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Abstract—Mobile crowdsensing has found a variety of appli-
cations (e.g., spectrum sensing, environmental monitoring) by
leveraging the “wisdom” of a potentially large crowd of mobile
users. An important metric of a crowdsensing task is data
accuracy, which relies on the qualities of the participating users’
data (e.g., users’ received SNRs for measuring a transmitter’s
transmit signal strength). However, the quality of a user can be
its private information (which, e.g., may depend on the user’s
location) that it can manipulate to its own advantage, which can
mislead the crowdsensing requester about the knowledge of the
data’s accuracy. This issue is exacerbated by the fact that the
user can also manipulate its effort made in the crowdsensing
task, which is a hidden action that could result in the requester
having incorrect knowledge of the data’s accuracy. In this paper,
we devise truthful crowdsensing mechanisms for Quality and
Effort Elicitation (QEE), which incentivize strategic users to
truthfully reveal their private qualities and truthfully make
efforts as desired by the requester. The QEE mechanisms achieve
the truthful design by overcoming the intricate dependency of a
user’s data on its private quality and hidden effort. Under the
QEE mechanisms, we show that the crowdsensing requester’s
optimal (CO) effort assignment assigns effort only to the best
user that has the smallest “virtual valuation”, which depends
on the user’s quality and the quality’s distribution. We also
show that, as the number of users increases, the performance
gap between the CO effort assignment and the socially optimal
effort assignment decreases, and converges to (0 asymptotically.
We further show that while the requester’s payoff and the social
welfare attained by the CO effort assignment both increase as
the number of users increases, interestingly, the corresponding
users’ payoffs can decrease. Simulation results demonstrate the
truthfulness of the QEE mechanisms and the system efficiency
of the CO effort assignment.

I. INTRODUCTION

Mobile crowdsensing has found a variety of applications,
such as spectrum sensing [1], and environmental monitoring
(e.g., air quality [2], noise level [3], weather conditions [4]
like temperature, humidity, and wind speed). In principle,
crowdsensing leverages the “wisdom” of a potentially large
crowd of mobile users for a crowdsensing task. The primary
advantage of crowdsensing lies in that it exploits the diversity
of inherently inaccurate data from many users by aggregating
the data sensed by the crowd, such that the data accuracy after
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aggregation can be substantially enhanced. With enormous
opportunities brought by big data, crowdsensing serves as an
important foundation for big data learning tools to harness the
power of big data in a wide range of application domains.

To fully exploit the potential of crowdsensing, it is important
to assign crowdsensing tasks to users based on the quality of
their data. The quality of a user’s data captures the accuracy
of the data relative to the actual ground truth of the event of
interest, and it generally varies for different users depending
on a user’s specific situation (e.g., location, surrounding). For
example, if the crowdsensing task is to measure the transmit
signal strength of a transmitter, then the SNR received by a
user from the transmitter determines the quality of the user’s
data, and users generally can receive distinct SNR values
depending on their locations. A user can learn the quality
of its data by estimation, based on its specific situation or
using some history data. For example, a user can estimate
the SNR received from a transmitter based on its distance
from the transmitter. However, the quality of a user’s data can
be its private information, which is unknown to and cannot
be verified by the crowdsensing requester. For example, as a
user’s received SNR from a transmitter depends on its location
which is its private information, the requester cannot verify
what is the actual received SNR of that user. As a result,
a strategic user may have incentive to manipulate its quality
revealed to the requester so as to gain an advantage. For
example, a user with a low quality may pretend to have a high
quality in the hope of receiving a high reward for contributing
high quality data to the task. To the best of our knowledge,
this paper is the first to design truthful mechanisms to elicit
private qualities from strategic users.

In addition to the quality, the effort exerted by a user in
the crowdsensing task also affects the accuracy of the user’s
data. A user can improve its data’s accuracy by making a
greater effort to complete the task. For example, to measure
the signal strength of a transmitter, a user can take the average
of more samples of the received signal in order to combat
noise. However, a user’s effort can also be its hidden action
that cannot be observed by the requester. Due to the inaccurate
nature of the data, a strategic user may report some arbitrary
data to the requester without making any effort in the task,
while the requester is not able to verify how much effort was
actually made.

In the presence of strategic users with private qualities and
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hidden efforts, our goal is to incentivize users to truthfully
reveal their qualities, and make efforts as desired by the
crowdsensing requester. Such a truthful mechanism is desir-
able as it eliminates the possibility of manipulation, which
would encourage users to participate in crowdsensing. More
importantly, the truthful elicitation of quality and effort ensures
that the requester can obtain the correct knowledge of the
data’s accuracy after aggregating the requested data, which is
a critical metric of the crowdsensing task. This is in contrast
to the situation of private cost, where manipulating the cost
cannot mislead the requester about the data accuracy.

