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Abstract—To exploit users’ heterogeneous data demands, sev-
eral mobile network operators worldwide have launched the
mobile data trading markets, where users can trade mobile data
quota with each other. In this work, we aim to understand
the users’ optimal trading decisions and the operator’s revenue
maximizing strategy. We model the interactions between the
mobile operator and the users as a two-stage Stackelberg game.
In Stage I, the operator chooses the operation fee imposed on
sellers to maximize its revenue. In Stage II, each user decides
whether to be a seller or a buyer and optimizes the corresponding
trading price and quantity. We derive the closed-form expression
of the unique Nash equilibrium (NE) in Stage II in closed-form,
and prove that the users’ decisions can converge to the NE
through distributed best response updates. We show that at the
NE, different types of sellers and buyers should propose the same
price such that the total demand matches the total supply. We
further show that the Stage I operation fee optimization problem
is convex, and derive the optimal operation fee in closed-form.
Our analysis and numerical results show that the users who have
less uncertainty of their data usages can benefit more from data
trading. We also show that an operation fee that is too high hurts
both the users’ payoffs and the operator’s revenue.

I. INTRODUCTION

A. Background and Motivation

Due to the significant increase of video traffic on smart-
phones and tablets, global mobile data traffic has been growing
tremendously in the past few years [1]. To alleviate the
tension between the mobile data demand and mobile network
capacity, mobile network operators have been experimenting
with several innovative pricing schemes, such as time and
location dependent pricing, shared data plans, and sponsored
data pricing [2]–[5]. However, these pricing schemes do not
fully take advantage of the heterogeneous demands across all
mobile users, as in all these schemes a user’s unused portion of
his month data quota will be wasted even if another user is in
need of additional data. Seizing this opportunity, China Mobile
Hong Kong (CMHK) in 2014 launched the 2nd exChange
Market (2CM) [6], which is a mobile data trading platform that
allows its users to trade their 4G mobile data quota with each
other. In this platform, a seller can list his desirable selling
price on the platform, together with the amount of data to be
sold (up to his monthly data quota). If there is a buyer who
is willing to buy the data at the listed price, the platform will
clear the transaction and transfer the corresponding amount of
the data to the buyer’s monthly quota limit.

However, the current 2CM market mechanism is not effi-
cient, as only a seller can list his trading price and quantity.
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This means that a buyer needs to frequently check the platform
to see whether he is willing to buy according to the current
(lowest) selling price. This motivates us to consider a first-
price multi-unit double auction mechanism based on the one
adopted in stock markets [9], [10]. With such a mechanism,
in every time slot, a user can choose his role (seller or
buyer) and submit his (selling or buying) price and quantity
to the platform.1 The platform clears the market at the users’
proposed prices, when the buying price of some buyers is no
smaller than the selling price of some sellers. The sellers with
very high selling prices and the buyers with very low buying
prices may not get all their proposed quantities transacted.

B. Contributions

In the mobile data trading market, the mobile network
operator can obtain revenue in two ways. First, the operator
charges the sellers an operation fee for each unit of sold data in
the form of a “transaction tax” [6]. Second, the operator profits
from the difference between the proposed prices of matched
buyers and sellers. For example, if the data quota of a seller
proposing $2/GB is transferred to a buyer proposing $3/GB,
then the gap of $1 goes to the operator for each transacted
GB. We would like to understand two important questions in
such a market: (i) How should the operator set the operation

fee to maximize its revenue? (ii) Given a fixed operation fee,

what are the equilibrium trading behaviors among the users?
To answer the above questions in a coherent framework,

we model the interactions between the mobile operator and the
users as a two-stage Stackelberg game. In Stage I, the operator
optimizes its operation fee imposed on the sellers to maximize
its revenue. In Stage II, the users decide their roles as sellers
or buyers and the corresponding trading prices and quantities
given the operation fee. Solving the Stage II problem in such
a two-sided market is very challenging, because it is difficult
to guarantee the existence of the Nash equilibrium (NE) due
to the discontinuity of users’ utility functions (to be discussed
in details in Section II) [7], [8]. Nevertheless, we are able to
characterize the unique NE for our problem in closed-form,
and show that different types of buyers and sellers propose the
same price and the total supply matches the total demand in
the market at the NE.

In summary, our key results and contributions are as follows.

• Two-sided data trading market formulation: We propose
a two-sided data trading market model, in which users
decide their trading prices and quantities, without know-
ing in advance how much data they can sell or buy at the
proposed prices. We also consider the optimization of the
operation fee and analyzes its impact on the market.

1If a user is not willing to trade in a time slot, he can choose to be either a
buyer with a very high buying price or a seller with a very low selling price.
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• Closed-form solution of the two-stage problem: Despite
the discontinuity in the user’s utility functions, we char-
acterize the unique NE in closed-from for the Stage II
game. In addition, we show that the users’ decisions will
converge to the unique NE through distributed best re-
sponse dynamics. We further derive the optimal operation
fee in closed-form for the Stage I problem.

