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Abstract—In this paper, we study a joint beam and user
scheduling problem in a cooperative cellular network utilizing
orthogonal random beamforming technique. This paper aims to
minimize total base stations’ average energy expenditure while
ensuring finite service time for all traffic arrivals in a given
set. We leverage Lyapunov optimization technique to transform
original long-term problem into short-term modified max-weight
problem without knowledge of future network states such as traf-
fic arrivals. We introduce a parameter which manipulates energy-
delay tradeoff in our system as well. Since provided short-term
problem is combinatorial and nonlinear optimization problem,
we are inspired by a greedy algorithm to design near-optimal
joint beam and user scheduling policy, namely BEANS. We prove
that proposed BEANS (i) ensures finite service time for all traffic
arrival rates within close to 1/2 capacity region and all (energy-
delay) tradeoff parameters thanks to submodular characteristics
of the objective function, and (ii) attains finite upper bounds
of average energy consumption and average queue backlog for
all traffic arrival rates within close to 1/4 capacity region and
all tradeoff parameters. Finally, via extensive simulations, we
compare the capacity region and energy-queue backlog tradeoff
of BEANS with optimal and existing algorithms, and show that
BEANS attains 43% of energy saving for the same average queue
backlog compared to the algorithms which do not take traffic
dynamics and energy consumption into considerations.

I. INTRODUCTION

Motivation. We witness an explosion of mobile data traffic
over the past years and this trend is expected to continue
in the coming years1. This unprecedented usage of mobile
data leads to tremendous amount of energy expenditure of
network infrastructure2. In particular, energy consumption of
base stations (BSs) is known to account for more than 80%
of total energy consumption in cellular networks [3], which
implies that BS energy saving exerts a great influence on entire
network greening.

To date, the BS energy saving has been extensively studied
in domains of various time scales [4]–[7]. Kwak et al. [4]
suggested network-wide BS power sharing policies in a time
scale of transmit power control, say few msec, for given total
BSs’ energy budget. Oh et al. [5] and Abbasi et al. [6] ad-
dressed BS activation policy in the presence of spatio-temporal
traffic dynamics with a time scale of few hours. Son et al.
[7] suggested joint user association and BS activation policy

1According to the forecast of Cisco [1], global mobile data traffic will increase
nearly eightfold between 2015 and 2020.

2According to the SMART 2020 report [2], the energy consumption of network
infrastructure is expected to triple in 2020 compared to 2002.

by leveraging a time scale separation of microscopic flow-
level dynamics (e.g., few minutes) and macroscopic traffic-
level dynamics (e.g., few hours).

Theoretically, wireless capacity can be linearly improved as
the number of transmit and receive antennas increases [8]. In
addition, radiated energy can be saved by focusing energy into
ever-smaller regions of space with a beam formed by several
transmit and receive antennas. Meanwhile, a recent trend on
hyper-dense heterogeneous and small cell deployment to cope
with pronounced increment of data traffic brings a severe inter-
cell interference problem [9]. CoMP (Coordinated MultiPoint)
technology [10] helps the network system cancel the inter-cell
interference suffered from transmission of neighboring BSs
by a cooperation of data transmission among BSs. Hence,
the both MIMO (Multiple Input Multiple Output) and CoMP
technologies allow the network system to attain higher data
rate as well as higher energy saving for the same data rate
performance. However, existing studies in the MIMO CoMP
cellular system have mainly focused on the design of physical
layer such as hybrid beamforming [11] or antenna precoding
[12] whereas the network management policies such as a
joint beam and user scheduling in the same network system
were difficult to be addressed3 due to high computational
complexity of intertwined design with the antenna precoding4.

Summary and contribution. In this paper, we formulate
a joint beam and user scheduling problem in multi-cell co-
operative cellular networks aiming to minimize total energy
expenditure of base stations while ensuring finite service time
with respect to dynamic traffic arrivals. We take into account
an orthogonal random beamforming scheme as a precoding
vector design [14] so as to mainly focus on the joint beam and
user scheduling policy per se. The random beamforming does
not require channel state information (CSI) of all channels
between all transmit-receive antenna pairs, and only demand
SINR (signal to interference plus noise ratio) feedbacks of all
users, hence it significantly reduces computational complexity.
Then, each user is matched to one of randomly generated

3Some of recent work (e.g., see [10]) have addressed network management such as
BS sleeping control for a given user scheduling in the MIMO CoMP system.