The jointly truthful elicitation of quality and effort calls
for new designs that are significantly different from existing
mechanisms. First, a user’s payoff as a function of its private
quality has a structure essentially different from that of its
private cost. As a result, existing designs for cost elicitation
cannot work for quality elicitation. Second, due to the intricate
dependency of a user’s data on its private quality and hidden
effort, the joint elicitation of quality and effort needs to
overcome the intricate coupling between the elicitation of
quality and the elicitation of effort.

Given a truthful mechanism that can elicit qualities and
efforts from users, an important question for the requester is
to determine how much effort to assign to the users based on
their qualities, in order to maximize the requester’s payoff.
This involves the tradeoff between assigning more effort to
improve the data’s accuracy, and assigning less effort to reduce
the reward paid to the users to compensate their costs.

The main contributions of this paper can be summarized as
follows.

o We devise truthful crowdsensing mechanisms for Qual-
ity and Effort Elicitation (QEE), with general effort
assignment functions, which incentivize strategic users
to truthfully reveal their private qualities and truthfully
make efforts as desired by the crowdsensing requester.
The QEE mechanisms achieve the truthful design by
overcoming the intricate dependency of a user’s data on
its private quality and hidden effort.

e Under the QEE mechanisms, we characterize the crowd-
sensing requester’s optimal (CO) effort assignment (under
some condition) that maximizes the requester’s expected
payoff based on the distribution information of users’
qualities. We show that the CO effort assignment assigns
effort only to the best user that has the smallest virtual
valuation, which depends on the user’s quality and the
quality’s distribution.

o For the CO effort assignment, we show that the expected
requester’s payoff and the social welfare both increase
as the number of users increases, or the cost decreases.
We also show that the performance gap of the CO
effort assignment from the SO social welfare decreases
as the number of users increases, and converges to 0
asymptotically. We show via numerical results that the
users’ payoffs attained by the CO effort assignment can
decrease when the number of users increases.

The rest of this paper is organized as follows. Section II

discusses related work. In Section III, we describe the system
model of crowdsensing with private data quality and formulate

the problems of truthful mechanism design. In Section IV, we
devise truthful mechanisms for Quality and Effort Elicitation
(QEE) for continuous-valued data. In Section V, we character-
ize the optimal effort assignment under the QEE mechanisms
and devise truthful mechanism, and analyze their performance
and system efficiency. Simulation results are presented in
Section VI. Section VII concludes this paper and discusses
future work.

II. RELATED WORK

Truthful crowdsensing with private cost. Crowdsensing
has recently attracted a lot of research interests [S]-[8].
There have been many mechanisms to incentivize users to
truthfully reveal their costs in crowdsensing [9]-[12]. The
cost is considered to be a strategic user’s private information
that it would not be willing to reveal truthfully to the user’s
advantage without appropriate incentive. Departing from these
works, we study the setting where the quality of a user’s
data contributed to the crowdsensing task is the user’s private
information that it can manipulate. A user’s payoff as a
function of its private quality has an essentially different
structure as that of its private cost. As a result, existing designs
for cost elicitation (such as the classical VCG auction and the
characterization of truthful mechanisms [13, Theorem 9.36])
cannot work for quality elicitation, so that new designs are
needed. Furthermore, this paper aims at joint elicitation of
quality and effort. The intricate dependency of a user’s data
on its private quality and hidden effort results in the intricate
coupling between the elicitation of quality and the elicitation
of effort, which needs to be overcome.

Mechanism design for hidden actions. Mechanism design
for hidden actions has been well studied in the economics
literature [14], which is concerned with strategic agents that
can take hidden actions that are not desired by a principal who
employs the agents to work on a task. There are a few recent
studies that have investigated this problem in the context of
crowdsourcing [12], [15]. Cai et al. [15] have proposed truthful
mechanisms to incentivize users to make efforts as desired in
statistical estimation. However, most of the work on truthful
elicitation of effort do not take into consideration agents’ other
possible private information (e.g., quality, cost). In a recent
work [12], Luo et al. have made progress in this direction
by providing mechanisms that not only elicit desired efforts
from users but also truthful revelation of their private costs
and data. This paper is different from these works as we aim
to jointly elicit users’ desired efforts and true qualities. Due to
the intricate coupling between the elicitation of quality and the
elicitation of effort, existing mechanism designs cannot handle
the problem studied in this paper.

