
Improved Policy Representation and Policy Search
for Proactive Content Caching in Wireless Networks

Samuel O. Somuyiwa, András György and Deniz Gündüz
Department of Electrical and Electronic Engineering

Imperial College London
Email: {samuel.somuyiwa12, a.gyorgy, d.gunduz}@imperial.ac.uk

Abstract—We study the problem of proactively pushing con-
tents into a finite capacity cache memory of a user equipment
in order to reduce the long-term average energy consumption in
a wireless network. We consider an online social network (OSN)
framework, in which new contents are generated over time and
each content remains relevant to the user for a random time
period, called the lifetime of the content. The user accesses the
OSN through a wireless network at random time instants to
download and consume all the relevant contents. Downloading
contents has an energy cost that depends on the channel state and
the number of downloaded contents. Our aim is to reduce the
long-term average energy consumption by proactively caching
contents at favorable channel conditions.

In previous work, it was shown that the optimal caching policy
is infeasible to compute (even with the complete knowledge of a
stochastic model describing the system), and a simple family of
threshold policies was introduced and optimised using the finite
difference method. In this paper we improve upon both com-
ponents of this approach: we use linear function approximation
(LFA) to better approximate the considered family of caching
policies, and apply the REINFORCE algorithm to optimise its
parameters. Numerical simulations show that the new approach
provides reduction in both the average energy cost and the
running time for policy optimisation.

I. INTRODUCTION

Caching popular contents at the edge of a wireless network,
i.e., at base stations (BSs) and/or directly at user equipments
(UEs), has received a lot of recent attention as a means to
improve quality of user experience in wireless content delivery
[1]–[5]. In the traditional, so-called reactive content delivery
paradigm, contents are delivered to the network edge from
a content delivery network (CDN) server through the back-
haul links at the time of request. However, the request time
may be an unfavorable time, for example, a peak traffic period
or a period during which the channel conditions are poor.
Instead, prerecorded contents, such as video-on-demand or
video contents available through content providers such as
YouTube, Hulu or BBC iPlayer, which constitute a significant
portion of the videos downloaded over the Internet, can be
delivered proactively over favourable time periods, and stored
in a cache memory at the network edge. This approach reduces
both the energy consumption and latency in content delivery.

Content caching in unknown or dynamic settings have been
studied in several works in the literature [6]–[11]. The goal
in these problems is to learn to manage the cache contents,
i.e., which content to cache, when to cache, etc., in order to
maximize a particular performance measure over a specified

time horizon. In [6], [7], collaborative filtering and transfer
learning techniques are used to learn the optimal cache con-
tents based on the estimated content popularity, traffic load,
back-haul and storage capacities. In [8]–[10] the problem of
learning the optimal cache contents and optimal distribution
strategies are modeled as a multi-armed bandit problem. Other
works include exploiting device-to-device communications
to maximize throughput with caching [12]–[14], exploiting
the broadcast nature of wireless communications to improve
caching gain through coded caching [1], [15], and to reduce the
energy consumption by proactive caching [16]. Proactive con-
tent caching has also been studied from an energy efficiency
perspective in [17] and [18] under a deterministic model; that
is, assuming that the user demands and the channel conditions
are known in advance, for point-to-point and device-to-device
scenarios, respectively.

In this paper we consider proactive content caching for a
single user in an online social network (OSN) framework,
where contents are generated randomly by the user’s social
connections, and are added to the user’s news feed. Each
content remains relevant to the user for a random period
of time, which we refer to as lifetime. We assume that the
user is not interested in a content whose lifetime has expired.
At random time instants, the user accesses the OSN, say,
through an app on her mobile device and requests all the
relevant contents; that is, contents generated by the user’s
social connections whose lifetime has not expired at the time
of access. All the relevant contents must be delivered to the
application layer of the UE at the time of user request.

When contents are delivered through the wireless link, the
serving BS incurs a transmission energy cost that depends on
the actual channel condition and on the number of contents
delivered1. The channel condition depends on user mobility,
environmental and traffic conditions, and we assume that it is
independently and identically distributed (i.i.d.) across time.
A cache manager (CM) is responsible for downloading and
removing contents to and from the UE. We assume that the
CM has a causal knowledge of all the underlying statistical
distributions, i.e, the number and lifetimes of new contents
generated at every time period, user request interval and

1The energy cost of the BS can be replaced by other metrics, such as the
delay of delivering all the contents to the UE, the channel resources required
for successful downloading of the contents, or the energy used for decoding
the messages at the UE.

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

978-3-901882-90-6/17 ©2017 IFIP

channel conditions. It decides whether or not to proactively
push (or remove) contents to (from) the finite-capacity cache
memory whenever there is no user request. Contents that
have been proactively cached into the UE cache memory do
not need to be downloaded at the time of user access, and
are moved from the cache to the application layer without
incurring any additional cost.

