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Abstract—In cellular networks, under ARQ and SINR model of
transmission, the effective downlink rate of packet transmission
is the reciprocal of the expected delay (number of retransmissions
needed till success). We define the cellular network capacity as
the ratio of the basestation (BS) density and the expected delay.
Exact characterization of this natural and practical but non-
trivial (because of SINR temporal correlations) capacity metric
is derived. The capacity is shown to first increase polynomially
with the BS density and then scale inverse exponentially with the
increasing BS density. Two distinct upper bounds are derived that
are relevant for the low and the high BS density regimes. A single
power control strategy is shown to achieve the upper bounds in
both the regimes upto constants. Our result is fundamentally
different than the transport and transmission capacity for ad
hoc networks that scale as the square root of the (high) BS
density. Our results show that the strong temporal correlations
of SINRs with PPP distributed BS locations model for cellular
networks is limiting, and the realizable capacity is much smaller
than previously thought.

Index Terms—Capacity, Cellular Wireless Networks, Poisson
point process, ARQ.

I. INTRODUCTION

Finding the Shannon capacity of a wireless network is
perhaps one of the most well-studied problem that has remained
unsolved. For ad hoc wireless networks, two slightly relaxed
capacity notions have been defined, transport [1] and trans-
mission [2], for which theoretical results have been possible
mainly because of two important simplifications; SINR model
of communication, and assuming random locations for nodes
[3]. Under the SINR model, communication between two nodes
is deemed successful if the SINR between them is larger than
a threshold that depends on the rate of transmission. Even
under these simplifications, as far as we know, there has been
no fundamental characterization of the maximum throughput
possible (under any reasonable capacity definition) in cellular
wireless networks that are structured, rather than being ad hoc.

In this paper, we consider the well-accepted (tractable) model
of a cellular wireless network [4], that has basestation (BS)
locations distributed as a homogenous Poisson point process
(PPP), and the focus is on characterizing the ’capacity’ in the
downlink. The tractable model is a reasonable abstraction in
the modern scenario, where multiple layers of BSs (macro,
micro, femto) are overlaid over each other. Moreover, we
consider the widely used BS-MU (mobile user) association
rule, where each MU connects to its nearest BS, i.e., BS serves
all the MUs located in its Voronoi cell. The mobile user (MU)

locations are also assumed to be distributed as a homogenous
PPP, independent of the BS locations process.

We consider the SINR model of transmission for each BS-
MU communication with ARQ, where a packet is retransmitted
from the BS until the SINR seen at the MU is above a fixed
threshold. Also, each BS serves all its MUs in a round-robin
manner by dividing its slots/bandwidth equally among them
to closely model the ’fair’ practical implementation.

BSs in real-life cellular wireless networks are limited in their
ability to coordinate their transmissions in order to control inter-
cell interference. We consider that each BS is only allowed
to use local strategies, i.e., each BS’s transmission decisions
are only based on local channel conditions (path-loss or fading
gain) at the MU or some feedback (ack/nacks) from the MU it is
serving. Our results also apply for small-scale BS coordination,
where a fixed number of neighbouring basestations can schedule
their transmissions together, e.g. CoMP.

With ARQ, let D be the number of retransmissions needed
for a packet from BS x to be successful at its MU y, i.e.,

D = min{t : SINRxy(t) ≥ β}.

D has the interpretation of delay, the time (or retransmissions)
needed to receive the packet successfully. Let λ be the BS
density (per m2) of the cellular network. With ARQ, a natural
throughput metric is the reciprocal of the expected delay.
We use this motivation and consider a natural definition of
capacity (in the downlink), where under the round-robin
policy, the per-BS capacity with BS strategy S is defined
as Cb(S) = 1

E{D} , and the network wide capacity with S is
C(S) = λ

E{D} packets/sec/m2. Hence, our capacity definition
is

C = sup
S
C(S), (1)

i.e., we are looking for the best possible local (adaptive) BS
strategy S that achieves the maximum network-wide throughput.
With round-robin scheduling from each BS, C is independent
of the MU density.

A. Prior work on Network Capacity

Two related and well-known metrics of capacity; transport
and transmission, have been defined for ad hoc networks and
for both, exact results have been obtained. Under the path-
loss model, where fading gain is neglected, transport capacity
has been shown to be Θ(

√
λ) [1], [5]. Some extensions of
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Fig. 1. Capacity of the cellular wireless network as a function of the BS
density for path-loss exponent α = 3.

transport capacity are also known [6]. Distance (transmitter-
receiver) scaled transmission capacity also scales as Θ(

√
λ)

[2], [7] for both the path-loss and the path-loss-plus-fading
model.

With retransmissions/ARQ, a generalization of the transmis-
sion capacity, called the delay normalized transmission capacity
S [8], is defined as the number of successfully delivered packets
in the network under the SINR model subject to a maximum
limit on the number of retransmissions. For simplifying analysis,
[8] made a limiting assumption that SINRs across time slots
are independent. A more rigorous approach was taken in [9],
but yielded limited analytical results. The basic problem in
studying the delay normalized transmission capacity or our
capacity definition (1) is the complicated correlation of SINRs
across time slots under the PPP assumption on BS locations
[10]. It is worth mentioning that a ALOHA strategy has capacity
(1) C = 0, for any BS density λ following the result [11], that
shows that the ALOHA strategy has infinite expected delay.

B. Our results

In this paper, we avoid making any simplifying/limiting
assumptions for studying the joint distribution of SINRs across
time slots for deriving bounds on the expected delay seen at
any MU. The main result of our paper is that, when each BS
is only allowed a local strategy or BSs can accomplish only
small-scale coordination, upto constants, 1

min
S

E{D} = max

{
1

λ
α
2
, exp(λ)

}
,

and consequently, the capacity is

C = min
{
λ
α
2 +1, λ exp(−λ)

}
, packets/sec/m2,

where α > 2 is the path-loss exponent. In Fig. 1, we illustrate
the capacity (upto a constant) as the blue curve for α = 3. The
main result is derived via the following sub-results.