• Engineering insights: Our analysis indicates that at the
market equilibrium in Stage II, all the users who want to
trade should propose the same price and the total demand
matches the total supply. Our numerical results show that
the users who have less uncertainty about their data usage
can benefit more from the trading. We also show that an
operation fee that is too large hurts both the users’ payoffs
and the operator’s revenue.

C. Related Literature on Mobile Data Trading

The research on mobile data trading market only emerged
recently [11]–[13]. In [11], Zheng et al. studied the users’
optimal bids in the market and proposed an algorithm for
mobile operator to match the buyers and sellers. In [12], Yu et

al. studied a single user’s optimal mobile data trading prob-
lem under the future demand uncertainty from a behavioral
economics perspective. However, the authors in [11] and [12]
assumed that the sellers and buyers in the mobile data trading
market can always bid prices that ensure that all their demand
are satisfied and all their supply are cleared. In [13], Andrews
presented a dynamic programming problem to characterize
the trading behavior of mobile users without considering the
interactions between the operator and the users. To the best
of our knowledge, this work is the first paper that studies the
mobile data trading market involving the active decisions of
both the operator and the users, where users make trading
decisions without knowing in advance how much data they
can sell or buy at the proposed prices.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we analyze
the users’ best responses and compute the equilibrium. In
Section IV, we analyze the mobile operator’s operation fee
optimization problem. We present the numerical results in
Section V, and conclude in Section VI.

II. SYSTEM MODEL

In this paper, we consider the mobile operator’s operation
fee optimization and the corresponding data trading decisions
of all the users in the mobile data trading platform. We first
discuss a user’s profile in Section II-A. Then we introduce
the mobile data trading market in Section II-B and the user’s
payoff in Section II-C. Finally, we formulate the two-stage
Stackelberg game model in Section II-D.

A. Users’ Profiles and Decisions

1) Quota and Future Demand: Let I = {1, ..., I} be the
set of users. We assume that the number of users in the data
trading market is very large (e.g., I → ∞), hence the impact of
a single user’s action on the whole population can be ignored

[14]. We assume that all users have the same monthly quota

Q, but different different users have values and probabilities of
future data demands.2 For the ease of exposition, we assume
that there are two possible realizations of a user i’s future
data demand (or simply called demand): di ∈ {di,h, di,l}, with
di,h > Q > di,l > 0.3 The probability for user i to observe
a high demand di,h is pi, and the probability of observing
a low demand di,l is 1 − pi. For the analytical convenience,
we assume pi, di,l, and di,h are uniformly and independently
distributed in [0, 1], [dl, dl], and [dh, dh], respectively.4 We
assume that the distribution of pi, di,l, and di,h in the entire
market remains unchanged everyday, although a single user’s
pi, di,l, and di,h changes over time.5

2) Satisfaction Loss: Each user i will incur a satisfaction

loss when his demand di ∈ {di,h, di,l} exceeds his monthly
data quota Q. We consider a linear satisfaction loss function

L(Q− di) = −κ[di −Q]+, (1)

where [z]+ = max{0, z}. Here [di − Q]+ is the amount
of insufficient data. When di − Q is positive, it means that
the quota is exceeded. The linear coefficient κ represents
the usage-based pricing imposed by the mobile operator.6 By
selling or buying data in the market, a user can change his
effective remaining data quota (for the current month only),
and hence will change his expected satisfaction loss. Next, we
will show the users’ trading decisions and the corresponding
payoff functions.

3) Trading Decisions: The decision of user i is defined as
xi = (ai,πi, qi), which consists of three components. First,
user i needs to decide his role ai ∈ {s, b}, i.e., whether to
be a seller (ai = s) or a buyer (ai = b), or not participate in
the market.7 Correspondingly, he has to determine his trading

price πi and his trading quantity qi. Specifically, if user i
chooses to be a seller, the price πi and the quantity qi refer
to his selling price and selling quantity, respectively; if user i
chooses to be a buyer, the price πi and the quantity qi refer

2We make this assumption for analytical convenience. The consideration of
heterogeneous monthly quota adds another dimension in the user type (which
we will introduce later in this section). It will lead to a more complicated
user type distribution, without changing the main conclusions in this paper.

3The analysis for the case where both di,h and di,l are higher (or lower)
than the monthly quota Q is relatively trivial, and hence is omitted here due
to space limitations.

4The uniform distribution has been widely used to model the users’
demands [15], [16]. The consideration of other distributions will not change
the main conclusions in this paper.

5Each user’s parameters pi, di,l , and di,h will change based on the number
of remaining days of his billing cycle. According to [6], every user has a
different billing date (e.g., the billing date of a monthly data plan can be on
the 5th day or the last day of every month). If there are many users in the
market and the users’ billing dates are spread out in the entire calendar month,
then the distribution of the number of remaining days in the current billing
cycle will not change.