4Shi et al. [13] proposed a joint design of RRH (Remote Radio Head) (or BS)
selection and coordinated transmit beamforming in C-RAN architecture to minimize
network energy consumption assuming perfect channel estimation which is difficult to
realize in practice.
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beamforming vectors so as to maximize their own objectives5.
A prediction of traffic variations (channel variations as well)

is difficult to realize because the time scale of beam/user
scheduling problem is much shorter, say few msec, even
though existing BS activation work (e.g., see [5]) assumes
that they are predictable due to much longer control time
scales, say several hours6. Hence, in the light of the prediction
difficulities, we design an online-fashioned joint beam and user
scheduling algorithm, i.e., selecting several pairs of a randomly
generated beamforming vector and a user to be scheduled
every time sequence, without knowledge of future network
dynamics such as wireless states and traffic arrivals.

Towards this end, we invoke the Lyapunov optimization
method [16] for which the short-term modified max-weight
problem derived from the Lyapunov drift must be optimized in
the slot-by-slot basis. In this short-term problem, we introduce
a parameter which manipulates enegy-delay tradeoff in our
system, i.e., total BSs’ energy expenditure can be further saved
by trading extra queue backlog with larger (energy-delay)
tradeoff parameter7.

In addition, because the modified combinatorial scheduling
problem is NP-hard and difficult to tackle [18], we propose an
approximation algorithm, namely BEANS, which eventually
ensures minimum average BS energy expenditure and finite
service time for all traffic arrivals within close to 1/2 capacity
region characterized by a set of average arrival rates of
which our system can serve within finite time for all tradeoff
parameters. Going a step further, we prove the BEANS attains
finite upper bounds of average energy expenditure and average
queue backlog for all traffic arrival rates within close to 1/4
capacity region and all tradeoff parameters.

We should be noted that one of previous BS activation
studies in a single antenna system [6] applied Lyapunov opti-
mization as well to design their policy, but they did not show
the performance bounds of proposed algorithm in perspectives
of energy and queue backlog. Indeed, technical contribution
of this paper is first to deliver a demonstration of energy and
queue bounds of BEANS algorithm even though the short-term
problem of our system is made of submodular max-weight
style function with negative terms which are known to be very
challenging to develop algorithms which guarantee the perfor-
mance bounds8. Finally, via extensive simulations, we compare
energy-delay tradeoff and queue stability region of BEANS
with optimal and existing algorithms. Main contributions of
this paper can be summarized as follows.
• We formulate a joint beam and user scheduling problem

in a multi-cell cooperative networks with respect to
spatio-temporal traffic dynamics aiming to minimize total

5Although the random beamforming does not optimally generate precoding vectors,
it is known that as the number of antenna increases, the rate performance of random
beamforming becomes asymptotically same as that of the optimal algorithm such as dirty
paper coding (DPC) [15].

6For instance, we can predict average traffic arrivals at the same time duration of
another day.

7Average queue backlog equals average arrival rate multiplied by average delay
according to the Little’s law [17].

8Notice that there are many studies to derive energy and queue bounds in Lyapunov
framework for short-term problems of which optimal solution can be easily found within
polynomial time (see e.g., [19] and references therein).
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Fig. 1: Joint beam activation and user scheduling systems.

BSs’ average energy consumption while ensuring finite
service time for all traffic arrivals within capacity region.

• We propose a uncomplicated joint beam and user schedul-
ing algorithm, namely BEANS which guarantees a
constant-ratio lower bound of an optimal performance.
BEANS is pragmatic as well because it does not demand
challenging prediction of traffic arrival and wireless chan-
nel states.

• We prove that BEANS ensures finite service time for all
arrival rates within close to 1/2 capacity region and attains
upper bounds of total BSs’ average energy expenditure
and average queue backlog for all arrival rates within
close to 1/4 capacity region and all tradeoff parameters
by leveraging submodular characteristics of short-term
problem.

• Via extensive simulations, we show that BEANS saves
43% of average BS energy for the same average queue
backlog, and reduces 50% of average queue backlog
for the same energy consumption compared to baseline
algorithms which do not take energy consumption and
queue backlog into considerations. In addition, BEANS
attains 96% of queue stability region compared to the
optimal exhaustive algorithm.

II. SYSTEM MODEL

Network model. We consider a multi-cell downlink MIMO
CoMP system, i.e., a user can be served by several base
stations (BSs) controlled by a BS controller as shown in
Fig. 19. There are K users and N BSs controlled by a BS
controller, and the set of all users and all BSs are denoted by
K .