• We show that for any local strategy S, E{D} ≥
(
c1
λ
α
2

)
,

that is relevant for low-BS density regime, and E{D} ≥
c4 (exp(c2λ)) that is tighter in the high-BS density regime.

1The lower and upper bounds only differ by constants, and all ci’s used to
describe bounds are constants.

• The upper bound on the capacity holds even if small
scale BS coordination is allowed, where a fixed number
(independent of the BS density) of BSs can schedule their
transmissions jointly.

• We show that a simple non-adaptive strategy S (first
proposed by us in [12]), where each BS transmits power
to completely nullify the path-loss based signal attenuation
at the MU it is serving (using only the knowledge of the
distance to the MU and is independent of the fading gains),
achieves

E{D} ≤

√(
1 +

Γ(α+ 1)

(πλ)α

)
exp (c5λ), and

C(S) ≥ min

{
c8λ

α
2 +1 exp(−c6λ),

λ exp(−c6λ)

c7

}
,

matching the upper bound on the capacity for any strategy
S. Remarkably, a single policy achieves the capacity
upper bound for the both the low and the high-BS density
regimes, for which the capacity scaling behaviour is quite
different. The policy is similar to full-power control used
by MUs in uplink for LTE systems.

Our result shows that in the low-BS density regime, the
capacity increases polynomially with the BS density, where
interference is weak and lower signal power can be compen-
sated using the power control strategy [12]. In the high-BS
density regime, where communication is interference-limited,
our result shows that the ’realistic’ capacity of a cellular
wireless network is fundamentally different and significantly
smaller (falls exponentially with λ) than earlier results on
transport or the transmission capacity (both scale as Θ(

√
λ))

in the high-BS density regime. The capacity behaviour in both
the low and the high-BS density cases is tightly governed by
the temporal SINR correlations with PPP distributed BSs.

Our definition of capacity is simple yet practically realistic
for cellular wireless networks, where ARQ is universally
implemented. It is also mathematically rich because of temporal
correlations in SINRs with PPP distributed BS process [10].
As far as we know, our result is a first simple and exact
characterisation of a reasonable capacity definition for cellular
wireless networks, without requiring any limiting assumptions.

We show that the capacity (both upper and lower bound)
is indifferent to the value of path-loss exponent α for λ > 1,
while for low-BS density regime λ < 1, we show that the
capacity decreases with α as λ1+α/2. Thus, the effect of α is
only visible at low-BS densities, where interference is weak,
and larger nearest BS distance together with high value of α
significantly limits the signal power of interest.

One important design implication of our result is in terms of
cell densification [13]–[17], where number of basestations
are increased to decrease the individual cell-sizes in the
hope of improving connectivity and communication rate. Our
results characterize the exact effect of cell densification on the
capacity/long-term throughput.
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C. Comparison with Prior Work

To compare our capacity metric with transport capacity
or transmission capacity (relevant for high BS density), one
has to multiply the average distance between the MU and
its nearest BS distance d0 (that scales as Θ

(
1√
λ

)
) with the

capacity, which again yields Cd0 = Θ (exp(−λ)). The reasons
for arriving at such fundamentally different scaling compared
to the transport capacity and the transmission capacity, that
both scale as Θ

(√
λ
)

, are that transport capacity has stricter
reliability requirement (SINR has to be ≥ β for each successful
counted bit on realization basis) but allows for large scale
BS/node scheduling, while transmission capacity has one-
shot reliability constraint of 1 − ε, and does not allow for
retransmissions. In cellular networks, large scale BS scheduling
is not possible, while retransmissions are an integral part of
any deployment. The inability of large scale BS scheduling
ensures that interference seen at any MU increases with BS
density, while with retransmissions, the temporal correlation
of SINRs degrades the delay performance.

II. SYSTEM MODEL

We consider a cellular network model, that consists of
basestations {Tn}, whose locations are distributed according
to a homogeneous PPP Φ = {Tn} with density λ, popularly
called the tractable model starting from [4]. The MUs are also
located according to an independent PPP ΦR with density µ
with µ >> λ, and each MU connects to its nearest basestation.
Therefore, by the definition of Voronoi regions with respect to
basestation locations, all MUs in a Voronoi cell/region connect
to its representative basestation.

We consider a typical MU m, and to study the capacity
C, focus on the expected delay encountered by its packets
transmitted from its nearest basestation n(m). We consider that
time is slotted, and each BS transmits to all the MUs that lie
in its Voronoi region/cell in a round-robin manner, i.e., equally
sharing time slots between them. We consider the distance
based path-loss (signal attenuation) function to be `(d) =
min{1, d−α}, for α > 2. A simple function `(d) = d−α is
used widely in literature, however, for d < 1, it produces signal
amplification which is unrealizable.

We assume that each node in the network is equipped with a
single antenna, and at time t, the fading gain between BS x and
MU y is denoted by hx,y(t) that is assumed to be exponentially
distributed with parameter 1. Moreover, hx,y(t) is assumed to
be independent and identically distributed for all time t, and
all location pairs x, y. We assume that each BS has an average
power constraint of M .

Without loss of generality, we assume that the typical MU
m is located at the origin, and the distance to the nearest
basestation from origin is d0, while any other BS z is located
at distance z (abuse of notation) from the origin. Since we focus
on only the MU m located at the origin, we abbreviate hz,0(t)
to just hz(t). For BS z, let Pz(t) be the transmit power at time
t, and 1z(t) be the indicator variable denoting whether BS z
is transmitting at time t or not, with P(1z(t) = 1) = pz(t).