6We have assumed a two-part pricing tariff, where the user pays a fixed
fee for the data consumption up to a monthly quota, and a linear usage-based
cost for any extra data consumption. Such a pricing model is widely used by
major mobile operators. For example, for a 4G CMHK user, κ = $60 with a
monthly data quota of 1 GB.

7Note that if a user is not willing to trade in a time slot, he can choose to
be either a buyer with a very high price or a seller with a very low price.
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to his buying price and buying quantity, respectively. In the
CMHK market, the proposed prices must be smaller than the
usage-based price κ, otherwise no transaction will happen in
the market. Hence, we have πi ∈ Π = [0,κ] and qi ∈ [0,∞).
We define the set of feasible strategies of user i as Xi =
{(ai,πi, qi) : ai ∈ {s, b},πi ∈ [0,κ], qi ∈ [0,∞)}.

B. Mobile Data Trading

1) Sellers’ and Buyers’ Markets: We consider a two-sided
mobile data trading platform based on the first-price multi-unit
double auction mechanism, which consists of four main steps:

• Step 1 (Bidding): At the beginning of every time slot
(e.g., one day), all users make their trading decisions
and submit their bids, which include their roles, trad-
ing prices, and trading quantities, simultaneously to the
platform.

• Step 2 (Prioritization): The platform sorts the bids of the
users in the sellers’ and buyers’ markets, respectively,
according to their proposed prices. For the example in
Fig. 1, in the first row of the table, the total demand in
the buyers’ market at the highest buying price of $15 is
5 GB, which will be satisfied with the highest priority.
The total supply in the sellers’ market with the lowest
selling price of $13 is 10 GB, which will be sold with
the highest priority.

• Step 3 (Allocation): The platform clears the markets by
allocating the bids through an auction mechanism with
the priority orders. Notice that the selling bids are only
allocated to the buying bids whose buying price is no
smaller than the corresponding selling price. For example,
the platform first allocates the first row’s bids (5 GB data
quota supply with the selling price of $13 to 5 GB data
quota demand with the buying price of $15), and then
allocates the remaining 5 GB supply with the selling price
of $13 on the first row to 5 GB demand with the buying
price of $14 on the second row. The remaining 10 GB
demand with the buying price of $14, however, is not
satisfied, because the remaining supply on the second row
is with the selling price of $15.8

• Step 4 (Payment): Finally, the platform decides the pay-
ment of users. If there is a gap between the selling and
buying prices of the allocated data, then the price gap
leads to the revenue of the operator. For example, the
operator gains $2 for allocating each GB with the selling
price of $13 to that with the buying price of $15. The
platform will also charge a seller θ dollars of operation
fee (tax) for each GB sold.

After each trading, all users can access the aggregate informa-
tion on other users’ decisions of the last time slot, by checking
the updated market information on the platform.9

8If the 15 GB of demand with the buying price of $14 is from multiple
buyers, we will discuss how to decide the allocation among multiple buyers
later in Section II-B2.

9We assume that a user knows the distribution of user types in the market,
which can be learnt from the historical market information.

User ’s Profile:
Quota: GB/Month

Demand: , , , , ,

Buyers’ Market Sellers’ Market
Price (per GB) Available (GB) Price (per GB) Available (GB)

$15 5 $13 10

$14 15 $15 10

$13 20 $16 20

… … … …

User ’s Decision:
Role: 
Price: 
Quantity: 

User  

… 

User  

… 

Mobile Operator:
Operation fee on sellers:  

Stage I:

Stage II:

Fig. 1. Mobile data trading market.

2) Realized Transaction: Note that a user may not be able
to get all his proposed buying or selling quantity transacted.
For example, if a user chooses to be a buyer (ai = b) with
a proposed buying price πi lower than other buyers, then he
may get nothing transacted (e.g., the buyer who propose $13
in Fig. 1). In other words, user i’s realized transaction quantity
depends on other users’ decisions x−i = (xj , ∀j ∈ I, j ̸= i).
This leads to the game theoretical interactions among users in
Stage II.

To help explain the realization rules, we first define several
set notations for user i as follows. First, let us define

LSi=

{

{(aj ,πj , qj):aj=s and πj<πi, ∀j ̸= i, j∈I}, if ai=s,

{(aj ,πj , qj):aj=s and πj≤πi, ∀j ̸= i, j∈I}, if ai=b.
(2)

If user i is a seller, then set LSi refers to the set of sellers,
who have higher priorities than user i. If user i is a buyer,
then set LSi refers to the set of sellers who are feasible to be
matched with user i. Next, we define the set

Ei={(aj,πj , qj):aj=ai and πj=πi, ∀j ̸= i, j∈I}. (3)

Set Ei refers to the set of users who have the same role and
the same priority as user i. Finally, we define

HBi=

{

{(aj ,πj , qj):aj=b and πj≥πi, ∀j ̸= i, j∈I}, if ai=s,

{(aj ,πj , qj):aj=b and πj>πi, ∀j ̸= i, j∈I}, if ai=b.
(4)

If user i is a buyer, then set HBi refers to the set of buyers
who have higher priorities than user i. If user i is a seller,
then set LSi refers to the set of buyers who are feasible to be
matched with user i.