= {1, ...,K} and N .
= {1, ..., N}, respectively. We assume

a time-slotted TDMA (Time Division Multiple Access) system
indexed by t = {0, 1, ...} where the length of a time slot is
∆t (in msec). During the slot, the channels for all links are
assumed to be invariant. Each BS n has M antennas and a set
of randomly generated beamforming vectors b from BS n is
denoted by Bn ⊆ B.
Resource and link model. We assume that all beamforming
vectors in BS n have equal fixed transmit power pnb

= pn =

9This Cloud-RAN (Radio Access Network) style of network architecture is well
accepted in 5G standards and industry [13].
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Pn/|Bn| where Pn denotes total transmit power of BS n.
Moreover, we denote Bk ⊆ B by a set of beamforming vectors
selected by user k, and Kn ⊆ K by a set of users served
by BS n. Each beamforming vector b possibly chooses at
most one user, and one user can be allocated by multiple
beamforming vectors at each time slot t. A set of pairs of
a beamforming vector and a user is denoted by I(t). A
scheduling indication function is denoted by Ib,k(t) for a
pair of beamforming vector b and user k, i.e., Ib,k(t) = 1
if beamforming vector b is activated and allocated to user
k at time slot t, otherwise, Ib,k(t) = 0. A set of pairs of
beamforming vector and user scheduling decisions is denoted
by I(t)

.
= {(b, k)|Ib,k(t) = 1}, i.e., I(t) ⊆ I(t).

We assume each user has one receive antenna without loss
of generality, i.e., at most one data stream transmits to one
user, then signal to interference plus noise ratio (SINR) γk of
user k is denoted by

γk(I(t)) =

∑
b∈Bk

|√pnb
hnb,kb|2Ib,k(t)

φk + z2k
, (1)

where hnb,k ∈ h is a channel vector between user k and
BS nb which has beamforming vector b. The channel vector
is given by hnb,k = [αnb,k,1, αnb,k,2, . . . , αnb,k,M ]

√
ρnb,k

where αnb,k,m is the multi-antenna channel co-efficient corre-
sponding to BS nb, user k and antenna m, and ρnb,k is a large
scale fading including path loss and shadowing, between BS
nb and user k. Denote by z2k the thermal noise power of user
k. Similar to [6] and [10], φk is the worst case interference of
user k which is independent to the scheduling of other beams
to make the formulation tractable. The worst case interference
model works well on relatively low SNR systems because the
influence of interference is much smaller compared to thermal
noise. The achievable data rate of user k is given by Shannon’s
capacity formula [20] as follows.

µk(I(t)) = W log2(1 + γk(I(t))), (2)
where W denotes the entire system bandwidth.
Queue and energy model. Denote by Qk(t) the queue
backlog of user k at time slot t. At the beginning of time slot
t, Ak(t) amount of traffic is arrived for user k. We should be
noted that all users in the network generate different amount
of Ak(t) every time slot due to the traffic dynamics. Then, the
queue backlogs for all users are updated as follows.

Qk(t+1) =
[
Qk(t)−µk(I(t))+Ak(t)

]+
[bits], ∀k ∈ K, (3)

where [·]+ denotes the projection onto the set of non-negative
real numbers and λk = E{Ak(t)} denotes average arrival rate
of user k and λin = {E{A1(t)},E{A2(t)}, ...,E{AK(t)}}
denotes average arrival rate vector for all users.

According to BS energy consumption model in [21], the
transmit power exerts substantial influence on the required
power for amplifier, cooling systems, and so on, where the
influence is often linear; hence we take account of only
transmit power allocated to each beam in this paper. Then,
we define total energy consumption with respect to transmit
power during one time slot as follows.

E(I(t)) =
∑
k∈K

∑
b∈Bk

pnb
Ib,k(t)∆t. (4)

In the beginning of every time slot, every user sends their
SINR and traffic request (or arrival) information to centralized
BS controller via the one of associated BSs (see Fig. 1). The
centralized BS controller decides beamforming activation and
user scheduling by exploiting the SINR, traffic arrival and
queue backlogs of all users. The decided beam activation and
user scheduling outputs are informed from the centralized BS
controller to each BS.

III. JOINT BEAM AND USER SCHEDULING ALGORITHM

In this section, we formulate an optimization problem
considering energy minimization while ensuring finite service
time with respect to dynamic traffic arrivals. Then, we develop
a joint beam on/off activation and user scheduling, namely
BEANS algorithm.

A. Problem Formulation

Our objective in a multi-cell cooperative network is to
minimize average energy consumption while stabilizing queue
backlogs of all users for all arrival rate vectors within capacity
region. The capacity region is defined as a set of all arrival rate
vectors for which there exists certain control scheme which is
able to support the traffic arrivals within finite service time.
We formally state an optimization problem as follows.

(P): min
I=(I(t))T−1

t=0

lim
T→∞

1

T

T−1∑
t=0

E{E(I(t))}, (5)

s.t. lim sup
T→∞

1

T

T−1∑
t=0

∑
k∈K

E{Qk(t)} <∞, (6)∑
k∈Kb

Ib,k(t) ≤ 1, ∀t,∀b ∈ B, (7)∑
k∈Kn

∑
b∈Bn

Ib,k(t) ≥ 1, ∀t,∀n ∈ N , (8)

where Kb is a set of all users which can be served by
beamforming vector b. Constraint (6) means the system should
ensure a finite service time with respect to dynamic traffic
arrivals and normally, if the system meets this constraint, we
say that queues are stable [16]. Constraints (7) and (8) mean
each beamforming vector can be allocated to at most one user
and each BS should schedule at least one user, respectively.