The received signal at m located at the origin that is
connected to its nearest basestation n(m) is given by

y(t) =
√
Pn(m)(t)`(d0)hn(m)(t)1n(m)(t)st(n(m))

+
∑

z∈Φ\{n(m)}

√
γPz(t)`(z)hz(t)1z(t)st(z) + w, (2)

where st(z) is the signal transmitted from BS z with power
Pz(t) at time t, w is the AWGN with variance N, and 0 <
γ ≤ 1 is the processing gain of the system or the interference
suppression parameter.

Thus, the SINR at m from its nearest BS n(m) in time slot
t is given by

SINRn(m),m(t) =
Pn(m)(t)hn(m)(t)`(d0)1n(m)(t)

γ
∑
z∈Φ\{n(m)} Pz(t)1z(t)hz(t)`(z) + N

.

(3)
The transmission from BS x to MU y is deemed successful

at time t, if SINRxy(t) > β, where β > 0 is a fixed threshold
depending on the rate of information transfer. Let

exy(t) =

{
1 if SINRxy(t) > β,

0 otherwise.
(4)

Since h(.)(t) is a random variable, multiple transmissions may
be required for a packet to be successfully received at any node.
Thus, a measure of delay, i.e., the number of retransmissions
needed to successfully receive packets, is required, which is
defined as follows.

Definition 1. Let the minimum time (delay) taken by any packet
to be successfully received at m located at the origin from
its nearest BS n(m) be D = min

{
t > 0 : en(m),m(t) = 1

}
.

Consequently, we define the network capacity to be

C = sup
S

λ

E{D}
,

where S is any BS strategy followed by all BSs.

III. UPPER BOUND ON CAPACITY

Definition 2. Let I be a countable index set. Let S =
{(pi, Pi), i ∈ I : piPi ∈ [M/τ,M ]}, where τ ≥ 1 is a
constant, be a collection of probability of transmission pi and
power transmission Pi pairs. A strategy for BS is to choose
any element of S at any given time slot, where the current
choice can be adaptive, i.e., it can depend on entire history
of earlier choices. 2 Note that with our definition, the average
power constraint of M is satisfied automatically.

We begin by restricting ourselves to local (easily imple-
mentable) strategies that are defined as follows.

Definition 3. A BS strategy is called local, if it only depends
on either the fading gain or the distance between itself and the

2This strategy can closely emulate any transmission policy used by BS
under an average power constraint M . If ps, Ps is chosen for a slot, then BS
transmits with probability ps and power Ps. The lower bound on piPi ≥M/τ
reflects the considered setting of λ << µ, where each BS has at least one
MU in its Voronoi cell.
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connected MU m, or the history of success/failure event en(m),m

at m i.e., ack/nack signal sent back by MU m, or history of
earlier transmitted power and probability of transmission. In
particular, BS n(m), can choose pn(m)(t), Pn(m)(t) pair for time
slot t, depending on hn(m)(t), d0, and history of en(m),m(s),
and pn(m)(s), Pn(m)(s) for 1 ≤ s < t.

Theorem 1. For any local strategy S employed by a BS, the
expected delay at the typical MU m satisfies

E{D} ≥
( c1
λ
α
2

)
, (5)

as well as
E{D} ≥ c4 (exp(c2λ)) . (6)

Consequently, for any S, the network wide capacity is

C =
λ

E{D}
≤ min

{
λ
α
2 +1

c1
, c3λ exp(−c2λ)

}
.

Theorem 1 shows that for low-BS densities, the expected
delay decreases polynomially with the BS density, where
(5) dominates. Lower bound (5) is derived by removing the
interference, which is anyway weak in low-BS density regime.
Without intereference, the nearest BS-MU distance completely
controls the expected delay, and increasing BS density decreases
the nearest BS-MU distance and boosts the signal power. For
moderate and high BS densities, (6) dominates, and our result
shows that the expected delay grows at least exponentially with
the BS density. Theorem 1 is valid (with different constants)
even if some fixed number k of BSs (independent of λ) can
coordinate their transmissions, where interference comes from
BSs lying outside of radius dk (the kth nearest BS), rather
than d0 as is the case in Theorem 1. For lack of space, we
omit the proof.

For large BS densities, Theorem 1 is essentially a negative
result that shows that even when each BS has all the local
information, that can be used adaptively, the expected delay
increases exponentially with the density of BSs. Consequently,
the network wide capacity decreases exponentially with the
increase in the density of BSs in the high-BS density regime.

Theorem 1 also suggests that both transport and transmission
capacity definitions

(
both scale as Θ

(√
λ
))

overestimate
the practically realizable capacity of a cellular wireless network
in the high-BS density regime. The reason for this is that
transport capacity allows for large scale BS coordination, while
with transmission capacity, communication is one-shot with
relaxed reliability constraint and no retransmissions.

IV. ACHIEVABILITY

In this section, we consider a simple BS strategy (proposed
by us in [12]) to achieve the capacity upper bound (Theorem
1) upto the same order.

Strategy: Let for MU u, the distance to its nearest BS n(u)
be du. Let each BS know du for all the users connected to
it. For a slot t designated for a particular MU u, BS n(u)
transmits with probability pn(u)(t) with power Pn(u)(t) given
by

Pn(u)(t) = c`−1(du), pn(u)(t) = M(Pn(u)(t))
−1, (7)

where c = M(1 − ε)−1, 0 < ε < 1, βγ(1 − ε) < 1 is a
constant, and M = Pn(u)(t)pn(u)(t) is the average power
constraint. Condition βγ(1 − ε) < 1 is technical. Thus, in
each time slot, with (7), each BS makes transmission attempts
with transmission power proportional to the distance to the
MU it is serving, to completely nullify the path-loss. The
transmission probability is chosen so as to satisfy the average
power constraint of M . It is worthwhile noting that the strategy
does not use the knowledge of fading gain hn(m)(t), and is not
an adaptive strategy.