If the accumulated buying quantity proposed by the buyers
within the set HBi is smaller than the accumulated selling
quantity proposed by the sellers within the set LSi, then a
seller i’s supply cannot be cleared. On the other hand, if
∑

xj∈HBi
qj ≥

∑

xj∈LSi
qj , then the seller i will equally

share the demands with the sellers of the same priority (i.e.,
those in set Ei). The same rule applies to the buyer’s case.
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Specifically, user i’s transacted trading quantity under strat-
egy profile (xi,x−i) is10

ri(xi,x−i)=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[
∑

xj∈HBi
qj−

∑

xj∈LSi
qj

|Ei|

]+

, if ai=s,

[
∑

xj∈LSi
qj−

∑

xj∈HBi
qj

|Ei|

]+

, if ai=b.

(5)

Based on the realization rule, among the sellers or buyers
proposing the same price, the users who propose a smaller
quantity will get all their quantity transacted before the users
who propose a higher quantity. As an example in Fig. 1,
consider three buyers, 1, 2, and 3, proposing the same buying
price of $14, where q1 = 3 GB, q2 = 4 GB, and q2 = 8 GB.
Hence their total demand is 15 GB as shown on the second
row, but there are only 5 GB left in seller’s market (with the
selling price of $13) that can be allocated to them. According
to the realization rule in (5), they will equally divide the 5
GB, i.e., r1(x) = r2(x) = r3(x) = 5/3 GB. Consider a
different scenario where the three buyers’ demands are q1 = 1
GB, q2 = 6 GB, and q3 = 8 GB, then the allocations are
r1(x) = 1 GB and r2(x) = r3(x) = 2 GB. This is because
with the result under the equal division (5/3) exceeds user
1’s demand, hence the exceeded part is equally shared by the
remaining two buyers.

C. User’s Payoff Function

We define user i’s payoff in (6) on the top of page 5, which
is the difference of his expected satisfaction loss and the net
payment of the trade. For the seller case (ai = s), the first
term (πi − θ)ri((s,πi, qi),x−i) is the revenue from selling
data. The second and third terms correspond to the seller’s
expected satisfaction loss after selling qi data quota under the
high and the low demand realization, respectively. Notice that
each seller has to pay the operation fee of θ to the mobile
operator for each unit of transacted data. The buyer’s payoff
function on the last line of (6) is similar, except that the
operator does not charge the buyer an operation fee. Notice
that the payoff function in (6) is discontinuous. For example,
if a seller’s supply is only partially cleared, he can clear all his
supply by decreasing his selling price by a unit ϵ, and hence
makes a discontinuous increase in his payoff.

D. Two-Stage Stackelberg Game Formulation

We model the interactions between the mobile operator and
the users as a two-stage Stackelberg game as follows.

• Stage I: The operator optimizes its operation fee to
maximize his revenue.

• Stage II: The users decide their roles as sellers or buyers
and the corresponding trading prices and quantities in the
non-cooperative mobile data trading game.

10If (
∑

xj∈HBi
qj−

∑
xj∈LSi

qj)/|Ei| > qi for some seller i (ai = s),

then his ri(xi,x−i) = qi, and the “burden left” is averaged over the other
sellers with the same price. We will continue with this procedure until each
seller j has an rj(xj ,x−j) ≤ qj . Details of the procedure can be found in
[8], [17], and a similar procedure also applies to the buyers.

A general technique for solving a Stackelberg game is to use
the backward induction. Thus in Section III, we first analyze
the existence and uniqueness of the NE in Stage II. Then, in
Section IV, we compute the optimal operation fee for revenue
maximization in Stage I.

III. STAGE II: MOBILE DATA TRADING GAME

In this section, we first formulate the mobile data trading
game in Section III-A and define the market indicators in
Section III-B. Next we analyse the best response in Section
III-C. Finally, we characterize the game equilibrium in Section
III-D and study how to reach the equilibrium in Section III-E.

A. Non-cooperative Game Formulation

We model the interactions among users as the following
non-cooperative game11:

Definition 1. A mobile data trading game is a tuple Ω =
(I,X ,U) defined by

• Players: The set I of users, where user i ∈ I is associated

with a type (pi, di,h, di,l).
• Strategies: Each player chooses an action (pure strategy)

xi = (ai,πi, qi) ∈ Xi, which is his bid to the platform.

The strategy profile of all the players is x = (xi, ∀i ∈ I)
and the set of feasible strategy profile of all the players

is X = X1 × . . .× XI .