B. Algorithm Design

To convert our long-term problem (P) into online-fashioned
slot-by-slot problem, we invoke Lyapunov optimization tech-
nique [16]. We first define Lyapunov function and Lyapunov
drift function to capture queue stability in equation (6) as
follows.

L(t) , 1
2

∑
k∈K[Qk(t)]2, (9)

∆(L(t)) , E{L(t+ 1)− L(t)|Q(t)}. (10)

To capture the minimization of average energy consumption
in equation (5), we adopt drift-plus-penalty approach in [16]
where the penalty function is the sum of expected energy
consumption of all BSs as follows.

∆(L(t)) + V E{E(I(t))}, (11)
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where V is an energy-delay tradeoff parameter. We derive
upper bound of (11) which is a standard approach of Lyapunov
optimization by the following Lemma.

Lemma 1. Under any possible control variables I(t), we have:

∆(L(t)) + V E{E(t)|Q(t)}≤B+
∑
k∈K

Qk(t)λk

−E
{∑
k∈K

Qk(t)µk(I(t))|Q(t)
}

+V E{E(I(t))|Q(t)},
(12)

where B = K
2

(
A2
max + µ2

max

)
, and Amax and µmax denote

maximum traffic arrival and maximum data rate of a user at
a time slot, respectively.

Proof: It can be easily proven using queueing dynamics
in equation (3), e.g., see [19].

By minimizing RHS of (12) every time slot, we can realize
the slot-by-slot optimization of original problem (P) for given
energy-delay tradeoff parameter V . Then, slot-by-slot problem
(SBSP) is given by

(SBSP):

max
I(t)∈I(t)

G(I(t)) = E
{∑
k∈K

Qk(t)µk(I(t))
}
−V E{E(I(t))},

s.t. constraints (7), (8),

where I(t)
.
= {(b, k)|b ∈ Bk, k ∈ K}. Although we derive

(SBSP) by the time slot-based manner, these modified max-
weight style problems are known as NP-hard [18]. However,
the work in [22] provided a constant factor approximation al-
gorithm with polynomial time complexity aiming to maximize
non-negative submodular function under matroids constraint.
The definition of the submodularity is as follows.

Definition 1 (Submodularity). Let G be a finite ground set
and h : 2G → R. Then h is submodular if for all A,B ⊆ G,

h(A) + h(B) ≥ h(A ∪ B) + h(A ∩ B),

or equivalently, for every A ⊆ G and x1, x2 ∈ G \ A,

h(A ∪ {x1}) + h(A ∪ {x2}) ≥ h(A ∪ {x1, x2}) + h(A).

We can easily know our objective function G(·) is a
submodular function as well by the Definition 1.

C. Joint Beam Activation and User Scheduling Algorithm

Using the fact that the function G(·) is submodular and
based on the work in [22], we provide a greedy-style joint
beam activation and user scheduling, namely BEANS algo-
rithm. This jointly controls beam on/off activation and user
scheduling every time slot t without knowledge of future
network states such as traffic arrivals. To describe BEANS
algorithm, we define a set of feasible beam and user scheduling
pairs Y(t)

.
= {I(t)|(b, k) ∈ I(t),

∑
k∈K Ib,k(t) ≤ 1}, i.e.,

Y(t) is the set of all I(t) satisfying constraint (7). The BEANS
algorithm can be represented as follows.

BEANS (Joint BEam Activation aNd user Scheduling)

Every time slot t,
Initialization. Let f(I(t)) , G(I(t)) and set I(t)1 := I(t).
Step 1: For j = 1, 2, do:

(a) Apply the LSP on the ground set I(t)j and function
f to obtain a solution Ij(t) ⊆ I(t)j corresponding to the
problem:

Ij(t) : max
I(t)⊆I(t)j

{f(I(t))|I(t) ∈ Y(t)}

(b) Set I(t)j+1 := I(t)j \ Ij(t).
(c) Define N ′ as a set of BSs which do not have any
element of Ij(t)’s beamforming vector. If N ′ 6= {∅},
then set s := max(b,k)∈I(t)j f(Ij(t) ∪ (b, k)), s.t. nb ∈
N ′, update Ij(t) := Ij(t) ∪ {s}, and go back to (c),
otherwise, go to Step 2.

Step 2: Return the solution corresponding to

IBEANS(t) := arg max{f(I1(t)), f(I2(t))}.