Theorem 2. The power control strategy (7) achieves the

following performance E{D} ≤
√(

1 + c4
(πλ)α

)
exp (c3λ),

where c3 and c4 are constants. Thus,

C ≥ λ

E{D}
≥ min

{
c6λ

α
2 +1 exp(−c5λ), c7λ exp(−c5λ)

}
.

Theorem 2 shows that a simple non-adaptive strategy that
does not need to learn the local fading gain is capable of
achieving (order-wise) the upper bound on the capacity C. The
only local information it needs is the distance d0 that can be
learned easily via ranging or RSSI measurements, making the
power control strategy easily implementable in practice. The
proof of Theorem 2 is similar to the one derived in [12], where
the focus was only to show that the expected delay is finite,
while here we need the exact scaling result.

V. CONCLUSION

In this paper, we proposed a natural and practical definition of
capacity for cellular wireless networks. Our capacity metric is
weaker than the Shannon capacity, however, it closely matches
the throughput measure observed in a real-life implementation
of cellular wireless networks with ARQ. Most importantly, we
were able to derive the exact dependence of the BS density on
the capacity of cellular networks, which has generally escaped
analytical tractability. Conventional wisdom suggests that there
is an advantage in increasing BS density; via increasing the
SINR for the cell-edge users or improving the frequency reuse.
We showed that that is true only for low-BS densities, where
the capacity increases polynomially with the BS density, while
as BS density is increased further the capacity starts to decrease
exponentially.

REFERENCES

[1] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
Inform. Theory, vol. 46, no. 2, pp. 388–404, Mar 2000.

[2] S. Weber, X. Yang, J. Andrews, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with outage constraints,” IEEE
Trans. Inform. Theory, vol. 51, no. 12, pp. 4091–4102, Dec. 2005.

[3] R. Vaze, Random Wireless Networks. Cambridge University Press, 2015.
[4] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach

to coverage and rate in cellular networks,” IEEE Transactions on
Communications, vol. 59, no. 11, pp. 3122–3134, 2011.

[5] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran, “Closing the
gap in the capacity of random wireless networks,” in Proc. Int. Symp.
Information Theory ISIT 2004, 2004.

[6] A. Ozgur, O. Leveque, and D. Tse, “Hierarchical cooperation achieves
optimal capacity scaling in ad hoc networks,” IEEE Trans. Inform. Theory,
vol. 53, no. 10, pp. 3549–3572, Oct. 2007.

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)



[7] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An Aloha protocol
for multihop mobile wireless networks,” IEEE Trans. Inform. Theory,
vol. 52, no. 2, pp. 421–436, 2006.

[8] J. Andrews, S. Weber, M. Kountouris, and M. Haenggi, “Random access
transport capacity,” IEEE Trans. Wireless Commun., vol. 9, no. 6, pp.
2101 –2111, June 2010.

[9] R. Vaze, “Throughput-delay-reliability tradeoff with ARQ in wireless ad
hoc networks,” IEEE Trans. Wireless Commun., vol. 10, no. 7, pp. 2142
–2149, Jul. 2011.

[10] R. Ganti and M. Haenggi, “Spatial and temporal correlation of the
interference in aloha ad hoc networks,” IEEE Commun. Lett., vol. 13,
no. 9, pp. 631 –633, sept. 2009.

[11] F. Baccelli, B. Błaszczyszyn, and M.-O. Haji-Mirsadeghi, “Optimal paths
on the space-time SINR random graph,” Advances in Applied Probability,
pp. 131–150, 2011.

[12] S. K. Iyer and R. Vaze, “Achieving non-zero information velocity in
wireless networks,” Annals of Applied Probability, to appear, 2017.

[13] X. Zhang and J. G. Andrews, “Downlink cellular network analysis with
multi-slope path loss models,” IEEE Trans. Commun., vol. 63, no. 5, pp.
1881–1894, 2015.

[14] C. S. Chen, V. M. Nguyen, and L. Thomas, “On small cell network
deployment: A comparative study of random and grid topologies,” in
Vehicular Technology Conference (VTC Fall),. IEEE, 2012, pp. 1–5.

[15] T. Samarasinghe, H. Inaltekin, and J. S. Evans, “On optimal downlink
coverage in Poisson cellular networks with power density constraints,”
IEEE Trans. Commun., vol. 62, no. 4, pp. 1382–1392, 2014.

[16] F. Baccelli and A. Biswas, “On scaling limits of power law shot-noise
fields,” Stochastic Models, vol. 31, no. 2, pp. 187–207, 2015.

[17] V. M. Nguyen and M. Kountouris, “Performance limits
of network densification,” subm., 2016. [Online]. Available:
https://arxiv.org/abs/1611.07790

[18] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading
channels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1468–1489,
1999.

APPENDIX A
PROOF OF THEOREM 1

We first prove the lower bound (5) via the following result.

Proposition 4. [18] To minimize P(hiPi ≤ c), where hi is
i.i.d. ∼ EXP (1), the optimal power allocation is given by

Pi =

{
c/hi hi ≥ δ,
0 hi < δ,

where δ is chosen to satisfy the average power constraint M .

[Proof of Theorem 1] Consider that other than BS n(m) there
is no other active BS in the network. Thus, the interference
seen at m is zero. Then the SINR seen at m in any time slot t

SINRn(m),m(t) =
Pn(m)hn(m)1n(m)(t)`(d0)

N
. (8)

Given a realization of the BS PPP Φ, the distance d0 is fixed.
Given Φ, we will find a lower bound on E{D|Φ}. With fixed
M,β, for two different cases depending on d0, we will consider
stronger fading gains to lower bound the outage probabilities,
and consequently lower bound the expected delay, as follows.

