adaptive dynamics (10),
and the learning process (7) converges almost surely towards
x∗. Moreover the limit point x∗ is globally asymptotically
stable.

Proof: Since G(x) is a ||.||∞-contraction, it admits a unique
fixed point x∗. According to general results on stochastic
algorithms the rest points of the continuous dynamic (10) are
natural candidates to be limit point for the stochastic process
(7). All together with ([1], corollary 6.6), we have the almost
sure convergence of (7), given that we exhibit a strict Lyapunov
function φ.
Now let φ(x) = ||xia − x∗||∞, then φ(x∗) = 0,φ(x) >
0, ∀x &= x∗. Let i ∈ {1, ..., N}, a ∈ A be such that
φ(x) = |xia−x∗

ia|. If xia ≥ x∗
ia, then φ(x) = xia−x∗

ia. Since
Gia(x) is a maximum norm contraction, there exist a Lipschitz
constant ξ such that Gia(x) − Gia(x∗) ≤ ξ(xia − x∗

ia), and
Gia(x∗) = x∗

ia. All together combined with equation (10), we
can write:∀x &= x∗

dφ(x)
dt

= d(xia−x∗

ia
)

dt
= dxia

dt

= σia(Gia(x)− xia) = σia(Gia(x)−Gia(x∗) + x∗
ia − xia)

≤ σiaξ(xia − x∗
ia) + x∗

ia − xia − (1− σiaξ)φ(x) < 0.

and a similar argument for the case xia ≤ x∗
ia also shows

that dφ(x)
dt < 0, ∀x &= x∗. Thus the function φ(x) is a strict

Lyapunov function and x∗ is globally asymptotically stable.!

B. Approximate fully mixed Nash Equilibrium

From lemma (1) and theorem (1), we have:

Gia(x
∗) = E(V i|x∗, ai = a) = x∗

ia.

This is a property of the equilibrium (x∗) of the distributed
learning algorithm: its value x∗

ia is an accurate estimation of
the expected payoff in the equilibrium. Moreover we show that
the fully mixed strategy

p∗ = (σ∗
ia =

eβx
∗

ia

eβx
∗

iT + eβx
∗

iS

, ∀a ∈ A, i ∈ {1...N})

is an approximate Nash equilibrium.

Proposition 7: Under the Logit decision rule (5), the fully
mixed strategy p∗ = σ∗(x∗) at the equilibrium x∗ is a ε-
approximate Nash equilibrium for our game (proposition 3)
with ε = − 1

β

∑

a∈A σ∗
ia(ln(σ

∗
ia)− 1) .

Proof: A well-known characterization of the logit probabilities
gives:

σia(x
∗) = arg max

σi=[σiT ,σiS ]

∑

a∈A

σiaE(V i|x∗, ai = a)

−
1

β

∑

a∈A

σia(ln(σia)− 1)

=
eβE(V i|x∗,ai=a)

eβE(V i|x∗,ai=T ) + eβE(V i|x∗,ai=S)
=

eβx
∗

ia

eβx
∗

iT + eβx
∗

iS

,

and since ([2], pp.93) maxσi

∑

a∈A σiaE(V i|x∗, ai = a) −
1
β

∑

a∈A σia(ln(σia) − 1) ≤ maxσi

∑

a∈A σiaE(V i|x∗, ai =
a) then, we have:
∑

a∈A

σ∗
iaE(V i|x∗, ai = a) ≥ max

σi

∑

a∈A

σiaE(V i|x∗, ai = a)−ε

where ε = maxi∈{1...N}{−
1
β

∑

a∈A σia(ln(σia)− 1)}.

Hence the fully mixed strategy p∗ = σ∗(x∗) in the
equilibrium x∗ is a ε-approximate Nash equilibrium. !

V. APPLICATION AND NUMERICAL RESULTS

In this section, we provide a numerical analysis of the
performance achieved by DTN nodes following the distributed
reinforcement learning mechanism proposed in section IV. For
the rest of the paper, we will assume that relay nodes use the
two hop routing scheme, and the inter-meeting rate between
nodes follows an exponential distribution. Furthermore, we
assume that upon successful delivery of a message, the relay
node receives a positive reward R if and only if it is the first
one to deliver the message to the corresponding destination.
Under those assumptions, we can obtain the expressions of
different quantities: in particular the probability that an active
node relays a copy of a received packet to destination within
time τ is 1 − Qτ where the expression of Qτ is given by:
Qτ = (1 + λτ)e−λτ . Now, the probability of successful
delivery of the message for an active node is:

Psucc(T,NT ) =
1−QNT

τ

NT
, (12)

and this the probability that a relay is the first to deliver a
given message to its destination (see [13]).
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Fig. 1. Learning the fully mixed strategy: homogeneous case. g = 6.6×10−4
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Fig. 2. Learning the fully mixed strategy: homogeneous case. g = 6.6×10−4
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The numerical results presented here take into account the
utility functions defined in Scenario 1. The parameters λ =
0.03, τ = 100 are used through out the numerical analysis.