Local Search Procedure (LSP)

Input: Ground set X of elements and function f .
Initialization. Set I(t) := max(b,k)∈X f((b, k)).
Step 1: Set s := max(b,k)∈X f((I(t) \ (b′, k′)) ∪ (b, k)), s.t.

(I(t) \ (b′, k′)) ∪ (b, k) ∈ Y(t), (b′, k′) ∈ I(t) ∪ {∅}.
If f((I(t) \ (b′, k′)) ∪ {s}) > (1 + ε

|I(t)|4 )f(I(t)), then
update I(t) := (I(t)\(b′, k′))∪{s} and go back to Step
1, otherwise, go to Step 2.

Step 2: Set s := max(b,k)∈X f(I(t) \ (b, k)). If f(I(t) \
{s}) > (1+ ε

|I(t)|4 )f(I(t)) then update I(t) := I(t)∪{s}
and go back to Step 1, otherwise, return I(t).

where ε denotes a very small constant to guarantee polynomial
time complexity of BEANS algorithm. Local Search Proce-
dure (LSP) adds the elements one by one by a greedy manner
under the condition of which I(t) satisfies constraint (7). If
f(I(t)) cannot be larger anymore by adding the some element,
the LSP will search whether there is increment of f(I(t)) by
subtracting the existing element or not. At the process (c) of
Step 1 in BEANS, if there is a BS which does not schedule any
user, Ij(t) adds elements one by one by a greedy manner under
the condition of which Ij(t) satisfies constraint (8), otherwise,
this algorithm ends by returning IBEANS(t).

However, unfortunately, it is known that there is no polyno-
mial time algorithm which attains constant factor approxima-
tion to the optimal performance for a submodular function with
negative term, which is the same form as our function G(I(t))
in slot-by-slot objective (SBSP) [23]. Hence, in the next
subsection, we demonstrate performance bounds of BEANS
algorithm in terms of long-term average queue backlog and en-
ergy consumption by utilizing alternative asymptotic approach.

D. Theoretical Analysis
We clearly show the set of arrival rate vectors which can

be supported by BEANS in Theorem 1.

Theorem 1. BEANS guarantees queue stability for all users
if an arrival rate vector is within 1

2+ε of capacity region.
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Fig. 2: Simulation results for all scenarios: 2D topology for (a), linear topologies for (b) and (c).

Proof: The proof is presented in the Appendix A.

Although the short-term performance bounds of BEANS
cannot be shown in general [23], we demonstrate that BEANS
algorithm attains constant-ratio approximation of capacity re-
gion by using the feature of queueing dynamics in Theorem 1.
In addition, Theorem 2 provides average energy consumption
and queue backlog performance of BEANS.

Theorem 2. Whenever arrival rate vector λin is within 1
4+ε

of capacity region, under BEANS algorithm, we have:
(average energy consumption):

lim sup
T→∞

1

T

T−1∑
t=0

E{E(t)} ≤

B

V
+

3 + ε

4 + ε

∑
n∈N

Pn∆t+
∑
n∈N

pn∆t+
1

4 + ε
ψ(λout+σ(λout)),

(average queue backlog):

lim sup
T→∞

1

T

T−1∑
t=0

∑
k∈K

E{Qk(t)}≤ 4+ε

σ(λout)
B+

3+ε

σ(λout)
V

∑
n∈N

Pn∆t

+
4 + ε

σ(λout)
V

∑
n∈N

pn∆t+
1

σ(λout)
V ψ(λout + σ(λout)),

where ψ(λout + σ(λout)) is a minimumum energy con-
sumption with queue stability when traffic arrivals vector is
λout = (4 + ε)λin.

Proof: The proof is presented in the Appendix B.

The result of Theorem 2 shows that as the parameter V
increases, the average energy consumption decreases whereas
the average queue backlogs increases, vice versa.

IV. PERFORMANCE EVALUATION

In this section, we execute extensive simulations to demon-
strate the performance of the BEANS algorithm.
Setup. We consider two topologies: 2D topology, where 4 BSs
(each of which has 4 antennas) and 100 users are randomly
located in the 400m×400m with uniform distribution, and
linear topology, where 2 BSs (each of which has 2 antennas)
and various number of users (depending on the scenario) are
randomly located in the 400m line with uniform distribution.

For all scenarios, each BS has 23 dBm transmit power
budget and the system bandwidth is 10 MHz. The path
loss is set to be 128.1 + 37.6 log10(d) where d is the dis-
tance from BS to user in [km] and the standard deviation
of shadowing is set to be 8 dB. Each channel coefficient,
[αnb,k,1, αnb,k,2, . . . , αnb,k,M ], is modeled as a zero mean
complex Gaussian random variable. We adopt a simple clus-
tering technique for the cooperative networks: a user can be
associated to any BSs if the distance between the user and the
BSs are less than the threshold: 100

√
2m.