Quality-aware crowdsensing. The quality information of
users is important for allocating crowdsensing tasks to the
users, and has been studied in a few works [6], [16]-[19].
One interesting line of work in this direction has focused on
learning the quality of users, e.g., by exploiting the correlation
of their data for the same tasks [16], [17], or allocating tasks
on the fly [18]. This paper focuses on the setting where quality
is a user’s private information that is unknown to the requester.
To the best of our knowledge, this paper is the first to design
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Fig. 1. Structure and procedure of the crowdsensing system.

truthful mechanisms to elicit private qualities from strategic
users.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a crowdsensing requester (also referred to as
user 0) recruiting a set of users N' = {1,--- , N} to work on
a crowdsensing task. For convenience, let Nt £ A U {0}.
The structure and procedure of the crowdsensing system is

illustrated in Fig. 1 and described in detail as follows.

A. Crowdsensing with private user quality

1) Data observation, user quality, and work effort: The
crowdsensing task aims to observe and estimate an unknown
and random event of interest X. We consider continuous-
valued data such that X € R (e.g., the signal strength of a
transmitter). The interested event X follows an arbitrary prior
distribution which is known to the requester. Each useri € A+
(i.e., including the requester) obtains random data D, after
working on the task, which is equal to X corrupted by an
independent additive Gaussian noise W, i.e.,

D; 2 X4+ W, (1)
where
W~ (0., @)

Here the mean of W, is assumed 1t0 be 0 without loss of
generality (WLOG). Note that the Gaussian noise model is
commonly used in many applications including crowdsensing
(e.g., [1], [2]). The accuracy of D; is quantified by the variance
of W, which is equal to the ratio of the quality ¢; of user
1 and the effort e; exerted by user 7 in the task. For ease of
exposition, we assume that users’ qualities are within the range
of [g, ], which is known to the requester.

Given the effort e;, the quality ¢; > 0 determines the
variance Z—:’ of the difference D; — X (i.e., the noise W;) which
quantifies how accurate D; is. The quality g; is an intrinsic
coefficient that captures user ¢’s capability for the task. Note
that a smaller g; means a higher quality. The quality generally
varies for different users (e.g., users can receive distinct SNRs
from a transmitter based on their locations). We assume that
each user i € N’ knows its quality ¢; (e.g., by estimating the
received SNR based on the user’s distance from a transmitter).
However, the quality of each user i € A/ is unknown to the
requester (e.g., the received SNR from a transmitter depends
on the user’s location which is its private information).

The effort e; > 0 represents how much work user 7 devotes
to the task. For example, the effort can be (approximately) the

number of samples of the received signal from a transmitter
taken by the user. Given the quality ¢;, a higher effort e; means
a smaller variance % and thus a higher accuracy of D;. We
should note that it is reasonable to model the variance of noise
W; as the function % which is inversely proportional to the
effort e; (e.g., as in [12]): if each unit of user ¢’s effort e; is a
sample of the observed event taken by user ¢, then when user
1 makes k units effort (i.e., ke;) by taking k i.i.d. samples, it
is clear that the variance of the average of the k£ samples is
exactly kTZl We assume that each user ¢ can fully control its
effort e;, but it cannot be observed by the requester.

2) Quality reporting, effort assignment, and data reporting:
The requester allocates the crowdsensing task to the users by
assigning an effort e} that it desires each user ¢ to exert in
the task, based on the qualities of the users. To this end, each
user 4 reports its quality ¢, to the requester. Since the true
quality g; is user ¢’s private information, it may manipulate
the reported quality ¢; to its own advantage such that ¢} # g¢;.
Based on the qualities reported by all the users, the requester
determines the effort ¢} assigned to each user ¢ according to
some effort assignment function

ei(q’) 3)
and notifies user ¢ of its assigned effort . The effort as-
signment function e}(q’) is pre-defined by the requester and
announced to all the users before they report their qualities.
The effort assigned to a user generally varies for different
users due to the diversity of their qualities. Intuitively, a user
with a higher quality would be assigned a larger effort. Note
that in general the assigned effort e/ is not only dependent
on the quality ¢} reported by user i but also on the qualities
q’_; reported by the other users. After being assigned effort
e} to, each user ¢ works on the task by making actual effort
e;. Since e; is a hidden action of user 7, it may manipulate it
against the assigned effort e/ to its own advantage such that
e; # ¢;. After obtaining data d; from the task, which is a
sample realization of the random data D;, each user ¢ reports
data d; to the requester. We assume that each user ¢ truthfully
reports its data d; (we will discuss in Remark 3 that this is a
reasonable assumption).