The key challenge addressed in this paper is to find the
caching policy which minimizes the long term average energy
consumption. While contents can be proactively cached over
favorable channel conditions, this also has the risk of down-
loading, and incurring the associated cost, contents that would
never be requested by the user, if the user does not access the
OSN within their lifetimes. A caching policy decides which
relevant contents should be pushed to the cache memory, and
which should be removed. We model this scenario as a Markov
decision process (MDP). It is possible to prove the optimality
of a threshold-based policy [19], which may swap contents in
the cache with shorter remaining lifetime with those that are
not in the cache, but have longer remaining lifetime, according
to some pre-fixed threshold values on the channel quality. Due
to the size of the state and action spaces, and the corresponding
number of thresholds, which is exponential in the maximum
lifetime of contents (denoted by Kmax), characterizing the
optimal threshold values; and hence, the optimal policy, is
computationally infeasible. Instead, in [19], we proposed a
suboptimal policy called longest lifetime in–shortest lifetime
out (LISO), which has a single threshold value for every pair
of lifetimes and time elapsed since the last user access, and
swaps the content with the shortest remaining lifetime in the
cache memory with the content with the longest remaining
lifetime among the relevant files that are not in the cache, if the
channel cost is below the corresponding threshold. The policy
has O(K2

max) threshold parameters, and we used the finite
difference method (FDM) for policy search to obtain those
threshold values. In this paper, we improve the performance
of the LISO policy by using the REINFORCE algorithm [20]
for policy search, and by using a linear function approximation
with O(K3

max) parameters to represent the threshold values.
Simulations show an improvement in the performance, in
terms of both the running time for policy optimisation and in
the long term average energy consumption. We also observe
that the energy consumption is very close to the lower bound
we have derived.

The rest of the paper is organised as follows. The system
model is introduced in Section II. The general behavior of
the optimal threshold-based policy is explained in Section III.
The new parametrisation of the threshold-based policy, and
two new policy search methods that use LFA are presented
in Section IV. Performance lower bounds are presented in
Section V. Section VI is dedicated to the presentation of the
simulation setup and the corresponding numerical results, and
further discussions. Finally, Section VII concludes the paper.

News Feed

Cache
Memory

OSN SERVER UE

Application
Layer

Wireless Link

Fig. 1. Illustration of the system model: Nt is the set of newly generated
contents, Ut is the user state, and A

(1)
t and A

(2)
t are the set of actions taken

in time slot t. The dashed line from the cache (when Ut = 0) illustrates the
contents removed from the cache.

II. SYSTEM MODEL

Consider a mobile user equipped with a cache memory of
finite capacity B, which can be used to proactively download
and store contents that are generated in an OSN. We assume
that time is slotted in equal length intervals, and at the
beginning of each slot a random number of equal-size contents
are generated by the user’s social connections, and are added
to the user’s news feed. We denote the set of contents generated
at the beginning of time slot t by Nt, and their number by
Mt, which is an i.i.d. sequence with generic random variable
M . Each content remains relevant to the user for a random
lifetime after which it is removed from the news feed and
the cache memory (if it has already been downloaded). We
denote the lifetime of the ith content generated in time slot
t by Kt,i, which is also i.i.d. with generic random variable
K. We denote the set of contents not in the cache at time
slot t by Ot, and the set of contents in the cache memory by
It; note that |It| ≤ B. A cache manager (CM), which can
be placed either at the BS or UE depending on the protocol
employed, decides which contents to download from Ot and
which to remove from It at each time slot. We denote the set
of contents downloaded in time slot t by A(1)

t , and the set of
contents removed from the cache by A(2)

t . We have A(1)
t ⊆ Ot

and A(2)
t ⊆ It.

The user’s access to the OSN is also random, and has a
binary representation where Ut = 0 means that the user does
not access the system in time slot t, while Ut = 1 denotes user
access. The user access sequence {Ut} is assumed to be an
arrival process with i.i.d. inter-arrival times Dn, where D ≥ 1
is a random variable with generic distribution of inter-arrival
times. Whenever the user accesses the OSN, all the relevant
contents must be made available to the user for consumption,
that is, all contents in Ot must be downloaded, and together
with the contents already in the cache, It, they are moved to
the application layer. The block diagram in Figure 1 illustrates
the system model and shows the behavior of the CM with
respect to the user behavior. Both the cache and the server are
reset after a user access, that is, if Ut = 1 for some time slot
t, then we have Ot+1 = Nt+1 and It+1 = ∅.

Without any loss of generality, because of the homogeneity
assumption on the size of the contents, we can represent
the sets Nt,Ot, It, A(1)

t , and A(2)
t as multi-sets of remaining

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

TABLE I
TABLE OF ACTION SETS, AND THE STATE TRANSITIONS OF THE CONTENTS
IN AND OUT OF THE CACHE MEMORY FOR GIVEN USER BEHAVIOR IN TIME

SLOT t.

Ut = 0 Ut = 1

A
(1)
t ⊂ Ot A

(1)
t = Ot

A
(2)
t ⊂ It A

(2)
t = It

Ot+1 =

(
(Ot ∪A

(2)
t \A(1)

t)− 1

)
∪Nt+1 Ot+1 = Nt+1

It+1 = (It ∪A
(1)
t \A(2)

t)− 1 It+1 = ∅

lifetimes (positive integers, with the set of all positive integer
tuples denoted by N∗). For any multi-set Y with positive
elements, let Y −1 = {y > 0 : y+1 ∈ Y } denote the multi-set
obtained by reducing each element of Y by 1 and removing the
zeros. With this definition, the evolution of the set of contents
in and out of the cache (It and Ot, respectively), as well as
some constraints on the set of contents to be downloaded to
and the set to be removed from the cache (A(1)

t and A
(2)
t ,

resp.) is given in Table I.
The wireless link is subject to random variations, causing

the serving BS to incur a random energy cost Ct ≥ 0 for
each content downloaded in slot t. We assume that Ct is i.i.d.
across time, and follows a continuous random variable with
cumulative distribution function (cdf) FC(c).