• Payoffs: The vector U = (Ui, ∀i ∈ I) contains all users’

payoffs as defined in (6).

B. Transacted Price

Given a strategy profile x = (xi, ∀i ∈ I), we first define
the transaction selling price π̂s and the transaction buying

price π̂b in Definitions 2 and 3, respectively. Here we use
ϵ > 0 to denote the smallest price unit.12 When a user makes
a decision, he does not need to know the choice of each of the
other users, but only needs to know the accumulated bids (e.g.,
the total demands and supplies in terms of GBs at each price).
This allows us to analyze the users’ best responses based on
π̂s and π̂b instead of x.

Definition 2. The transaction selling price13 π̂s corresponds to

the minimum price such that a seller, whose proposed selling
price is one unit larger than the transaction selling price,

cannot get any of his selling quantity transacted:

π̂s=min{πi :ri((s,πi + ϵ, qi),x−i) = 0, ∀i}. (7)

Definition 3. The transaction buying price π̂b corresponds to

the maximum price such that a buyer, whose proposed buying

11As we have assumed that distribution of user types do not change over
time, we model the users’ interactions as a one-shot game. We will discuss
the dynamics of the users’ decisions in Section III-E.

12We assume that ϵ is the smallest price unit used in the mobile data trading
platform. For example, ϵ = 1 HKD in 2CM.

13Based on the definition, the sellers who propose this price can get some
or all of their selling quantities transacted. The sellers who propose selling
prices lower than this price will get all their selling quantities transacted,
because they have higher priorities. Notice that lower priority bids can only
be cleared when all the higher priority bids are cleared.
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Ui(ri(xi,x−i)) = Ui (ri ((ai,πi, qi),x−i))

=

{

(πi−θ)ri((s,πi, qi),x−i)+piL(Q−ri((s,πi, qi),x−i)−di,h)+(1−pi)L(Q−ri((s,πi, qi),x−i)−di,l), if ai = s,

− πiri((b,πi, qi),x−i) +piL(Q+ri((b,πi, qi),x−i))−di,h)+(1−pi)L(Q+ri((b,πi, qi),x−i))−di,l), if ai = b.

(6)

Seller

Buyer

Price ($ per GB)

Quantity (GB)

=  

13 

14 

15 

16 

5 10 20 

Fig. 2. An example of π̂s and π̂b.

price is one unit smaller than the transaction buying price π̂b,

cannot get any of his buying quantity transacted:

π̂b=min{πi :ri((b,πi − ϵ, qi),x−i) = 0, ∀i}. (8)

An example of the definitions is shown in Fig. 2, based on
the market supply and demand shown in Fig. 1. The platform
sorts user’s bids according to their prices, then clears the bids
with the highest priorities first. In this example, the transaction
selling price π̂s = 14 and the transaction buying price π̂b =
14, because the users who propose a price of $14 can get
some quantity transacted, and the sellers who propose one
unit higher ($15) and the buyers who propose one unit lower
($13) cannot get any quantity transacted.

C. Best Response Analysis

Next, we investigate a user’s best response, which is the
strategy that maximizes his payoff given the fixed strategies
of other users.

Definition 4. User i’s best response is

x
BR
i (x−i) ! (aBR

i (x−i),π
BR
i (x−i), q

BR
i (x−i))

= arg max
xi∈Xi

Ui(ri((ai,πi, qi),x−i)).
(9)

In Proposition 1, we characterize user i’s best response
based on the market information indicators π̂s and π̂b defined
in Section III-B.

We find the user’s best response of role aBR
i (x−i), price

πBR
i (x−i), and quantity qBR

i (x−i) given other users’ strate-
gies x−i in the following proposition.

Proposition 1. The best response xBR
i (x−i) of user i with

type (pi, di,h, di,l) is given in (10) on the top of page 6.

The proof of Proposition 1 is given in our online technical
report [18].

First, Proposition 1 states that every user who wants to trade
will either choose to sell the quota at the quantity Q− di,l or
choose to buy at the quantity di,h − Q, due to the piecewise
linearity of (6) in quantity qi.

Proposition 1 further states that every seller who wants to
trade will sell at the price π̂s or π̂s − ϵ, and every buyer who
wants to trade will buy at the price π̂b or π̂b + ϵ, due to the
special structure in the realization function in (5).

Next, we discuss the five lines of equation (10) in details:

• The first and third lines: According to the realization
function in (5), if the supply is not enough, the users
with the same price will equally share the supply. In
this case, the bids of users with a low qi will be fully
satisfied14, while the bids of users with a high qi will
only be partially satisfied. Hence, the users with a low pi
and a low Q− di,l will choose to sell with a lower price
π̂s (as shown in the first line of (10)), and the users with
a high pi and a low di,h −Q will choose to buy with a
higher price π̂b (as shown in the third line of (10)).