Case 1: `(d0) ≥ β
M . For this case, we first show that

the outage probability po = P(SINR ≤ β|Φ) (8) with
h ∼ EXP (1) is larger than when h ≡ 1 always (no fading/line
of sight). With h ∼ EXP (1), from Proposition 4, for any
M , the outage probability po = P(SINR ≤ β|Φ) is at least
1− exp(−δ), where δ is chosen to satisfy the average power
constraint

∫∞
δ

β
`(d0)x exp(−x)dx = M . With h ≡ 1, when

M`(d0)
β ≥ 1, just by choosing Pn(m) = β`(d0)−1 always, we

get outage probability po = P(SINR ≤ β|Φ) = 0, while
satisfying the average power constraint of M .

Case 2: `(d0) < β
M . To derive a lower bound in this case, we

replace hn(m) ∼ EXP (1) with ‘stronger’ h′n(m) that has PDF
fh′

n(m)
(x) = x exp(−x) and CDF P(h′n(m) < x) = 1 − (x +

1) exp(−x). With hn(m) ∼ EXP (1), the CDF is P(hn(m) <
x) = 1−exp(−x). Stronger h′ implies lower outage probability,
allowing us to lower bound the expected delay.

With the stronger fading gain h′n(m), conditioned on d0,
from Proposition 4, with an average power constraint of M ,
the outage probability po = P

(
Pn(m)h

′
n(m)1n(m)(t)`(d0)

N ≤ β|Φ
)

is minimized when Pn(m) = β
`(d0)h′

n(m)
for h′n(m) > δ and

Pn(m) = 0 otherwise, where δ is such that the average power
constraint

∫∞
δ

β
`(d0)xx exp(−x)dx = M is satisfied. Thus, we

get that exp(−δ) = M`(d0)
β , where recall that M`(d0)

β < 1.
Hence, the resulting outage probability, po = P(h′n(m) ≤ δ) =

1−
(

1− ln M`(d0)
β

)
M`(d0)
β , and the success probability ps =

1− po =
(

1− ln M`(d0)
β

)
M`(d0)
β .

Thus, combining case 1 and 2, given Φ, the expected delay
is E{D|Φ} ≥ 1M`(d0)

β ≥1
1 + 1M`(d0)

β <1
1
ps

, since given Φ, the
success events (h′n(m) > δ) are independent across time slots.
Thus,

E{D|Φ} ≥ 1M`(d0)
β <1

β`(d0)−1(
1− ln M`(d0)

β

)
M
. (9)

From Proposition 5, we know that fd0(y) =
2πλy exp

(
−λπy2

)
. Recall that `(d0) = min{1, d−α0 },

taking the expectation of (9) with respect to d0, we get E{D}

≥ β

M

∫
`(y)< β

M

`(y)−1(
1− ln M`(y)

β

)2πλy exp
(
−λπy2

)
dy

 ,

≥ β

M

c

(πλ)
α
2
, (10)

where c is a constant. This proves (5).

Proposition 5. The cumulative distribution function and
probability distribution function of nearest BS distance d0

is

P(d0 > y) = exp(−λπy2), =⇒ fd0(y) = 2λπy exp(−λπy2).

To obtain the second lower bound on the expected delay (6),
we set `(d0) = 1 for the typical user m, to maximize the signal
power in terms of path-loss, since `(.) ≤ 1. This will allow us
to remove the dependence of (pn(m)(t), Pn(m)(t)) on d0. Note
that we are not putting any restriction on d0, since that would
impact the interference term in the SINR expression.

Let Uz be the set of MUs connected to the BS z. As before,
we consider the practical setting where the MU density is
much larger than the BS density, and |Uz| ≥ 1 for all BSs z.
3 For BS z ∈ Φ\{n(m)} other than n(m), we let all the MUs

3Otherwise, since MU and BS processes are independent, we get a thinned
BS process, for which the derived results apply directly.
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u ∈ Uz connected to BS z be at most a unit distance away
from z, i.e., dzu ≤ 1, ∀ z, u ∈ Uz , which implies `(dzu) = 1.
This minimizes the path-loss between z and u ∈ Uz , and gives
the largest gain `(dzu) = 1 for each BS-MU pair (z, u) for
u ∈ Uz . Moreover, we also let that that each u ∈ Uz receives no
interference from any basestation. Let this be called restriction
1 that applies to all non-typical BSs z 6= n(m) and its connected
users in Uz . Thus, the SINR seen at any MU u ∈ Uz, z 6= n(m)

under restriction 1 is SINRz,u(t) = Pz(t)hzu(t)1z(t)
N .

As a function of time, let p̃z(t) and P̃z(t) (where
p̃z(t)P̃z(t) ∈ [M/τ,M ]} from strategy Definition 2), be the
power profile used by BS z ∈ Φ\{n(m)} under restriction 1 to
get the same expected delay/capacity without restriction 1 while
using the optimal (unknown) power profile pz(t) and Pz(t).
Clearly, since there is no path-loss and no interference seen at
any u ∈ Uz with restriction 1, power profile p̃z(t) and P̃z(t)
is stochastically dominated by pz(t) and Pz(t). Equivalently,
the interference seen at the typical MU m from BS z 6= n(m)
is stochastically dominated with restriction 1.4

Recall that the SINR (3) seen at the typical user m critically
depends on the power profile (pz(t) and Pz(t)) of BS z ∈
Φ\{n(m)}. Thus, using the stochastically dominated power
profile p̃z(t) and P̃z(t) with restriction 1 for each BS z 6= n(m)
cannot increase the delay at m. Thus, we work under restriction
1 to lower bound the expected delay seen at m.