3) Data estimation and reward payment: After collecting
all the data d reported by the users, the requester makes
an estimate z* of the interested event X based on d. It
uses the estimator that achieves the minimum mean squared
error (MMSE), which is a common metric for statistical
estimation [21], i.e.,

x* £ aI'gH;i/l’lExld(q/’e/) [(Z‘/ — X)2] . (4)
Here the estimation is based on the posteriori distribution X |d
of X, which depends on the qualities ¢’ and efforts e’ of the
users. Then the utility of crowdsensing is represented by the
estimation loss [, which is quantified by the MMSE:

l(d, q', 6/) = EX|d(q’,e’) [(l‘* — X)ﬂ . (5)

On the other hand, the requester pays a reward r; to each
user ¢ for its contribution to the task, according to a certain
reward function:

ri(do, diy ', €}). (©6)
Note that the reward r; depends on the data dy observed by
the requester itself. The reward function is also pre-defined by
the requester, and announced to all the users before they report
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their qualities (together with the effort assignment function
e’(q’)). Note that the reward function can only depend on the
information that the requester knows, i.e., dg, d, q’, and e'.

B. Mechanism Design Objective

Based on the crowdsensing system described above, each
user ¢’s payoff u; is the reward r; paid by the requester minus
its cost in the task, given by,

ui(do, di,q', €;) = ri(do,di, g, €}) — cies. (7N
Here the cost ¢; represents how much resource (e.g., sensing
time, energy) is consumed by user i for each unit of effort
e; devoted to the crowdsensing task. Therefore, as a linear
function of e;, the total cost c;e; represents the total amount
of resource consumed by user i in the task. Note that the
weight of the total cost c;e; relative to the reward r; in (7)
can be integrated into the cost c;. We assume that all users
have the same cost ¢ (i.e., ¢; = ¢, Vi) and it is known
to the requester. This assumption is reasonable when users’
mobile devices have uniform (or similar) capabilities so that
the resource consumption for making a unit of effort (e.g.,
taking a sample) is common knowledge to the requester and
users.

The requester’s payoff u is the crowdsensing’s utility (i.e.,
the negative of the estimation loss /) minus the total reward
paid to the users, i.e.,

Uo(l’, d7 q/7 6/) £ _l(da ql> el) - Z ’I"i(do, d’i7 q/’ 6;) (8)

As the users have private qualitieslgﬁ{i make hidden efforts,
if any user manipulates its reported quality or actual effort,
then the estimator found by (4) would be different from the
correct estimator, i.e.,

x* # arg nllln EXx|a(q.e) [(2" — X)2] )
More importantly, the estimation loss found by (5) would be
different from the correct one, i.e.,
l(d7 q/7 e,) 7é Hglclln EX|d(q,e) [(IE, - X)2] :

This means that manipulation would lead to incorrect knowl-
edge of the requester about the estimation loss! This is
undesirable since the data’s accuracy is a critical performance
metric that needs to be ensured to meet some requirement
(e.g., a tolerance threshold for acceptable data accuracy). Note
that this issue does not arise in the setting where users have
private costs only, since manipulating the costs can affect
only the crowdsensing’s utility and the reward payment but
cannot affect the requester’s knowledge of the data accuracy.
Furthermore, the possibility of manipulation could result in
concerns that discourage users to participate in crowdsensing.
Thus motivated, we aim to design a mechanism, which is a pair
of an effort assignment function ¢;(q’) and a reward function
ri(do,di, ¢, €}), that can achieve the property of incentive
compatibility as stated below.

Definition 1: A mechanism is dominant incentive-
compatible (DIC) if, given any set of qualities reported by the
other users, the optimal strategy of each user ¢ for maximizing
its expected payoff is to truthfully report its quality and make
the effort desired by the requester, i.e.,

EDO.,D,;(ql,e,;) [Uz(Dowa(Jz»qL“GQ)] 2
EDU,D,i(qi,ei) [ui(DO7Diaqgaq/—ivei)] 7v(qg7€i)vvq/—i'

Another natural and desirable property we aim to achieve is
that each user’s expected reward should at least compensate its
cost (i.e., its expected payoff is nonnegative), since otherwise
the user would not participate in crowdsensing for a payoff of
0. This property of individual rationality is stated as follows.

Definition 2: A mechanism is individually rational (IR) if
for each user ¢, given that it truthfully reports its quality and
makes the effort desired by the requester, its expected payoff
is nonnegative, i.e.,

EDy.D;(gi,e5) [4i(Dos Dy gi "y, €7)] >0, Vg,

IV. TRUTHFUL QUALITY AND EFFORT ELICITATION FOR
CROWDSENSING

In this section, we design truthful crowdsensing mechanisms
that achieve the DIC and IR properties.
We first present the QEE mechanisms as follows.
Definition 3: A Quality and Effort Elicitation (QEE) mech-
anism is a pair of any effort assignment function e(q’)
that satisfies the condition in (9) and the reward function
ri(do, di, ¢, €}) given by (10) based on that ¢;(q’):
e;(Qz/W q/—z) Z e;(qg?q/—i)v VQ; S q;’, Vq/—z (9)
/

de! !
rilo,diod e 9 4o oot ()
q; q

12 !/
&) (,q) (do—di)? — Zﬁ . (10)
The condition in (9) captures geﬁeral effort assignm(e):nt func-
tions where the effort assigned to each user increases as
its quality improves, given any qualities of the other users.
Intuitively, these effort assignment functions are natural and
desirable for system efficiency. In the following, we will show
the main ideas of the design of the QEE mechanisms (9)
and (10). The rationale behind the design will be explained
in Remark 1.