• The second and fourth lines: To make their bids fully
satisfied, the users with a higher quantity can propose a
price with a slightly higher priority. Hence, the users with
a low pi and a high Q − di,l will choose to sell with a
lower price π̂s − ϵ (as shown in the second line of (10)),
and the users with a high pi and a high di,h − Q will
choose to buy with a higher price π̂b + ϵ (as shown in
the fourth line of (10)).

• The fifth line: The users who are not willing to participate
will randomly propose a high price as a seller or a low
price as a buyer, and randomly propose a quantity.

D. Nash Equilibrium Analysis

Next, we define the Nash equilibrium as the intersection of
all users’ best response correspondences.

Definition 5. (Nash Equilibrium): A strategy profile x∗ is a

Nash Equilibrium (NE) if and only if

Ui(ri(x
∗
i ,x

∗

−i)) ≥ Ui(ri(x
′

i,x
∗

−i)), ∀x
′

i ∈ Xi, i ∈ I. (11)

If a strategy profile is an NE, none of the users has the
incentive to change his strategy, and the transacted prices will
not change. To obtain the NE, we first show the conditions
that an NE should satisfy in Lemma 1.

Lemma 1. At any NE x∗, there exists a unique price π̂∗ such

that the following two conditions are satisfied.
∑

i∈{j:a∗

j=s,π∗

j=π̂∗}

qi =
∑

i∈{j:a∗

j=b,π∗

j=π̂∗}

qi, (12)

πBR
i (x∗

i ) = π̂∗, ∀i ∈ {i : pi <
π̂∗ − θ

κ
or pi >

π̂∗

κ
}. (13)

14By saying “the bid of a user is satisfied”, we mean that “his demand is
satisfied” if the user is a buyer, or “his supply is cleared” if the user is a
seller.
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=(s, π̂s, Q−di,l), if pi≤
π̂s−θ

κ
and

∑

j∈HBi
qj−

∑

j∈LSi
qj−

∑

j∈{k:k∈Ei,qk<Q−di,l}
qj

|{k : k ∈ Ei, qk ≥ Q− di,l}|
≥Q−di,l,

=(s, π̂s−ϵ, Q−di,l), if pi≤
π̂s−ϵ−θ

κ
and

∑

j∈HBi
qj−

∑

j∈LSi
qj−

∑

j∈{k:k∈Ei,qk<Q−di,l}
qj

|{k : k ∈ Ei, qk ≥ Q− di,l}|
<Q−di,l,

=(b, π̂b, di,h−Q), if pi≥
π̂b

κ
and

∑

j∈LSi
qj−

∑

j∈HBi
qj−

∑

j∈{k:k∈Ei,qk<di,h−Q}qj

|{k : k ∈ Ei, qk ≥ di,h −Q}|
<di,h−Q,

=(b, π̂b+ϵ, di,h−Q), if pi≥
π̂b+ϵ

κ
and

∑

j∈LSi
qj−

∑

j∈HBi
qj−

∑

j∈{k:k∈Ei,qk<di,h−Q}qj

|{k : k ∈ Ei, qk ≥ di,h −Q}|
≥di,h−Q,

∈{(ai,πi, qi) :ai=b,πi∈ [0, π̂b), qi∈ [0,∞)} ∪ {(ai,πi, qi) :ai=s,πi∈(π̂s,κ], qi∈ [0,∞)}, otherwise.

(10)

The Proof of Lemma 1 is in Appendix A.
Equation (12) implies that there exists an equilibrium price

π̂∗ such that the market is cleared, i.e., the total supply
matches the total demand. From (13), we observe that those
who want to make a transaction in the market will propose
the same price in their best responses.15

By jointly solving equations (12) and (13) in Lemma 1, we
obtain the unique NE in Theorem 1. For notation convenience,
we first define

PL !
(dh + dh − 2Q)(κ− θ)

(dh + dh − dl − dl)κ
(14)

and

PH !
(dh + dh − 2Q)κ+ (2Q− dl − dl)θ

(dh + dh − dl − dl)κ
, (15)

which are the boundary indicators of user types. With these
indicators, we can divide the users into different groups
according to their user types.

Theorem 1. The unique NE x∗ of Game Ω is shown in Table

I, where the equilibrium price

π̂∗ =
(dh+dh−2Q)κ+ (2Q−dl−dl)θ

dh + dh − dl − dl
. (16)

The proof of Theorem 1 is given in the online technical
report [18].

Theorem 1 states that at the NE, all the users who par-
ticipate in the market will propose the same price, and all
their proposed quantities will be transacted. This is because
the sellers proposing higher prices cannot get their selling
quantities transacted, and the sellers proposing lower prices
receive lower payoffs. The same intuition applies to the buyers.
The users who are not willing to participate will randomly
propose a high selling price or a low buying price with random
quantities, and will not affect the market trading results.

In the next subsection, we will further study how to reach
the NE explicitly.