The average energy cost after T time slots is

JT =
1

T

T∑
t=1

Ct|A(1)
t |,

and the objective of the CM is to minimize the long term
expected average cost limT→∞ E [JT]. Finally, we assume
that the random variables M,K,D and C are bounded
by Mmax,Kmax, Dmax ∈ N, Cmax ∈ R+, the variables
{Mt}, {Kt,i}, {Ct}, {Dn} are independent, and that the CM
knows all the underlying statistical distributions involved.

III. THE OPTIMAL THRESHOLD POLICY

In a discrete time finite-state finite-action MDP [21], a
controller takes an action in every time step, and depending
on the current state and the action taken, the system moves to
a new state and the controller suffers some cost. The MDP
is characterized by a quadruple (S,A, P, µ), where S and
A, the state and action spaces, respectively, are finite sets,
P : S×A×S → [0, 1] is a transition probability function, and
µ : S×A → [0, µmax] is a cost function with some µmax > 0.
Assuming the system is in state s ∈ S , the controller selects
an action a ∈ A, and as a result, the system moves to a new
state s′ with probability P (s′|s, a), and the controller incurs a
cost µ(s, a). The goal of the controller is to minimize its long
term average cost

ρ = lim
T→∞

E

[
1

T

T∑
t=1

µ(St, At)

]
.

A deterministic policy of the controller is a mapping π :
S → A, selecting an action for each state. Let Π denote

the set of all deterministic policies. For any policy π ∈ Π
let Pπ : S × S → [0, 1] denote the transition kernel induced
by π, that is Pπ(s′|s) = P (s′|s, π(s)). Assuming the Markov
chain defined by Pπ is irreducible and aperiodic for all π,
and assuming that

∑
s′∈S P (s′|s, a) = 1 for all s ∈ S, a ∈ A,

let ρπ denote the average cost ρ if a = π(s), ∀s ∈ S, then
there exists (e.g., in [21]) a deterministic policy π∗ such that,
ρπ
∗

= min ρ, with the minimum taken over all possible actions
in A, and a differential value function for any state-action pair
(s, a) ∈ S ×A, which is defined as

V π(s) = E

[∞∑
t=1

(µ(St, At)− ρπ)

∣∣∣∣∣S1 = s

]
.

Furthermore, the optimal policy π∗ satisfies

V π
∗
(s) = min

a∈A

{
µ(s, a) +

∑
s′∈S

Pπ
∗
(s′|s, a)V π

∗
(s′)

}
, (1)

and a = π∗(s) minimizes the right hand side.

A. Optimal Cache Management Policy

For the problem of minimizing the long term expected
average energy cost with proactive caching, we can extend
the MDP model to include a side information, such that, at
the end of time slot t, the channel state Ct is regarded as an
i.i.d side information, and the state of the MDP St is defined
by the set of contents in the news feed Ot, the set of contents
in the cache It, with elements of both sets represented by the
remaining lifetimes of the relevant contents, and the elapsed
time since the last user access Et, where, assuming that the
user accesses the OSN at time t = 0 (i.e., we set U0 = 1); Et
is defined as Et , min{t−n : 0 ≤ n ≤ t, Un = 1}. The set of
all possible combinations of Ot, It and Et is S ⊂ N∗×N∗×N.
The action taken by the CM in every time slot is the pair
At = (A

(1)
t , A

(2)
t) ∈ As, where As is the set of actions

available to the CM in state s ∈ S . The state of the system
evolves as shown in Table I, and the cost function is given by
µ(St, At) = Ct · |A(1)

t |. We will show in a longer version of
this paper that there exists an optimal policy π∗(s, ·) that is
a piecewise constant function of the channel state Ct for any
s ∈ S and a ∈ As.

B. Structure of the Policy

The action At = (A
(1)
t , A

(2)
t) can be written as At =

({L1, L2, · · · }, {l1, l2, · · · }), where Li’s and li’s denote the
remaining lifetimes of the contents pushed into, and re-
moved from the cache, respectively. In fact, since each action
is constrained by the cache capacity B, we have At =
({L1, · · · , LB′}, {l1, · · · , lB′}), for some B′ ≤ B. Note that
we can always zero-pad one of the sets A(1)

t and A
(2)
t such

that we have A
(1)
t = A

(2)
t = B′. Here, L = 0 implies

that no content is actually downloaded, and L = 0 would
be used when more files are removed from the cache than
those that are downloaded. Note that, this can only happen
when Ut = 1. On the other hand, l = 0 implies that no
content is removed from the cache memory, and l = 0 is

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

included in action A
(2)
t when a new content is pushed into

an empty location in the cache memory. We can express an
action A more intuitively by pairing the elements of the sets
A(1) and A(2). We call each of these B′ pairs a simple action
and denote it as a′ = (l|L). A simple action a′ = (l|L)
replaces a cache content with remaining lifetime l with another
relevant content out of the cache with remaining lifetime
L, i.e., it swaps the two contents. Therefore, any action
A can be expressed as a sequence of simple actions, i.e.,
A = {(l1|L1), · · · , (lB′ |LB′)}. Recall that, whenever the user
accesses the OSN, i.e., Ut = 1, all the relevant contents outside
the cache are downloaded, and moved to the application layer
together with all the contents in the cache memory. Therefore,
whenever Ut = 1, there is no degree of freedom, and all
policies behave similarly. When Ut = 0, the action will be
a sequence of simple actions, where B′ new contents will be
pushed into the cache, while no more than B′ contents will
be removed. Expressing the action A as a sequence of simple
actions helps us characterize the structure of the optimal policy
as stated in Theorem 1 below.