We show how the QEE mechanisms achieve the DIC
property in the following three steps. We first show how each
user’s expected payoff depends on its true quality and actual
effort (Lemma 1). Then we show that if the elicitation of
quality is achieved, the elicitation of effort is also achieved
(Lemma 2). Last, given that the actual effort is optimized, we
show that the elicitation of quality is achieved (Lemma 3). As
a result, the DIC property is achieved (Theorem 1). Due to
space limitation, the proofs of this paper are available in our
online technical report [22].

We first show that each user’s expected payoff can be
expressed as a function of its true quality and actual effort
using (10).

Lemma 1: Under the QEE mechanisms, given that any user
i reports quality ¢} and its data d; and makes effort e;, its
expected payoff is given by B

Tei(g, q’;)
ED07Di(qz',€i) [ui(D()? Dy, ql7 61')]16/ -
q

/

dq+2ce(q')
120 0N
_ e @a gy

€ig;
Then we show that, as user 7 can only affect its payoff in
(11) via its reported quality ¢; and actual effort e;, its optimal

actual effort can be found as a function of ¢} using (11).
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Lemma 2: Under the QEE mechanisms, given that any user
i reports quality ¢, and its data d;, its optimal actual effort is

given by
qi
€i =14/ aeg(q/)-

Note that the optimal actual effort e; in (12) is equal to the
desired effort e, when the reported quality ¢; is equal to the
true quality g¢;. It means that if the elicitation of quality is
achieved, then the elicitation of effort is also achieved. This
is a key property we need to overcome the intricate coupling
between the elicitation of quality and the elicitation of effort,
and achieve the elicitation of effort. Using Lemma 2, given
that user ¢ reports its data d; and makes the optimal effort as
in (12), we can express its payoff in (11) as

de! I i
C/ Md(ﬁﬂce;(q’) —2c\/zf€§(ql)7
q; q K

by substituting (12) into (11).

Next we show that, since user ¢ can only affect its own
payoff in (13) via its reported quality ¢;, its optimal ¢/ is its
true quality g;, under the general condition (9) on the effort
assignment function e}(q’).

Lemma 3: Under the QEE mechanisms, given that any user
1 reports its data d; and makes its optimal actual effort as (12),
its optimal reported quality is its true quality ¢, = ;.

Note that the optimal reported quality ¢/ is always equal to
the true quality ¢; and is independent of e}. Therefore, this
property achieves the elicitation of quality.

Using Lemmas 1, 2, and 3, we can show that the QEE
mechanisms achieve the DIC property as in the next theorem.
Given that user ¢ reports its data d;, makes the optimal effort
e; = e}, and reports the optimal quality ¢; = ¢;, its payoff in
(13) is given by

12)

(13)

c/qei(q’ ) dg. (14)

It follows that the IR prq(;pertyqis also achieved since (14) is
no less than 0 due to the fact that ¢;(qg’) > 0, Vq'.

Theorem 1: The QEE mechanisms are DIC and IR.

Remark 1: We explain the rationale behind the truthful
design of the QEE mechanisms as follows. To incentivize each
user ¢ to report the true quality ¢; = ¢; and make the desired
effort e; = e}, the reward function r; must depend on the
true quality g; and the actual effort e;, since otherwise user @
can manipulate ¢, and e; without regard to ¢; and e}. Since
r; can only be defined using the information known to the
requester (i.e., do, d;, q', and ¢}), and the variance of the
noise W; in data d; is determined by the true quality ¢; and the
actual effort e;, we can design 7; as a function of the squared
error (dy — d;)? such that the expected reward is a function
of the variance and thus depends on ¢; and e; (as in Lemma
1 and (11)). Therefore, the expected reward depends only on
ql, €;, q;, and e; (as in (11)). Then we can design the reward
function such that the optimal actual effort e; that maximizes
user ¢’s expected payoff is equal to e; when ¢} = ¢; (as in
Lemma 2 and (12)). Given that the actual effort is optimized,
the payoff only depends on ¢, e}, and ¢; (as in (13)). Next we
further design the reward function such that, under the general
condition on €} (as in (9)), the optimal reported quality ¢; that
maximizes the payoff is always equal to ¢; and independent

of ¢ (as in Lemma 3).