15The users with type pi < π̂∗−θ
κ

are sellers and the users with type

pi > π̂∗

κ
are buyers. The sellers’ transaction selling price equals to the

buyers’ transaction buying price.

TABLE I
THE EQUILIBRIUM USERS’ DECISIONS ON ROLES, QUANTITIES, AND

PRICES

User Type pi Role a∗i Quantity q∗i Price π∗
i

0 < pi ≤ PL s Q− di,l π̂∗

PL < pi < PH s or b q∗i ∈ [0,∞)
π∗
i ∈(piκ,κ] if a∗i =s

π∗
i ∈ [0, piκ) if a∗i =b

PH ≤ pi < 1 b di,h −Q π̂∗

E. Distributed Convergence to the Unique NE

In this section, we propose a best response dynamics
algorithm with a diminishing step size, and show that the
algorithm converges to the unique NE. To describe the best
response dynamics, we first define a time-slotted system with
slots (e.g., one day per time slot) t = 0, 1, 2, . . ., and allow
users to change their decisions in every time slot based on the
newly derived market prices. Let π̂s(t) and π̂b(t) in (17) and
(18) be the transaction selling price and transaction buying
price at time slot t, respectively, which can be derived from
the users’ strategies x(t). According to (10), we can compute
the best response of user i in next time slot t+ 1 denoted as
xi(t+1) = xBR

i (x−i(t)) (Line 4). Then, by xi(t+1), we can
derive the new transacted selling and buying price π̂s(t + 1)
and π̂b(t+ 1) (Line 5).

Due to the choice of the step size ϵ in Line 4, if any user i
is going to change his price, the new price has to be at least
1/t different from the price in the last time slot. That is,

|πi(t+1)−πi(t)|≥
1

t
or |πi(t+1)−πi(t)|=0, ∀i∈I. (19)

We have Theorem 2 on the convergence of the strategy profile
in Algorithm 1 to the unique NE in Stage II.

Theorem 2. Algorithm 1 asymptotically converges to the

unique NE of Game Ω, in the sense that there exists a time

threshold t̂ such that for any t > t̂, we have

|π̂s(t)− π̂∗| ≤
1

t
(20)

and

|π̂b(t)− π̂∗| ≤
1

t
. (21)

According to Theorem 2, both the transacted selling and
buying prices π̂s(t) and π̂b(t) converge to the equilibrium price
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Algorithm 1: Mobile Data Trading Algorithm

1 Input: Initialize the time slot t := 0, strategy profile
x(0) := (xi(0), ∀i ∈ I), the equilibrium price π̂∗ from
(16), and the corresponding transacted selling and buying
prices π̂s(0) and π̂b(0) from the following two equations:

π̂s(t) :=min{πi :ai(t)=s and

ri((ai(t),πi + ϵ, qi(t)),x−i(t))=0, ∀i}. (17)

π̂b(t) :=min{πi :ai(t)=b and

ri((ai(t),πi − ϵ, qi(t)),x−i(t))=0, ∀i}. (18)

2 while π̂s(t) ̸= π̂∗ or π̂b(t) ̸= π̂∗ do

3 for i = 1 to I do
4 xi(t+ 1) := xBR

i (x−i(t)) in (10), where
ϵ := 1/t.

5 Update the transacted selling and buying prices
π̂s(t+ 1) and π̂b(t+ 1) from (17) and (18),
respectively.

6 Update time slot t := t+ 1.

7 Output: Strategy Profile x∗ := x(t).

π̂∗ when t → ∞. This shows that our proposed best response
dynamics converges to the unique NE. The proof of Theorem
2 is given in the online technical report [18].

IV. STAGE I: OPERATION FEE OPTIMIZATION

In this section, we discuss the mobile operator’s revenue
maximization problem in deciding the optimal operation fee,
given the NE of Stage II.

The operator’s revenue comes from two parts: (a) The
differences between the prices of matched sellers and buyers,
and (b) the operation fee charged on sellers for the transacted
data quota. Based on Theorem 1, the sellers and buyers
propose the same price (i.e., the revenue from (a) is zero),
hence the operator’s revenue only comes from the operation
fee in (b). Notice that the unit operation fee θ should be less
than the usage-based unit price κ, otherwise no transaction
will happen in the market.

The operator’s revenue can be calculated as the product of
the unit operation fee θ, the total number of sellers, and the
average trading quantity per seller. First, according to a∗i in
Table I, the total number of sellers equals to IPL, where PL is
the fraction of users who can successfully sell some data16 as
defined in (14). Second, from q∗i in Table I, every seller i with
a type 0 ≤ pi ≤ PL will propose a quantity Q − di,l. Since
di,l is uniformly distributed in [dl, dl], the average quantity
per seller equals to (2Q− dl−dl)/2. Hence we can write the
operator’s revenue maximization as

max
0≤θ≤κ

P (θ)=Iθ
(2Q−dl−dl)(dh+dh−2Q)(κ−θ)

2(dh+dh−dl−dl)κ
. (22)

16Notice that some users with type PL < pi < PH may choose to be a
seller but cannot sell any data.
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Fig. 3. The gap Gi between user i’s utilities with and without data trading
market.