It is important to note that under restriction 1, power profile
1̃z(t) and P̃z(t) only depend on hzu(t). Since hzu(t)’s are
independent for each BS-MU pair (z, u) u ∈ Uz and across time
t, restriction 1 helps simplify the ensuing analysis significantly.

We also also neglect additive noise in the SINR expression
(3) for deriving the lower bound on the expected delay.

Under this setup (`(d0) = 1, no noise, and restriction 1 for
BSs z 6= n(m)), from (3) for the n(m)−m link

˜SINRn(m),m(t) =
Pn(m)(t)hn(m)(t)1n(m)(t)

γ
∑
z∈Φ\{n(m)} P̃z(t)1̃z(t)hz(t)`(z)

. (11)

Note that we have kept the path-loss `(z) from BS z to the
typical MU m as it is with restriction 1. Thus, we have the
tail probability P(D > n|Φ,ΦR)

= P
(

˜SINRm(1) < β, . . . , ˜SINRm(n) < β
∣∣∣Φ,ΦR),

=
n∏
t=1

P
(

˜SINRm(t) < β
∣∣Φ,ΦR) , (12)

where the second equality follows since given Φ,ΦR, SINRs
are independent

Under restriction 1, both P̃z(t) and 1̃z(t) are inde-
pendent across time, and are unknown at m. Moreover,

4For two random variables X and Y , X is defined to be stochastically
dominated by Y if P(X ≤ x) ≥ P(Y ≤ x) for all x. Essentially, what we
are doing is that let S? = (p(t), P (t)) be the (unknown) optimal strategy
(power profile) that achieves minimum delay E{D?} for each BS z. Then,
under restriction 1, the power profile needed S̃z = (p̃z(t), P̃z(t)) for all
BSs z 6= n(m) to achieve E{D?} at their respective MUs, is stochastically
dominated by S?. Thus, with each BS using S̃z , the expected delay at the
typical MU m is at most E{D?}.

their distributions are also unknown. Thus, to derive a
lower bound on P

(
˜SINRm(t) < β

∣∣Φ,ΦR), we let BS
n(m) choose the optimal transmission policy to minimize
P
(
Pn(m)(t)hn(m)(t)1n(m)(t) < γβ

)
from Proposition 4 that

only depends on hn(m)(t) and γ, β. Thus, the outage probability
P
(

˜SINRm(t) < β|Φ,ΦR
)

=P
(
hn(m)(t) < δ

)
P
(

0

Ĩ(t)
< γβ

∣∣Φ,ΦR)
+ P

(
hn(m)(t) ≥ δ

)
P
(
γβ

Ĩ(t)
< γβ

∣∣Φ,ΦR) ,
≥P
(
hn(m)(t) ≥ δ

)
P
(
Ĩ(t) > 1

∣∣Φ,ΦR) ,
= exp(−δ)P

(
Ĩ(t) > 1

∣∣Φ,ΦR) , (13)

where the last inequality follows since hn(m)(t) ∼ EXP (1).
Now we derive bounds on P

(
Ĩ(t) > 1

∣∣Φ,ΦR) to de-
rive a lower bound on the expected delay. Recall that
P
(
Ĩ(t) > 1

∣∣Φ,ΦR)

= P

 ∑
z∈Φ\{n(m)}

P̃z(t)1̃z(t)hz(t)`(z) > 1
∣∣Φ,ΦR

 ,

≥ 1−
∏

z∈Φ\{n(m)}

P
(
P̃z(t)1̃z(t)hz(t)`(z) < 1

∣∣Φ,ΦR) ,
= 1−

∏
z∈Φ\{n(m)}

E
{(

1− exp

(
−1

P̃z(t)1̃z(t)`(z)

)) ∣∣Φ,ΦR} ,
where the second equality follows since hz(t)’s are independent
for z, t, and P̃z(t), 1̃z(t) are independent for z under restriction
1, and the last inequality follows by taking the expectation
with respect to hz(t) ∼ EXP (1).

Taking the expectation with respect to 1̃z(t), we get
P
(
Ĩ(t) > 1

∣∣Φ,ΦR)
= 1−

∏
z∈Φ\{n(m)}

E
{(

1− p̃z(t) exp

(
−1

P̃z(t)`(z)

))
|Φ,ΦR

}
,

≥ 1−
∏

z∈Φ\{n(m)}

E


1− p̃z(t) exp

 −1
M/τ
p̃z(t)`(z)

 |Φ,ΦR
 ,

≥ 1−
∏

z∈Φ\{n(m)}

(
1− E {p̃z(t)|Φ,ΦR} exp

(
−1

(M/τ)`(z)

))
,

where the second inequality follows since p̃z(t)P̃z(t) ≥M/τ
for each BS z, and the final inequality follows since p̃z(t) ≤ 1,
and the fact that p̃z(t) are independent for different BSs z.

Remark 1. Recall that the BS density is much smaller than
MU density, hence |Uz| >> 1, i.e., each BS z is transmitting
to multiple MUs in its Voronoi cell. Thus, for p̃z(t) (that is
independent across z and t) that only depends on fading gains
from z to Uz , we let E{p̃z(t)|Φ,ΦR} ≥ η > 0 (where η is a
constant).
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Thus, it follows that P
(
Ĩ(t) > 1

∣∣Φ,ΦR)
≥ 1−

∏
z∈Φ\{n(m)}

(
1− η exp

(
−1

(M/τ)`(z)

))
. (14)

Substituting (14) into (13), we
get P

(
˜SINRm(t) < β|Φ,ΦR

)
≥

exp(−δ)
(

1−
∏
z∈Φ\{n(m)}

(
1− η exp

(
−1

(M/τ)`(z)

)))
,

which from (12), gives P(D > n|Φ,ΦR)

≥
n∏
t=1

exp(−δ)

1−
∏

z∈Φ\{n(m)}

(
1− η exp

(
−1

(M/τ)`(z)

)) .