Remark 2: We can see from (14) that, given the effort
assignment function e}(q’) and the users’ qualities ¢; and ¢’ _,,
the user’s payoff increases as the upper bound g of users’
qualities increases, and thus the requester’s payoff decreases
as ¢ increases. This means that the requester can pay less
“information rent” [23] by knowing more information (i.e.,
having less uncertainty) about users’ qualities with a smaller
upper bound §. In the extreme case where the requester knows
that all users have the same quality (i.e., ¢; = g, V7), all users
have O payoffs while the requester receives all the surplus
of users’ efforts, which means that the mechanism is fully
“efficient” for the requester’s interest.

Remark 3: We should note that, without any truthful design,
it is difficult for a user to manipulate its reported data to its
own advantage. This is because the user needs the private
information of the requester’s quality gy and effort ey, which
it would not know, in order to find out how to manipulate
its data to improve its payoff. Therefore, it is reasonable to
assume that users truthfully report their data, as we do in this

paper.

V. OPTIMAL EFFORT ASSIGNMENT FOR TRUTHFUL
CROWDSENSING

We have shown that the DIC and IR properties can be
achieved by all the QEE mechanisms which have general
effort assignment functions that satisfy condition (9). We
will now show how the requester can find the optimal effort
assignment that maximizes its payoff, based on the distribution
information of users’ qualities. Because of the DIC property,
we assume that ¢’ = g and e = €’ in this section, and thus,
for brevity, we use ¢q and e instead of g’ and €, respectively.
For ease of analysis, we assume that the interested event X
follows a normal prior distribution A/(0,1) (i.e., with mean
0 and variance 1). We further assume that users’ qualities
follow independent and identical uniform distributions over
an interval [g, q], which is known to the requester.

Definition 4: The crowdsensing requester’s optimal (CO)
effort assignment e*(q) is the effort assignment function e(q)
that maximizes the requester’s expected payoff (8) among all
the QEE mechanisms, i.e.,

{e* (q)7 Vq} £ arg{er(g)a}v{q}EX7D(Q’e) [U'O(Xa Da Qa 6)] . (15)
Then the optimal effort assignment can be characterized as

follows.
Theorem 2: When ¢ > 1/(9q), the requester’s optimal effort
assignment (15) is given by

1
. maxq g | —— —1 ,0},i:argmin‘a(q»)
€; (q): a(Q7) ) ! ! )
0, otherwise

(16)

Vq, where

F(qi .

alg) £ e ( f((q ) | Qi) , Vi (17)

and f(q) and F(q) denote the probability density function
(PDF) and cumulative density function (CDF) of each user’s
quality, respectively.

In the rest of this section, we will assume that the condition
¢ > 1/(9¢q) in Theorem 2 is satisfied so that the CO effort
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assignment is given in (16). This is because the characteri-
zation of the CO effort assignment under this condition and
the corresponding performance analysis provide useful insights
on the impact of system parameters on the performance and
system efficiency. Furthermore, the performance under this
condition also serves as an upper bound on the performance
when the condition is not satisfied.

Remark 4: Theorem 2 shows that the optimal effort assign-
ment assigns effort to only one user, and furthermore, this
effort depends only on that user’s quality (and its distribution)
but is independent of the other users’ qualities. Therefore, the
optimal effort assignment appears to be “single-sensing” rather
than “crowdsensing”. However, we should note that in fact it
exploits the diversity gain of multiple users’ qualities, since
only the “best”! user i that has the smallest a(g;) is assigned to
effort. This “single-sensing” observation is essentially because
the cost functions are linear, so that the marginal gain of
the requester’s payoff by increasing the best user’s effort is
always greater than by increasing any other user’s effort. It
is in contrast to data estimation with no data cost [24], for
which it is usually optimal to use data from multiple sources
rather than only from the one source with the best quality.
One attractive implication of this “single-sensing” observation
is that it simplifies the implementation of crowdsensing: the
requester needs to collect data only from the best user rather
than a potentially large number of users.

For convenience, let ¢i denote the quality of the best user
for the CO effort assignment and €7 (g) the CO effort assigned
to the best user.

Remark 5: Theorem 2 shows that the best user is the
user ¢ with the smallest “virtual valuation” «(q;) rather than
the highest quality ¢;, where each user ¢’s virtual valuation
depends on not only its quality ¢; but also the quality’s
distribution F'(g;) and f(g;). This implies that the range of
a user’s possible qualities, represented by Aq £ G — ¢, affects
its effort assignment: given users’ qualities, when users have a
smaller quality range, more effort is assigned to the best user
due to a smaller virtual valuation. This is intuitive because
a larger quality range incurs a higher payment to the user in
order to truthfully elicit quality. In the special case of Ag = 0,
a user’s virtual valuation is equal to its quality. The concept
of virtual valuation was introduced by Myerson [13] and is in
the same spirit as the result here.