Theorem 1. For any state s = (O, I, E) ∈ S and channel
cost C, let l1 ≤ · · · ≤ lB denote the contents of the cache
I, and let L1 ≥ · · · ≥ LB denote the B largest elements
of O. Then there is a B′ ≤ B and corresponding threshold
values T (a′B′) ≤ T (a′B′−1) ≤ · · · ≤ T (a′1) ≤ Cmax such that
there is an optimal cache management policy that performs the
simple actions a′i = (li|Li) for all i for which C ≤ T (a′i) if
E > 0 (i.e., when the user does not access the contents).

It is easy to see that replacing l ∈ I with L ∈ O when
l < L will increase the value of a state. Intuitively, it is better
to have contents with longer remaining lifetimes in the cache.
Therefore, for any state s = (O, I, E) with E > 0, if l1 ≤
· · · ≤ lB are the contents in I, and L1 ≥ · · · ≥ LB are
the B largest elements of O, the best action that performs
exactly B′ ≤ B swaps (all such actions have the same cost) is
AB′ , {(l1|L1), . . . , (lB′ |LB′)}. Therefore, an optimal policy
can only use actions A1, . . . , AB . If n > n′, after applying An,
the future value V π

∗
of the new state is at least as large as the

value after applying An′ ; therefore, An′ can only be applied in
an interval of the channel cost that is smaller than the interval
for An. Using that An′ ⊂ An, we obtain the structural result
about the optimal policy.

IV. PARAMETERISED THRESHOLD POLICY

Due to the large state and action spaces in the cache
management problem, it is infeasible to solve the MDP for the
optimal threshold policy by using the policy iteration algorithm
(PIA) [21]. Instead, we resort to the policy search (PS) method
[22], which considers a parameterised policy πθ, and searches
for the optimal parameter values within a reduced dimension
parameter space Θ, θ ∈ Θ. Model-free PS allows continuous
evaluation of the quality of decisions made by the CM
over a trajectory τπθ,T = (S1, C1, A1), . . . , (ST , CT , AT),
which is obtained by generating “samples” using the transition
probabilities P (s′|s, a) and the probability density function

fC(c). Hence, τπθ,T ∼ Pθ,T (τπθ
) = P (τπθ,T |θ). There are

three steps involved in any model-free PS method: policy
evaluation, in which the average sample cost Jπθ,T (τπθ

) =
1
T

∑T
t=1 µ(St, At) of a sample trajectory is obtained; policy

exploration, which determines how new trajectories are cre-
ated for the subsequent policy evaluation step; and policy
update, in which the parameters θ are updated such that
the trajectories with lower costs become more likely; and
hence, the expected average cost ρπθ = E[Jπθ,T] decreases
with the new policy. For infinite trajectories (T = ∞) we
shall use the simpler notation Pθ, τπθ

, Jπθ
. We will estimate

ρπθ on infinite trajectories by taking sample averages over
independent finite trajectories via Monte-Carlo rollouts. We
use the policy gradient (PG) method [22], [23], a model-
free PS method, which uses gradient descent to minimize the
expected average cost ρπθ by following the parameter update
direction given by the gradient ∇θρ

πθ . The policy update at
the end of the jth iteration step is given by

θj+1 = θj − λ∇θρ
πθ , (2)

where λ > 0 is the step size and the policy gradient is given
by

∇θρ
πθ =

∫
τ

∇θPθ(τπθ
)Jπθ

(τπθ
)dτ . (3)

A. Policy Representation

Based on Theorem 1, a natural parametrisation for the
cache management problem is based on the threshold values.
However, the optimal threshold value for each simple action
depends in general on the remaining lifetimes of all the
relevant contents inside and outside the cache. This suggests
that the optimal policy may employ a different threshold value
for the same simple action at different system states. This
results in a prohibitevely large paramater space, increasing the
computational complexity of the PS approach.

To overcome this dimensionality problem, in [19] we pro-
posed a suboptimal policy, which ignores the dependence of
the threshold values on the system state, and considers a
single threshold value for each simple action. In this paper, we
propose an improved threshold-based policy, which takes into
account the remaining lifetimes of the contents in the cache
memory when deciding on the threshold values. In order to
limit the computational complexity of the corresponding PS,
we employ linear function approximation (LFA) [24], and call
the resulting policy the LFA policy.