(15)

Let g =
∏
z∈Φ\{n(m)}

(
1− η exp

(
−1

(M/τ)`(z)

))
. Then

E{D|Φ,ΦR} =
∞∑
n=0

P(D > n|Φ,ΦR),

≥
∞∑
n=0

(exp(−δ)(1− g))n, from (15)

=
1

1− exp(−δ)(1− g)
≈ 1

exp(−δ)g
,

where the approximation is tight for large average power
constraints M for which δ is small as evident from Proposition
4.5 Thus, using the definition of g,

E{D|Φ,ΦR} ≥ exp(δ)
∏

z∈Φ\{n(m)}

1(
1− η exp

(
−1

(M/τ)`(z)

)) .
To find E{D} from E{D|Φ,ΦR}, we first use the probability

generating functional (Proposition 6) for the PPP Φ\{n(m)}
to get E{D|d0}

≥ exp(δ) exp

2πλ

∫
R,z>d0

η exp
(

−1
(M/τ)`(z)

)
(
1− η exp

(
−1

(M/τ)`(z)

))z dz
 .

Let c1 =
η exp( −1

(M/τ) )
(1−η exp( −1

(M/τ) ))
. Splitting the integral into two parts

for d0 ≤ 1 and d0 > 1, and keeping only the part with d0 ≤ 1
which implies (z < d0 < 1) for which `(z) = 1, we have

E{D|d0} = exp(δ) exp

(
2πλc1

∫ 1

d0

z dz

)
,

≥ exp(δ) exp

(
2πλc1

(
1− d2

0

2

))
.

Taking the expectation with respect to the nearest BS distance
d0, whose PDF is given by Proposition 5, we get E{D}

≥ exp(δ)
exp (πλc1)

1 + c1
(1− exp (−πλ(c1 + 1))) . (16)

Thus, (10) together with (16) gives the required lower bound
on the expected delay stated in Theorem 1.

5Note that even for M = 1, δ ≈ .267. This approximation can be avoided,
and exact expression can be derived but results in more tedious computations
as will be evident next.

Proposition 6. For a homogenous PPP Φ with den-
sity λ, the probability generating functional is given by
E
{∏

xn∈Φ f(xn)
}

= exp−
∫

(1−f(x))λdx.

APPENDIX B
PROOF OF THEOREM 2

Without loss of generality, we will derive the upper bound
on the expected delay for the typical user m that is served by
its nearest BS n(m) at a distance of d0 from it. We consider k
successive slots (not necessarily consecutive) that are dedicated
for transmission to m by BS n(m), and are interested in
probability P(D > k) to upper bound the expected delay,
where delay D is as defined in Definition 1.

Typically, the number of MUs connected to different BSs
are different. Thus, during the k considered slots for m, any BS
other than n(m) transmits potentially to different MUs. Let Gk
be the sigma field generated by the BS point process Φ and MU
point process ΦR and the choice (index) of MUs being served
by BSs of Φ at the above described k slots t = 1, 2, . . . , k.

With the power control strategy (7), the SINR seen at m in
time slot t is

SINRn(m),m(t) =
chn(m)(t)1n(m)(t)

γI(t) + N
, (17)

where I(t) =
∑
z∈Φ\{n(m)} 1z(t)Pz(t)hz(t)`(z).

With en(m),m(t) = 1 if SINR(m,n(m))(t) > β,
and 0 otherwise, we have P

[
D > k

∣∣Gk] =
E
{
P
[
en(m),m(t) = 0, ∀ t = 1, . . . , k

∣∣Gk]}.
Given Gk, with the described strategy (7), the transmission

events 1z(t), and the transmit powers Pz(t) are independent
across time slots t for all BSs z. Moreover, the fading gains
h(.)(t) are all independent. Hence, we get P

[
D > k

∣∣Gk] =

E
{∏k

t=1 P
[
en(m),m(t) = 0

∣∣Gk]}.
Let A(t) be the event that 1n(m)(t) = 0, i.e., the BS n(m)

does not transmit in the slot designated for user m, while B(t)
be the event that {1n(m)(t) = 1} ∩ en(m),m(t) = 0, i.e., BS
n(m) transmits in slot t but the transmission fails. Then

P
[
D > k

∣∣Gk] = E

{
k∏
t=1

P
[
A(t) ∪B(t)

∣∣Gk]} . (18)

With strategy (7), given Φ, transmission event 1n(m)(t) and the
success event en(m),m(t) are independent, hence P(A(t)|Gk) =
1− pn(m)(t), while P(B(t)|Gk)

= pn(m)(t)

(
1− E

{
exp

(
−β
c

(N + γI(t))

) ∣∣∣∣Gk}) , (19)

that follows by taking expectation with respect to hn(m)(t) ∼
EXP (1). Using the union bound, from (18), we get
P
[
A(t) ∪B(t)

∣∣Gk] ≤ 1− pn(m)(t) + pn(m)(t)(
1− E

{
exp

(
−β
c

(N + γI(t))

) ∣∣∣Gk})
≤ 1− pn(m)(t) exp

(
−βN

c

)
E
{

exp

(
−βγ
c
I(t)

)
|Gk
}
.