Remark 6: According to condition (9), the CO effort €] (q)
assigned to the best user in (16) increases when its quality
q; improves. Note that no effort is assigned if its quality is
too low (i.e., a(gf) > 1). This is because a higher quality
improves the marginal utility of crowdsensing by making more
effort, and thus assigns more effort to the best user. On the
other hand, we can observe from (16) and (17) that e (q)
decreases as the cost ¢ increases. This is due to that a larger
c incurs a larger payment to compensate the higher marginal
cost, which results in less effort assigned.

Next we analyze the impact of system parameters on the
performance of the CO effort assignment and its system

UIf there are multiple “best” users, only one of them is selected by breaking
the tie randomly.

efficiency.

Proposition 1: The expected CO payoff Eglug(e*(Q))]
attained by the CO effort assignment increases as the number
of users N increases, or the cost ¢ decreases.

Remark 7: Proposition 1 shows that the requester benefits
from a greater diversity gain in users’ qualities. This is because
when there are more users, the quality of the best user is likely
to be higher, which improves the crowdsensing’s utility. On
the other hand, a larger cost c increases the total cost and thus
reduces the payoff.

The system efficiency of an effort assignment function e(q)
is quantified by the social welfare v it attains, which is the
crowdsensing’s utility (i.e., the expected estimation loss [)
minus the total cost of all users, i.e.,

v(e(q)) = —Ep(q,e)l(D,q,e)] — Z cie;.

For the interest of system efficiency, it is dels?rjgble to achieve
the optimal social welfare.

Definition 5: The socially optimal (SO) effort assignment
e®°(q) is the effort assignment function e(q) that maximizes
the social welfare, i.e.,

e*°(q) £ maxv(e(q)). (19)
e(q)

The socially optimal effort assignment can be characterized
as follows.

Proposition 2: The socially optimal effort assignment is
given by

1
o max < q; —1),0;,¢=argmin;q;
¢i’(q) = { ( €4 ) } T

0, otherwise

(18)

(20)

Remark 8: Proposition 2 shows that the SO effort assign-
ment assigns effort only to the “best” user ¢ that has the
highest quality ¢;. Comparing (16) and (20), we can see that
the SO effort assignment is only different from the CO effort
assignment in that it selects the best user and assigns the effort
to it based on the highest quality rather than the smallest virtual
valuation among the users. Since it can be easily seen that each
user ¢’s virtual valuation «/(g;) is no less than its quality g;, the
CO effort assigned to the best user is less than the SO effort
assigned. This is because, although assigning more effort can
improve the social welfare, it would result in a too higher
payment. As a result, the CO effort assignment is not socially
optimal, and the gap is essentially due to the asymmetry of
users’ quality information between the users and the requester.

For convenience, let ¢;° denote the quality of the best user
for the SO effort assignment and e5°(q) the SO effort assigned
to the best user.

Proposition 3: The expected SO social welfare
Eglv(e;°(Q))] and social welfare Eglv(ei(q))] attained by
the CO effort assignment increases as the number of users /N
increases, or the cost ¢ decreases.

Similar to Proposition 1, Proposition 3 shows that the social
welfare also benefits from a greater diversity gain in users’
qualities: when there are more users, the quality of the best
user is likely to improve.

Proposition 4: The gap between the expected social welfare
of the CO effort assignment and the SO effort assignment
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Egv(ei°(Q))] — Eqlv(e;(Q))] decreases as the number of
users N increases, and converges to 0 as N goes to infinity.

Remark 9: Proposition 4 shows that the performance gap
between the CO effort assignment and the SO effort assign-
ment decreases to 0 asymptotically as the number of users
increases. This is because the gap between the CO effort and
the SO effort assigned to the best user decreases when its
quality improves, and that the crowdsensing’s utility and thus
the social welfare is a concave function of the effort from the
best user.

VI. SIMULATION RESULTS

In this section, we evaluate the properties of the QEE mech-
anisms and its performance with the CO effort assignment
using simulation results.

A. User’s payoff

To illustrate the DIC and IR properties of the QEE mecha-
nisms, we compare a user’s expected payoff when it truthfully
reports its quality and makes its effort with that when it
untruthfully reports its quality and/or makes its effort. We
use the CO effort assignment e}(q) in (16) for the QEE
mechanism. We set the default parameters as follows?: n = 2,
c=03, 1,2 (@+q)/2=2, A¢=3, 1 = 1.2, g = 2.75.