Note that, since all the contents have the same size, the
optimal threshold values do not depend on the lifetimes of
particular contents, but depend on the number of contents
in the cache with each remaining lifetime. Accordingly, to
describe the state of the cache at time slot t, we define a
frequency vector Φt = [φt(0), φt(1), . . . , φt(Kmax)], where
the component φt(i) is the ratio of contents with remaining
lifetime i in the cache, defined as

φ(i) ,

∑
l∈C I{l=i}
B

, for i = 0, 1, · · · ,Kmax, (4)

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

where I{·} is the indicator function, Kmax is the maximum
lifetime, and l = 0 denotes the empty locations in the cache
memory. Note that we have 0 ≤ φ(i) ≤ 1, and

∑Kmax

i=0 φ(i) =
1.

We define the threshold policy T (l|L), for l < L, l, L ∈
{0, . . . ,Kmax}, such that the two contents with remaining
lifetimes l and L, inside and not inside the cache memory,
respectively, are swapped if C ≤ T (l|L), where each threshold
value is obtained as a linear function of the frequency vector
Φt:

T (l|L) =

Kmax∑
i=0

φ(i)θi(l, L) = Φ>θ(l, L) , (5)

where θi(l, L), l < L, l, L ∈ {0, . . . ,Kmax}, are the
coefficients to be optimized for each simple action.

Remark 1. We remark that the LISO policy proposed in [19],
which is parameterised directly using the threshold values
of the simple actions (ignoring the cache contents) can be
considered as a particular special case of the policy with LFA
defined in (5), by setting θi6=l(l, L) = 0.

Next we describe the methods we use to estimate the
gradient ∇θρ

πθ in (3).

B. Finite Difference Method (FDM)

In FDM, policy exploration is performed by applying small
perturbations ∆θ[i] (for trajectory i) to the current parame-
ter vector θj . The perturbations are drawn from a uniform
distribution with range (∆θmin,∆θmax) = (−r, r), where
r ∈ R+ is a relatively small number that must be carefully
selected. For each trajectory, policy evaluation is performed for
both perturbed and unperturbed parameter vectors to obtain
Jπ(θj + ∆θ[i]) and Jπ(θj), respectively, using the deter-
ministic policy πθ(s) = I{c≤T (l|L)} ∀l, L ∈ (O, I), where
T (l|L) is as defined in (5), and the corresponding performance
difference ∆J

[i]
π = Jπ(θj + ∆θ[i]) − Jπ(θj) is evaluated.

For policy update, the gradient is estimated numerically from
samples via regression as

∇θρ
πθ =

(
∆Θ>∆Θ

)−1

∆Θ>∆Jπ, (6)

where ∆Θ = [∆θ[1], · · · ,∆θ[N]]> and ∆Jπ =

[∆J
[1]
π , · · · ,∆J [N]

π]>.

C. Likelihood-Ratio Method (LRM)

In LRM, rather than perturbing the parameters of a deter-
ministic policy as in FDM, policy exploration is performed
by using a randomized policy πθ(at|st, t) ∈ [0, 1] to select
actions in every time step t of each trajectory, and to obtain
the average cost Jπθ

(τπθ
) at the end of each trajectory. This

implies that there is no need in tuning parameters. The policy
gradient in (3) is estimated by using the “likelihood-ratio” trick
given by the identity ∇ logPθ(y) = ∇Pθ(y)/Pθ(y) to obtain

∇θρ
πθ =

∫
τ

Pθ(τ)∇θ logPθ(τπθ
)Jπθ

(τπθ
)dτ

= Eτ [∇θ logPθ(τπθ
)Jπθ

(τπθ
)] . (7)

Note that the derivative ∇θ logPθ(τπθ
) can be obtained with-

out knowledge of the trajectory distribution Pθ(τπθ
) as the

product in Pθ(τπθ
) = P (s1)

∏T
t=1 P (st+1|st, at)πθ(at|st, t)

is transformed to sum when logarithm is introduced and all
the terms that do not depend on the parameter θ disappear
during differentiation, such that,

∇θ logPθ(τπθ
) =

T∑
t=1

∇θ log πθ(at|st, t) .

As
∫
τ
∇θPθ(τπθ

)dτ = 0, a baseline b (a constant) can be in-
troduced into the expression in (7) to minimize the variance of
the gradient estimate ∇θρ

πθ as in the REINFORCE algorithm
[20]. Therefore the gradient estimate can be expressed as

∇θρ
πθ = Eτ

[
T∑
t=1

∇θ log πθ(at|st, t)(Jπθ
(τπθ

)− b)

]
, (8)

The optimal baseline b depends on individual components h :
θh ∈ θ, and it satisfies the condition ∂

∂bV ar[∇θh
ρπθ] = 0,

whose solution yields

bh =

Eτ
[(∑T

t=1∇θh log πθ(at|st, t)
)2

Jπθ
(τπθ

)

]
Eτ
[(∑T

t=1∇θh log πθ(at|st, t)
)2
] . (9)

In time slot t, for each simple action a′i,t = (li|Li): li <
Li, l, L ∈ {0, 1, . . . ,Kmax}, i ∈ {1, . . . , B′}, B′ ≤ B, we
define a randomized policy πθ(a′i,t|st, t); θ ∈ θ, as a sigmoid
function with negative slope parameter as follows:

πθ(a
′
i,t|st, t) =

1

1 + e−η(c−Φ>t θ(l,L))
, (10)

where η < 0 is a negative slope factor. This implies that for
all l ∈ I and all L ∈ O,

πθ(at|st, t) ≡
B′∏
i=1

πθ(a
′
i,t|st, t) .