(20)
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Let a = βγ
c , and we focus on finding a lower

bound on E {exp (−aI(t)) |Gk}, that is independent
of the choice of the MU being served by BS z. To
this end, we first expand E

{
exp (−aI(t))

∣∣∣Gk} =∏
z∈Φ\{n(m)} E

{
exp

(
−a1z(t)P (u(z))

z (t)hz(t)`(z)
) ∣∣∣Gk},

where BS z ∈ Φ\{n(m)} transmits to the MU u(z) in time
slot t. This fixes the transmission probability p

(u(z))
z (t) and

power P (u(z))
z (t) (where we have included the index u to

make the dependence on the MU explicit). Then, taking the
expectation with respect to 1z(t), we have

E
{
e−a1z(t)P (u(z))

z (t)hz(t)`(z)
∣∣∣Gk}

=(1− p(u(z))
z (t))

+ p(u(z))
z (t)E

{
exp

(
−aP (u(z))

z (t)hz(t)`(z)
) ∣∣∣Gk}

=(1− p(u(z))
z (t)) + p(u(z))

z (t)
1

1 + aγ`(z)P
(u(z))
z (t)

, (21)

where the second equality follows by taking expectation with
respect to the independent fading gains hz(t) ∼ EXP (1).

Let u∗(z) be the MU for which the right hand expression in
(21) is minimized, i.e., BS z causes maximum interference at m
when it is serving MU u∗(z). Let p∗z , P ∗z denote the correspond-
ing transmission probability and power, respectively for BS z.
Denote by 1∗z an independent Bernoulli random variable with
P[1∗z = 1] = p∗z . Define I∗(t) =

∑
z∈Φ\{n(m)} 1

∗
zP
∗
z hz(t)`(z).

Essentially I∗(t) dominates the actual interference I(t) seen at
m. Substituting I∗(t) for I in (20) along with the observation
that given Φ,ΦR, I∗(t) d

= I∗(1), we get P
[
A(t) ∪B(t)

∣∣Gk] ≤
1−pn(m)(t) exp

(
−βNc

)
E
{

exp (−aI∗(1))
∣∣∣Φ,ΦR}. Let θ =

exp
(
−βNc

)
pn(m)(t)E

{
exp (−aI∗(1))

∣∣∣Φ,ΦR}. Thus, from
(18), we get

P
[
D > k

∣∣Φ, ΦR
]
≤ (1− θ)k. (22)

Then the expected delay can be written as

E{D} =
∑
k≥0

P[D > k] = E

∑
k≥0

P
[
D > k

∣∣Φ,ΦR]
 ≤ E{θ−1}.

where the last inequality follows from (22). Using the Cauchy-
Schwartz inequality, on the two random variables in θ−1,

E{D} ≤ exp (βN/c)

(
E

{
1(

E
{

exp (−aI∗(1))
∣∣Φ,ΦR})2

}
E
{
pn(m)(t)

−2
}) 1

2 . (23)

From the definition of the transmission probability pn(m)(t) =
(M/c) `(d0) = (M/c) min{1, d−α0 }, we get E[pn(m)(t)

−2]

=
( c

M

)2
(∫ 1

0

1fd0(x)dx+

∫ ∞
1

d2α
0 fd0(x)dx

)
,

≤
( c

M

)2
(

1 +

∫ ∞
0

d2α
0 fd0(x)dx

)
,

=
( c

M

)2
(

1 +
Γ(α+ 1)

(πλ)α

)
, (24)

using the PDF of d0 from Proposition 5.
Recall, E

{
exp (−aI∗(1))

∣∣Φ,ΦR}
=

∏
z∈Φ\{n(m)}

E
{

exp (−a1∗zP ∗z hz(1)`(z))
∣∣Φ,ΦR} . (25)

Taking expectations, first with respect to 1∗z and
then with respect to fading gain hz(1), we get
E {exp (−a1∗zP ∗z hz(1)`(z)) |Φ,ΦR}

= (1− p∗z) + p∗zE
{
e−aP

∗
z hz(1)`(z)

∣∣Φ,ΦR} ,
(a)
= 1− βγp∗zP

∗
z `(z)

c+ βγP ∗z `(z)
,

(b)

≥ 1− βγM`(z)

c
= 1− βγ(1− ε)`(z),

where (a) follows by resubstituting a = βγ
c , and (b) by

invoking the average power constraint pzPz ≤ M for ∀ z
and in particular p∗zP

∗
z ≤ M and c = M(1 − ε)−1. Let

c2 = βγ(1 − ε), where note that because of assumption on
ε (ε satisfies (1 − ε)βγ < 1) in the power control strategy
(7), c2 < 1. Substituting the above bound in (25), we get
E
{
e−aI

∗(1)
∣∣Φ,ΦR} ≥∏z∈Φ\{n(m)} (1− c2`(z)).

Hence E
{

1
(E{exp(−aI∗(1))|Φ,ΦR})2

}
≤ E

 ∏
z∈Φ\{n(m)})

exp (−2 log (1− c2`(z)))

 . (26)

Once again using the probability generating functional
(Proposition 6) for the PPP Φ\{n(m)}, we get
E
{

1
(E{exp(−aI∗(1))|Φ})2

}
≤ Ed0

{
exp

(
λ

∫
R2\B(0,d0)

(exp (−2 log (1− c2`(z)))

−1) dz)} ,

≤ Ed0
{

exp

(
2λc2

(1− c2)2

∫
R,z>d0

z`(z)dz

)}
, (27)

where B(0, d0) is the disc with radius d0 centered at the origin,
and the last inequality follows by noting that `(z) ≤ 1. With
`(d) = min{1, d−α}, we get E

{
1

(E{exp(−aI∗(1))|Φ})2

}
≤

∫ 1

0

exp

(
2λc2

(1− c2)2

(
1− x2

2

))
fd0(x)dx

+

∫ ∞
1

exp

(
2λc2

(1− c2)2

(
x2−α

α− 2

))
fd0(x)dx,

Since α > 2, using Proposition 5, we get the following bound
on the expectation E

{
1

(E{exp(−aI∗(1))|Φ})2

}
≤ exp (c3λ),

where c3 is a constant. Combining this with (24), from (23)
we get

E{D} ≤

√
c4

(
1 +

Γ(α+ 1)

(πλ)α

)
exp (c3λ),

where c4 is a constant. This completes the proof of Theorem 2.
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