Fig. 2 illustrates user 1’s expected payoff as it reports
varying quality ¢ and makes no effort, or truthful effort
€1(q1,qz), or optimal effort , /T-e7(q1, g2) (as in (12)), com-
pared to when it truthfully reports its quality and makes its
effort. Fig. 2 illustrates user 1’s expected payoff as it makes

2It is WLOG to consider 2 users only as the CO effort assignment assigns
effort to the best user only based on the best user’s quality.

Fig. 5. Impact of quality range Agq.

Fig. 6. Impact of the number of users N.

varying effort e; and reports its actual quality ¢;, or the
highest quality ¢, compared to when it truthfully reports its
quality and makes its effort.. We can see that the user’s
payoff when its behavior is untruthful is always no greater
than when truthful. Furthermore, the user’s payoff gap due to
untruthfulness increases when it is more untruthful (i.e., the
gap between the reported quality and actual quality, or the
desired effort and the actual effort is larger). This confirms
that the DIC property is achieved by the QEE mechanism so
that users have incentive to behave truthfully. We also observe
from Figs. 2-3 that the user’s payoff is always greater than
0. This confirms that the IR property is achieved by the QEE
mechanism.

B. Requester’s payoff

To illustrate the system efficiency of the CO effort assign-
ment, we compare the expected requester’s payoff (CP) and
total users’ payoff (SP) attained by the CO effort assignment
(CP-CO, SP-CO) with the expected social welfare (SW) at-
tained by the SO effort assignment (SW-SO), and the expected
SW attained by the CO effort assignment (SW-CO). Note that
SP-CO is represented by the gap between CP-CO and SW-CO
curves in figures. We set the default parameters as follows:
N =5 ¢=05 p, 2 (q+q)/2 =2 Ag = 3.1t can be
verified that all the data points presented in the figures of this
section satisfy the optimality condition ¢ > 1/(9¢) in Theorem
2 for the CO effort assignment. For convenience, we illustrate
the negative of social welfare or the requester’s payoff in all
figures.

Fig. 4 illustrates the impact of the cost ¢ on the performance
of CP-CO, SW-CO, and SW-SO. We observe that all the three
curves and SP-CO increase as c¢ increases, which is because
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higher cost results in less effort and low performance. We also
observe that the gap between SW-CO and SW-SO is small
when c is large. This is because a large c results in little effort
so that the social welfare is close to the lower bound in which
no effort is made, and thus the gap in the social welfare is
also small.

Fig. 5 illustrates the impact of the quality range Ag on
the performance. We observe that all the three curves are
decreasing in Agq. This shows that CP and SW are concave
functions of the qualities, so that the increase of CP or SW
at high qualities is larger than the decrease of CP or SW at
low qualities when Agq is large. We also observe that SP-
CO increases as Agq increases. This is partly due to that a
larger range of possible qualities would require a higher truth-
eliciting reward according to (14). We further observe that the
gap between SW-CO and SW-SO is small when Aq is small.
This is partly because the gap between the CO and SO effort
assignments is decreasing in Ag according to (16) and (20).

Fig. 6 illustrates the impact of the number of users N on
the performance. We observe that all the three curves are
decreasing in N, which is because they benefit from a greater
diversity gain in users’ qualities when there are more users.
We also observe that the gap between SW-CO and SW-SO
is decreasing and converging to O when N increases, which
confirms our result in Proposition 4. It is interesting to observe
that, while all of CP-CO, SW-CO, and SW-SO increases as
N increases, SP-CO can decrease when N increases (e.g., as
SP-CO is smaller at N = 50 than at N = 20). This can be
understood by examining the best user’s payoff given by

q % .
C/ 61(q7Q—z)dq
a5y q

according to (14). We can see that when N increases, g is
likely to decrease which would increase the above integral.
However, q_; is also likely to increase as N increases,
which decreases ef(q, q—;), and this effect can outweigh the
increase of gj such that the integral decreases. This means
that while the requester benefits from more users, the users
can experience a loss due to the “competition” among the
users.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have devised the QEE mechanisms for
crowdsensing, to incentivize strategic users to truthfully reveal
their private qualities and make efforts as desired by the crowd-
sensing requester. The QEE mechanisms have achieved the
truthful design by overcoming the intricate coupling between
the elicitation of quality and the elicitation of effort. Under
the QEE mechanisms, we have analyzed the performance and
system efficiency of the requester’s optimal effort assignment.

For future work, one interesting direction is to consider
users that have no knowledge of their qualities. In this case,
the requester needs to learn the qualities of strategic users
which may not truthfully provide data to the requester for the
purpose of learning. In this paper, we have focused on the
truthful quality and effort elicitation under the assumptions
that users truthfully report their data and their cost is known
to the requester. The truthful mechanism design when users’

data and/or costs are also private information is still an open
problem and will be studied in our future work.
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