We compare BEANS algorithm with existing algorithms
[14], [24] and unrealistic optimal algorithm. In ORBF baseline
algorithm [14], each user is matched to each beam which
attains highest SINR, and the users are randomly scheduled
every time slot. In ORBF PC algorithm [24], the algorithm
procedure is the same as ORBF baseline except for power
control. In zero forcing algorithm, each user is matched to
each beam corresponding to zero forcing beamforming scheme
[25], and the user scheduling follows simple greedy algorithm.
Optimal algorithm exhaustively searches all beam and user
scheduling combinations which satisfy (SBSP).

We consider average energy consumption and average queue
backlog as two metrics in the simulations. For the first simula-
tion, we show the energy-delay tradeoff which can be changed
depending on the tradeoff parameter V . We should be noted
that average queue backlog is indirectly interpreted as average
delay according to the Little’s law [17]. For the second and
third simulations, we demonstrate the performance of queue
stability (i.e., divergence point of queue backlog) with respect
to the average arrival rates, and this performance implies that
how much arrival rates can be stably served by the system
within capacity region.
Simulation results. We present our results by summarizing
the key observations.

Energy-delay tradeoff. Fig. 2(a) shows the tradeoff between
average queue backlog and energy consumption. BEANS
algorithm can save 43% of energy consumption for the same
average queue backlog, and reduce 50% of average queue
backlog for the same energy consumption compared to ORBF
baseline and ORBF PC algorithms. This is due to the fact
that there are no knowledge of energy-delay tradeoff and
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queue backlog in ORBF baseline and ORBF PC algorithms.
In addition, BEANS algorithm can significantly save energy
consumption when average arrival rate is far from capacity
boundary, i.e., low average arrival rate.

Queue stability. Fig. 2(b) depicts average queue backlog
versus average arrival rates. Notice that divergence point,
i.e., average arrival rate when the queue backlog starts to
diverge10, of the optimal algorithm means capacity region of
this system. The average queue backlog of BEANS diverges
at 96% of capacity region which implies BEANS algorithm
shows near optimal performance compared to the optimal
algorithm whereas the performances of other algorithms such
as ORBF baseline and ORBF PC are far from the optimal
performance. In addition, BEANS attains similar divergence
points for different V s which means higher V does not
deteriorate queue stability of all users.

Zero forcing versus orthogonal random beamforming. Fig.
2(c) shows a ratio of the BEANS divergence point over
zero-forcing divergence point as a function of number of
users. As the number of users increases, the performance of
BEANS algorithm gets closer to that of zero forcing algorithm.
This implies that simple BEANS algorithm attains the similar
performance with zero forcing algorithm under the high user
density scenario even though the zero forcing algorithm is
difficult to be implemented due to full CSI requirements from
all users.

V. CONCLUSION

As a way to save energy expenditure of base stations, we
propose a joint beam and user scheduling policy, namely
BEANS in cooperative cellular network systems. Proposed
policy makes an effort to minimize average energy con-
sumption of base stations while ensuring long-term delay
performance of all users by means of an adaptive operation
corresponding to unpredictably changing traffic arrivals and
channel states. We believe that smart network management
such as proposed beam/user scheduling policy would have
a great opportunity to save energy consumption of network
operation in multiple antenna cooperative cellular networks
which will be a main part of future 5G network systems.

VI. APPENDIX

A. Proof of Theorem 1.

Proof: Suppose an arrival rate vector, λin, is located
within 1

2+ε of capacity region and there is a set of users U ⊆ K
whose queue backlogs diverge as time goes by and the queue
backlogs of users who belong to K \ U do not diverge. Then,
there exists α < ∞ such that all users who belong to K \ U
satisfying the following inequality.

Qk(t) ≤ α, w.p.1, ∀k ∈ K \ U , (13)

where w.p.1 means with probability 1.

10Indeed, the average data rate where the average queue backlog is abruptly
increasing is the divergence point, but here, the average arrival rate when the average
queue backlog exceeds 350 Mbits is designated as the divergence point for simplicity.

Lemma 2. If the above assumption is correct, there exist
β < ∞ and positive integer T < ∞ satisfying the following
inequalities when we assume there are lower and upper
bounds of achievable increasing data rate for all users, i.e.,
µd,min < µk(I(t) ∪ (b, k)) − µk(I(t)) < µd,max, ∀(b, k) /∈
I(t), I(t) ∪ (b, k) ⊆ I(t).

Qk(T ) <∞, ∀k ∈ U , (14)
Qk(t) ≥ β, ∀k ∈ U , ∀t ≥ T, (15)
βµd,min > αµd,max, (16)
βµd,min > V pn∆t, ∀n ∈ N . (17)

Proof: Because all k ∈ U have queue backlogs which
diverge as time goes by, if there is no T which satisfies
(14) and (15) for given β which satisfies (16) and (17), this
contradicts to the first assumption. This completes the proof.