Note that the policy is defined only for Et > 0, i.e., the user
does not access the OSN. If Et = 0, relevant contents outside
the cache are downloaded, and all the relevant contents are
moved to the application layer and removed from the cache
at the end of the time slot.

V. PERFORMANCE LOWER BOUNDS

In order to assess the performance of the proposed subop-
timal cache management policy with LFA, we benchmark its
performance against two lower bounds.

A. Unlimited Cache Capacity

The first lower bound, which we refer to as LB-UC, is
obtained by assuming that the cache capacity is sufficient to
store all the relevant contents at any time (e.g., B = ∞). In
this case there is no need to remove any content from the
cache that is neither consumed nor expired; and therefore,
the decision about each content that is not inside the cache
can be taken individually, and independent of the contents of

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

the cache. Therefore, following from Theorem 1, if E > 0,
there exists a threshold TL for which a content with remaining
lifetime L is downloaded if C ≤ TL, and the threshold has the
structure: 0 ≤ T1 ≤ · · · ≤ TKmax

≤ Cmax. Moreover, if the
user accesses the OSN with i.i.d probability pa in each time
slot, i.e., E has a geometric distribution, the thresholds can
be obtained numerically via dynamic programming [21], such
that, if VL is the value function for downloading a content with
remaining lifetime L, the value function, given the threshold
policy TL, can be expressed as

VL,TL = paE[C]

+ (1− pa)

(
FC(TL)E

[
C
∣∣C ≤ TL]+ F̄C(TL)VL−1

)
,

(11)

where FC(·) is the cdf of C and F̄C(·) is its complement. The
optimal threshold TL satisfies the condition that the derivative
∇TLVL,TL = 0, whose solution yields

TL = VL−1. (12)

For all possible remaining lifetimes 1 ≤ L ≤ Kmax, the
thresholds can be obtained using (11) and (12), and noting
that V0 = 0, i.e., an expired content cannot be downloaded.

B. Non-Causal Knowledge of User Behavior

The second lower bound, which we refer to as LB-NCK,
assumes that the CM has non-causal knowledge of the ex-
act time slots the user accesses the OSN, in which case,
contents that will expire before the user access times are
known. Therefore, in every time slot t, and for every time-
to-user access, only contents (including the Mt new contents
generated in time slot t) that will remain relevant by the user
access time are considered for download. All such contents
are of equal importance, therefore, as many contents as the
cache capacity can allow will be downloaded in any time slot
that the CM decides to download contents. The decision to
download contents also follows from Theorem 1, such that,
for any time-to-user access t′, there exists a threshold Tt′ for
which contents are downloaded if Ct ≤ Tt′ . The threshold
has the structure: 0 ≤ TDmax

≤ · · · ≤ T1 ≤ Cmax (recall that
Dmax is the bound on the user access interval). Obtaining the
threshold values follows from (11) (with pa = 0) and (12),
and noting that V0 = E[C].

VI. PERFORMANCE EVALUATION

In this section we apply LRM, i.e., the REINFORCE
algorithm, to the LISO policy proposed in [19], and both FDM
and LRM together with LFA, considering particular models
for the statistical variables in the system model. We evaluate
the performances of the algorithms and policies, and compare
them with the two lower bounds described in Section V.

A. Simulation Setup

We assume an interference-free channel, and obtain the
instantaneous cost Ct using Shannon’s capacity formula,

R = W log2(1 + SNR),

where R is the transmission rate, W is the channel bandwidth,
and SNR = Psignal/Pnoise is the signal-to-noise ratio. We
assume a spectral efficiency of R/W = 2 bps/Hz. Using the
Long Term Evolution (LTE) network model [25]; the noise
power is given as

Pnoise = 10 log10(kT) + 10 log10W +NF,

where kT = −174 dBm/Hz is the noise power spectral density
and NF = 5 dB is a typical noise figure. To compute the noise
power, we assume a fixed (average) bandwidth of 10 MHz in
every time slot. The signal power is given by

Psignal = Ct +GTX +GRX − PL(d),

where Ct is the instantaneous cost, GTX and GRX are
the transmit and receive antenna gains. We use the values
GTX = 17 dBi and GRX = 0 dBi in our simulations. PL(d)
is the path loss, which is a function of the distance d between
the user and the serving BS. To compute the path loss, we
assume that small scale fading effect is averaged out over
the system configuration of interest, and we adopt the 3GPP
channel model [26] with the path loss given by

PL(d) = 36.7 log10(d) + 22.7 + 26 log 10(fc) + Xσ,

where fc = 2.5 GHz is the center frequency, and Xσ is
the shadow fading parameter drawn from a zero-mean log-
normal distribution with standard deviation σ = 4 dB. In every
time slot, the distance d, in metres, is drawn from a uniform
distribution; d ∼ U(50, 250), modeling a system in which a
mobile user ends up in a different cell at each time slot.

We assume that the random variables M and K, which, in
each time slot, generate Mt new contents and Kt,i lifetime
for each content i = 1, . . . ,Mt, are drawn from a uniform
distribution over the sets {1, . . . , 8} and {5, 10, 15}, respec-
tively. We obtain the user behaviour sequence {Ut} with i.i.d.
probability of access pa in every time slot. We measure the
cache capacity B in number of contents, and we assume the
initial states O0 = I0 = ∅, and E0 = 0.