We can verify that P (θ) is a concave function of θ, so problem
(22) is a convex optimization problem. As a result, by the first
order condition, we can obtain the unique optimal operation
fee in closed-form.

Theorem 3. The operator’s optimal seller’s operation fee is

θ∗ =
κ

2
. (23)

When θ is too small, the mobile operator gains a low
operation fee from each trade. On the other hand, when θ
is too large, there are fewer transactions, which also hurts the
mobile operator’s revenue. Theorem 3 shows that the optimal
operation fee is in the middle of the feasible region [0,κ].17

V. PERFORMANCE EVALUATION

In this section, we first provide simulation results to illus-
trate how users benefit from this mobile data trading market.
We then evaluate the equilibrium social welfare and mobile
operator’s payoff under different operation fees.

A. Mobile Data Trading Market’s Benefit to Users

We evaluate the users’ benefits by calculating the gap Gi

between user i’s payoffs with and without data trading market.
In Fig. 3, we plot the payoff increment Gi against the

probability of high demand pi, high demand di,h, and low
demand di,l. We show that the users with small pi and large
pi will benefit from trading in the market, while those with
medium pi will not benefit. This is because the users with
medium pi are the most uncertain about whether their usage
will exceed quota or not, and hence will not trade data in the
market. On the other hand, the users who have less uncertainty
about their usage (i.e., the users whose pi are close to zero or
one) will benefit a lot through trading.

In addition, the high pi (i.e., pi > 0.75) users will benefit
more if they have a larger di,h, and the low pi (i.e., pi < 0.25)
users will benefit more if they have a smaller di,l. This is
because the users will benefit more when they trade a larger
quantity. Based on Theorem 1, a high pi user will be a buyer
and propose a demand of di,h − Q, while a low pi user will
be a seller and propose a supply of Q − di,l.

17This result is based on the assumption that users’ demand (di,l and di,h,
i ∈ I) and probability (pi, i ∈ I) are uniformly distributed. The consideration
of other distributions will not change the main insight stated here.
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B. Impact of Operation Fee on Social Welfare

We define the total equilibrium user payoff Wu as the sum
of all users’ payoffs Wu=

∑I
i=1

Ui(x∗), and the equilibrium
social welfare Wt as the sum of all users’ payoffs plus the
operator’s maximal revenue Wt=

∑I
i=1

Ui(x∗)+P (θ∗).
In Fig. 4, we show that both the total equilibrium user payoff

Wu and the equilibrium social welfare Wt decrease in the
operation fee θ. This is because when θ is larger, users need
to pay more to the operator, and as a result, there are fewer
tradings happening. Hence, an operation fee that is too large
hurts both the users’ payoffs and the operator’s revenue.

VI. CONCLUSION

In this paper, we studied the users’ trading behavior in a
two-sided market, in which users decide their trading prices
and quantities without knowing in advance how much data
they can sell or buy at their proposed prices. Our analysis
indicated that all the users who want to trade should propose
the same price, such that the total demand matches the total
supply. Our numerical results showed that the users who have
less uncertainty about their usages can benefit more from data
trading. We also showed that an operation fee that is too high
hurts both the users’ payoffs and the operator’s revenue.

In the future, we would like to understand how the distribu-
tion of user type impacts the market equilibrium. Apart from
theoretical analysis, we would also conduct a market survey to
understand the users’ realistic responses to market dynamics.
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APPENDIX

A. Proof of Lemma 1

In this proof, we do not consider the users who are not
willing to trade. In other words, we only consider the user
i ∈ Ĩ = {j : j ∈ I, rj(x) > 0}. First, we show that the
following lemma holds at the equilibrium.

Lemma 2. For any two sellers or two buyers proposing the

same price, both of them can get all their quantity transacted.

That is, if a∗j = a∗k and π∗
j = π∗

k, we have rj(x∗) = q∗j and
rk(x∗) = q∗k.

The proof of Lemma 2 is in our online technical report [18].
Next we prove that Lemma 3 also holds at the equilibrium.

Lemma 3. Any two users j and k who want to trade will

propose the same price, i.e.,

π∗
j = π∗

k, ∀j, k ∈ Ĩ. (24)

The proof of Lemma 3 is in our online technical report [18].
By Lemma 2, we know that all users can get their proposed

quantity fully transacted, which will only happen when the
total proposed buying quantity equals the total proposed
selling quantity. By (10), we know that the users with type
pi < (π̂∗ − θ)/κ will trade as a seller, and the users with
type pi > π̂∗/κ will trade as a buyer. By Lemma 3, we know
that all the buyers and sellers will propose the same price.
Combining the above analysis, we obtain the result in (12)
and (13).
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