Denote by BU all beamforming vectors which can be
allocated to a set of users U . Since BEANS is operated by
a greedy manner, when t is greater or equal to T , we first
assign all beams which can be matched with U to BU , and
then assign the remaining beams which can be matched with
K \ U to BU in the BEANS algorithm. This is because (16)
means any beam allocation on U is always better than that on
K \ U . Therefore, we first focus on beam scheduling for U to
derive the performance of BEANS. We formulate a problem
(SBSP-D) as follows.

(SBSP-D):

max
I(t)∈I(t)

(
G(I(t))D =E

{∑
k∈U

Qk(t)µk(I(t))
}
−V E{E(I(t))}

)
,

s.t.
∑
k∈Ub

Ib,k(t) ≤ 1, ∀b ∈ BU , (18)∑
k∈Un

∑
b∈Bn

Ib,k(t) ≥ 1, ∀n ∈ NU , (19)

where NU denotes the set of all BSs which can serve a set of
users U for t ≥ T . Now, we introduce a modified algorithm,
namely BEANS-D, for ease of explanation.

BEANS-D

Every time slot t,
Initialization. Let f(I(t)) , G(I(t))D and set I(t)1 := I(t).
Step 1: For j = 1, 2, do:

(a) Apply the LSP on the ground set I(t)j and function
f to obtain a solution Ij(t) ⊆ I(t)j corresponding to the
problem:

Ij(t) : max
I(t)⊆I(t)j

{f(I(t))|I(t) ∈ Y(t)}

(b) Set I(t)j+1 := I(t)j \ Ij(t).
Step 2: Return the solution corresponding to

ID(t) := arg max{f(I1(t)), f(I2(t))}.

The difference between BEANS-D and BEANS is that the
process (c) of Step 1 in BEANS, which is to satisfy the
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constraint (19), is eliminated in BEANS-D. In other words,
BEANS-D is an algorithm to solve the (SBSP-D) problem
except for the constraint (19). If the (SBSP-D) problem
does not have constraint (19), this problem is the same as
maximizing nonnegative monotone submodular function under
matroid constraint. This is because that constraint (18) first
produces a matroid constraint, and G(I(t))D always has a
nonnegative value due to the condition (17). Then, by invoking
the result of [22], BEANS-D satisfies the following inequality
for G(I(t))D.

G(ID(t))D ≥
1

2 + ε
G(I∗D(t))D,

where I∗D(t) denotes optimal solution of (SBSP-D) problem
except for the constraint (19). Also, we can check that the
following equalities.

IUBEANS(t) = ID(t), I∗(t) = I∗D(t),

where IUBEANS(t)
.
= {(b, k)|(b, k) ∈ IBEANS(t), k ∈ U}

and I∗(t) means the optimal solution of (SBSP-D) problem.
As mentioned before, ID(t) is the solution of (SBSP-D)
problem except for the constraint (19) and IBEANS(t) is
the solution with a consideration of constraint (19). However,
BEANS and BEANS-D are algorithms that operate in a greedy
manner, hence each BS tries to select as many users as possible
due to the condition (17). Therefore, even if the constraint (19)
is not created, the result of the above algorithm, ID(t), is
presented in the set of solutions satisfying the constraint (19).
The relation between I∗(t) and I∗D(t) can be explained in a
similar way. Therefore, we can derive the following results.

G(IUBEANS(t))D ≥
1

2 + ε
G(I∗(t))D.

We can use (12) to express the following inequality about U
using the fact that BEANS guarantees 1

2+ε -optimal and then,

∆(L(t)) + V E{E(t)|Q(t)}
≤ B +

∑
k∈U

Qk(t)λink −G(I(t)∗)D

≤ B +
∑
k∈U

Qk(t)λink −G(IUBEANS(t))D

≤ B +
∑
k∈U

Qk(t)λink −
1

2 + ε
G(I(t)∗)D.

(20)

Moreover, we introduce S-only algorithm which is known to
minimize energy while achieving queue stability for all arrival
rate vectors within a capacity region [16]. Then, we have:

B +
∑
k∈U

Qk(t)λink −
1

2 + ε
G(I(t)∗)D

≤ B +
∑
k∈U

Qk(t)λink +
1

2 + ε
[V E{E(I(t)S−only)}

− E{
∑
k∈U

Qk(t)µk(I(t)S−only)|Q(t)}]

= B +
1

2 + ε
[V ψ(λout + σ(λout))

−
∑
k∈U

Qk(t)[σ(λout) + λoutk − (2 + ε)λink ],

(21)

where ψ(λout + σ(λout)) denotes minimum BSs’ energy
consumption when arrival rate vector is λout and σ(λout)
represents a measure of the distance between the rate vector
λout and the capacity boundary [16]. We can derive this
equation by using the similar derivation process with [16].
Then, we have:

lim sup
T ′→∞

1

T ′ − T

T ′−1∑
t=T

∑
k∈U

E{Qk(t)}[σ(λout) + λoutk

− (2 + ε)λink ] ≤ (2 + ε)B + V · ψ(λout + σ(λout)).