The performance of our learning algorithm in the homo-
geneous case is shown in Fig. 1. In this case we consider
g = 6.6× 10−4, N = 40. We set the sequence γk = 1

k
for all

iterations k, and the temperature β → ∞, note that this choice
of β is a good deal since it allows our algorithm to attain the
Nash equilibrium.

In Fig. 1 we observe that the probability to be active
for a node i (pi, ∀i ∈ {1...N}) converges to the symmetric
equilibrium (p∗ = 0.35). Moreover, it is interesting to notice
that the average number of active nodes at the equilibrium
approaches the value of (Ψ = 15) where Ψ defines the comfort
level of the minority game in pure strategy (Fig. 2). Such
behavior is, in fact, a convergence to the strictly fully mixed
Nash equilibrium discussed in proposition (2).

VI. CONCLUSION

Coordination of mobiles which are part of a DTN is a
difficult task due to lack of permanent connectivity. Operations
in DTNs, in fact, do not support the usage of timely feedback
to enforce cooperative schemes which may be implemented on
mobile nodes. Nevertheless, coordination is worth indeed in
order to attain efficient usage of resources. Moreover, selfish
behavior and activation control becomes core when owners
of relay devices may need incentive to spend memory and
battery. To this respect, our paper provides a novel mechanism

designed using the theory of Minority Games (MGs). MGs
are non-cooperative games which apply to contexts where
the payoff of players decreases with the number of those
who compete. We could design a reward mechanism for two
hop routing protocols that runs fully distributed and with no
need for any dedicated coordination protocol. I.e., the source
controls how many nodes to activate in order to attain a
target message delivery probability. It does so by setting the
reward for nodes who deliver first and such in a way to avoid
overprovisioning of activated relays. Finally, we developed a
distributed stochastic learning algorithm able to converge to
the optimal solution.

Future works will investigate how to extend the models
and the properties of convergence of our algorithm to other
types of networks such as cognitive radios and peer-to-peer
networks.
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Séminaire de Probabilités, XXXIII, volume 1709 of Lecture Notes in
Math., pages 1–68. Springer, Berlin, 1999.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Mar. 2004.

[3] A. Chaintreau, P. Hui, J. Scott, R. Gass, J. Crowcroft, and C. Diot.
Impact of human mobility on opportunistic forwarding algorithms.
IEEE Transactions on Mobile Computing, 6(6):606–620, June 2007.
(previously published in the Proceedings of IEEE INFOCOM 2006).

[4] R. El-Azouzi, F. De Pellegrini, H. B. Sidi, and V. Kamble. Evolutionary
forwarding games in delay tolerant networks: Equilibria, mechanism
design and stochastic approximation. Computer Networks, (0):–, 2012.

[5] H. Gintis. Game Theory Evolving. Princeton University Press, 2009.

[6] A. Guerrieri, I. Carreras, F. De Pellegrini, D. Miorandi, and A. Mon-
tresor. Distributed estimation of global parameters in delay-tolerant
networks. Computer Communications, 33(13):1472–1482, 2010.

[7] Kets, W., Voorneveld, and M. Congestion, equilibrium and learning:
The minority game. (2007-61), 2007.

[8] E. Moro. The Minority Game: an introductory guide. eprint arXiv:cond-
mat/0402651, Feb. 2004.

[9] P. Mhnen and M. Petrova. Minority game for cognitive radios:
Cooperating without cooperation. Physical Communication, 1(2):94 –
102, 2008.

[10] G. Neglia and X. Zhang. Optimal delay-power trade-off in sparse delay
tolerant networks: a preliminary study. in Proc. of ACM SIGCOMM
CHANTS 2006, pp. 237–244, 2006.

[11] Shang and L. Hui. Self-organized evolutionary minority game on
networks. 2007 IEEE International Conference on Control and Au-
tomation, 00:2186–2188, 2007.

[12] L. H. Shang. Self-organized evolutionary minority game on networks.
in International Conference of Control and Automation, May 30- June
1, 2007.

[13] H. B. Sidi, W. Chahin, R. El-Azouzi, and F. De Pellegrini. Energy
efficient minority game for delay tolerant networks. Technical Report,
url:http://arxiv.org/abs/1207.6760, 2012.

[14] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. Performance modeling
of epidemic routing. Elsevier Computer Networks, vol. 51, no. 10,
pp.2867–2891, 2007.