For the FDM algorithm, we select the perturbation parame-
ters from (∆θmin,∆θmax) = (−0.08, 0.08), and for the LRM
algorithm, we select the slope factor η = −10. Also, for the
FDM algorithm, policy update is done after 100 trajectories,
while for the LRM algorithm, policy update is done after 20
trajectories. The duration T of each trajectory is 300 time slots.
To test the performances of the algorithms, we use a test data
consisting of 100 trajectories, with each trajectory having a
duration T = 5000 time slots. For each algorithm and system
parameters, we carefully select the step size λ.

B. Numerical Results

In Figure 2, we plot the average energy cost as a function
of the cache capacity. Noting from the result presented in
[19] that the average cost converges to the LB-UC bound
when the cache capacity B > 30, we focus on lower cache
capacities in this figure. In general, the performance of both
policies, and the respective algorithms, increase with the cache
capacity B, approaching the LB-UC bound. Apart from the

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

Cache Capacity, B
10 15 20 25 30

A
ve
ra
ge

E
n
er
gy

C
os
t
p
er

U
se
r
(m

W
)

5

6

7

8

9

10

11

12

13

14

LISO with FDM
LISO with LRM
LFA with FDM
LFA with LRM
LB-NCK
LB-UC

Fig. 2. Average energy cost vs. cache capacity for Kmax = 15,Mmax =
8, Dmax = 15, pa = 0.25.

LISO policy implemented with FDM, the threshold policy
with LFA implemented with both the FDM and the LRM
algorithms, and the LISO policy implemented with the LRM
algorithm, converge to the LB-NCK bound at B = 6, making
it clear that the LFA policy and the LRM algorithm perform
optimally at low cache capacities.

Considering the FDM algorithm only, the threshold policy
with LFA has a performance improvement of up to 4.4% over
the LISO policy. Meanwhile, the LISO policy implemented
with the LRM algorithm has up to 4.2% improvement in
performance over the FDM algorithm. This may be influenced
by the stochasticity of the system. The best performance is
obtained when LFA is implemented with the LRM algorithm,
with up to 5.6% improvement in performance over the LISO
policy implemented with the FDM algorithm. This gain can
be attributed to the fact that the proposed threshold policy
with LFA takes into account the remaining lifetimes of the
contents that are already in the cache when taking caching
decisions. However, it only shows a small improvement over
LFA implemented with the FDM algorithm. We can argue that
the parameterisation of LFA allows better performance for the
FDM algorithm as we see a more significant improvement
with LFA compared to the LRM algorithm.

In order to compare the convergence rates of the FDM
and LRM algorithms, we plot the average energy cost as a
function of the number of trajectories in Figure 3. The result
shows that the LRM algorithm has a much faster convergence
rate, and saturates to its optimal value for approximately 1000
trajectories, whereas the performance of the FDM algorithm
improves linearly, at a much slower rate with the number of
trajectories.

In Figure 4, we plot the average energy cost as a function
of the maximum lifetime of contents. Comparing with the
result in [19] (Figure 2.), we evaluate the impact of both the
LRM algorithm and LFA on the performance of the system for
different values of Kmax. Energy cost increases when contents

Number of Trajectories
100 200 300 400 500 600 700 800 900 1000 1100 1200

A
ve
ra
ge

E
n
er
gy

C
os
t
(m

W
)

7.2

7.3

7.4

7.5

7.6

7.7

7.8

FDM
LRM

Fig. 3. The evolution of the FDM and the LRM algorithms with respect to
the number of trajectories.

Maximum Lifetime of Contents, Kmax

5 7.5 10 12.5 15 17.5 20

A
ve
ra
ge

E
n
er
gy

C
os
t
P
er

U
se
r
(m

W
)

5.5

6

6.5

7

7.5

8

8.5

9

LISO with FDM, B = 20
LISO with LRM, B = 20
LFA with LRM, B = 20
LISO with FDM, B = 30
LISO with LRM, B = 30
LFA with LRM, B = 30

Fig. 4. Average energy cost vs. maximum lifetime of contents for cache
capacities B = 20 and B = 30 when Mmax = 8, Dmax = 15, pa = 0.25.

are generated with longer lifetimes because more contents will
be consumed by the user at the time of access. However,
we observe that the LRM PS method and LFA representation
both improve the system performance with increasing lifetime
compared to LISO implemented with FDM algorithm. More
so, LFA, which considers the remaining lifetime of all the
contents inside the cache, exploits such knowledge to swap
contents at more favourable channel states than LISO when the
lifetime of contents increases. This observation can be noticed
in the plot when Kmax = 20 and B = 20. We also observe
that there is a better improvement in the performance of LFA
with LRM algorithm compared to LISO with LRM algorithm
when the cache capacity is increased from B = 20 to B = 30.

VII. CONCLUSIONS

We have studied proactive caching of contents into a finite
capacity cache memory of a mobile device, with the aim
of reducing the long term average energy consumption in

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

content delivery over wireless networks. Content generation is
modeled considering an OSN framework, such that a random
number of contents are generated by the social connections
of the user at each time slot, each with a random lifetime,
which represents the time period the content remains relevant
for the user. The user accesses the OSN through a mobile app
at random time intervals, and requests all the relevant contents
at the time of access. Since contents are downloaded through a
wireless connection, each download incurs an energy cost that
depends on the channel state at the time of download. We have
proposed proactive caching in order to reduce the long-term
average energy consumption of the system by pushing contents
into the cache memory in advance, over more favorable
channel states.