(22)

Therefore BEANS sufficiently achieves queue stability if
σ(λout) + λoutk − (2 + ε)λink > 0. Notice that σ(λout)
is always positive and λout can be any service vector if
(λout +σ(λout)) is interior to capacity region. Thus, if traffic
arrival vector λin satisfies following relation (23) with respect
to any service vector λout interior to capacity region, each
queue Qk(t), ∀k ∈ U does not diverge as time goes by. It is a
contradiction to the assumption in the beginning of the proof.

λoutk = (2 + ε)λink , ∀k ∈ U . (23)
This completes the proof.

B. Proof of Theorem 2.
Proof: Since G(I(t)) has a negative term, there is no

known polynomial time algorithm which guarantees constant
lower bound of an optimal performance [23]. Hence, we can
think of a way to add a positive term to G(I(t)) to resolve
this problem. We consider the following alternative problem
(SBSP-α).

(SBSP-α): max
I(t)∈I(t)

G(I(t))α,

s.t. constraint (7),

G(I(t))α=E
{∑
k∈K

Qk(t)µk(I(t))
}
−V E{E(I(t))}+V

∑
n∈N

Pn∆t.

We can see that the above (SBSP-α) is the same as max-
imizing nonnegative submodular function under the matroid
constraint, and G(I(t))α is always greater than or equal to 0
because we added a positive constant value V

∑
n∈N Pn∆t

which is always greater than or equal to V E{E(I(t))}. We
can solve (SBSP-α) by adding G(I(t))α instead of G(I(t))D
in the Initialization of the BEANS-D algorithm. We call
this algorithm as BEANS-α and the solution scheduling set
is denoted by Iα(t). Then, by invoking the result of [22],
BEANS-α satisfies the following inequality for G(I(t))α.

G(Iα(t))α ≥
1

4 + ε
G(I∗α(t))α,

where I∗α(t) means the optimal solution of (SBSP-α). Using
G(I(t)) = G(I(t))α−V

∑
n∈N Pn∆t, we derive the follow-

ing inequality.

G(Iα(t)) ≥ 1

4 + ε
G(I∗α(t))− 3 + ε

4 + ε
V
∑
n∈N

Pn∆t.

Moreover, we can present the relation between Iα(t) and
IBEANS(t) as follows.

G(IBEANS(t)) ≥ G(Iα(t))− V
∑
n∈N

pn∆t.
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This is because BEANS has process (c) in Step 1 which
captures the constraint (8), whereas BEANS-α skips this
process. Finally, using the fact that the G(I∗α(t)) except for the
constraint (8) is always larger than the G(I∗(t)) which is the
optimal value with the constraint (8), the following inequality
is derived.

G(IBEANS(t)) ≥ 1

4 + ε
G(I∗(t))

− 3 + ε

4 + ε
V

∑
n∈N

Pn∆t− V
∑
n∈N

pn∆t.
(24)

Then, similar to (20), (21) and by invoking [16], we can derive
following inequality.

E{L(Q(T ))}−E{L(Q(0))}+ V

T−1∑
t=0

E{E(t)}

≤ BT +
V T

4 + ε
ψ(λout+σ(λout)) +

3 + ε

4 + ε
V T

∑
n∈N

Pn∆t

− 1

4 + ε

T−1∑
t=0

∑
k∈K

E{Qk(t)}[σ(λout) + λoutk − (4 + ε)λink ]

+ V T
∑
n∈N

pn∆t.

If we assume λoutk = (4 + ε)λink , we can derive upper bound
of average energy consumption and the average queue backlog as
follows.
(average energy consumption):

lim sup
T→∞

1

T

T−1∑
t=0

E{E(t)} ≤

B

V
+

3 + ε

4 + ε

∑
n∈N

Pn∆t+
∑
n∈N

pn∆t+
1

4 + ε
ψ(λout+σ(λout)),

(average queue backlog):

lim sup
T→∞

1

T

T−1∑
t=0

∑
k∈K

E{Qk(t)}≤ 4+ε

σ(λout)
B+

3+ε

σ(λout)
V

∑
n∈N

Pn∆t

+
4 + ε

σ(λout)
V

∑
n∈N

pn∆t+
1

σ(λout)
V ψ(λout + σ(λout)).

This completes the proof.
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