The optimal policy for this problem is a threshold-based pol-
icy which swaps relevant contents that are not inside the cache
with those in the cache according to a threshold on the channel
condition which depends on the system state. However, charac-
terising the optimal policy requires identifying a prohibitively
large set of threshold values. Instead, we propose suboptimal
parameterised caching policies. In particular, we considered a
stochastic policy, which allowed us to implement the LISO
policy in [19] using policy search with the REINFORCE
algorithm. We then proposed a new parameterisation of the
problem using LFA, where the threshold values are obtained
as linear functions of a frequency vector, which represents the
distribution of the remaining lifetimes of the contents inside
the cache. Numerical results show an improved performance
for the proposed threshold policy with LFA compared with
the simplified LISO policy in [19]. While the improvement
is limited in the particular scenario considered in this paper,
in which the content generation and lifetime processes are
i.i.d. over time, we believe that the gains from LFA will be
more significant when the involved stochastic processes have
memory, which will be explored in a future work.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their
insightful comments. This research was supported in part by
The Petroleum Technology Development Fund (PTDF), and
the European Research Council (ERC) through Starting Grant
BEACON (agreement #677854).

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, May 2014.

[2] F. Malandrino et al., “Proactive seeding for information cascades in
cellular networks,” in 2012 IEEE Conference on Computer Communi-
cations (INFOCOM), March 2012, p. 17191727.

[3] Z. Chang et al., “Context-aware data caching for 5g heterogeneous small
cells networks,” in IEEE Int’l Conf. on Comms, June 2016.

[4] V. A. Siris, X. Vasilakos, and G. C. Polyzos, “Efficient proactive caching
for supporting seamless mobility,” in Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, June 2014, pp. 1–6.

[5] N. Golrezaei et al., “Femtocaching: Wireless video content delivery
through distributed caching helpers,” in IEEE INFOCOM, Mar. 2012,
pp. 1107–1115.

[6] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Comms. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[7] E. Batu, M. Bennis, and M. Debbah, “A transfer learning approach for
cache-enabled wireless networks,” in Modeling and Optimization in Mo-
bile, Ad Hoc, and Wireless Networks (WiOpt), 2015 13th International
Symposium on, May 2015, pp. 161–166.

[8] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in IEEE Int’l Conf. Comms., Jun. 2014, pp.
1897–1903.

[9] A. Sengupta et al., “Learning distributed caching strategies in small
cell networks,” in 2014 11th International Symposium on Wireless
Communications Systems (ISWCS). IEEE, 2014, pp. 917–921.

[10] S. Müller et al., “Smart caching in wireless small cell networks via
contextual multi-armed bandits,” in IEEE Int’l Conference on Commu-
nications (ICC), June 2016.

[11] S. Zhou et al., “GreenDelivery: Proactive content caching and push with
energy-harvesting-based small cells,” Communications Magazine, IEEE,
vol. 53, no. 4, pp. 142–149, April 2015.

[12] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE Journal on
Selected Areas in Comms, vol. 34, no. 1, pp. 176–189, Jan 2016.

[13] L. Zhang et al., “Efficient scheduling and power allocation for d2d-
assisted wireless caching networks,” IEEE Transactions on Communi-
cations, vol. 64, no. 6, pp. 2438–2452, June 2016.

[14] S. W. Jeon et al., “Caching in wireless multihop device-to-device
networks,” in IEEE Int’l Conf. on Comms., Jun. 2015, pp. 6732–6737.

[15] M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Coded caching for a
large number of users,” in Proc. Information Theory Workshop (ITW),
Cambridge, UK, Sep. 2016, pp. 171–175.

[16] K. Poularakis et al., “Exploiting caching and multicast for 5G wireless
networks,” IEEE Trans. on Wireless Comms., vol. 15, no. 4, pp. 2995–
3007, Apr. 2016.

[17] A. C. Gungor and D. Gündüz, “Proactive wireless caching at mobile user
devices for energy efficiency,” in Proc. IEEE Int’l Symp. on Wireless
Comm. Systems (ISWCS), Brussels, Belgium, Sep. 2015, pp. 171–175.

[18] M. Gregori et al., “Wireless content caching for small cell and D2D
networks,” IEEE Jrnl. on Selected Areas in Comms., vol. 34, no. 5, pp.
1222–1234, May 2016.

[19] S. O. Somuyiwa, A. György, and D. Gündüz, “Energy-efficient wireless
content delivery with proactive caching,” in Proc. Workshop on Content
Caching and Del. Wireless Nets., 2017.

[20] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” in Machine Learning, 1992, pp.
229–256.

[21] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2007.

[22] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Found. Trends Robot, vol. 2, pp. 1–142, Aug.
2013. [Online]. Available: http://dx.doi.org/10.1561/2300000021

[23] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2006, pp. 2219–2225.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[25] S. Stefania, T. Issam, and B. Matthew, LTE, The UMTS Long Term
Evolution: From Theory to Practice. Wiley Publishing, 2011.

[26] T36.814 V9.0.0, “Further advancements for E-UTRA physical layer
aspects (release 9),” 3GPP, Mar. 2010.

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

