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Abstract—In this paper, we consider a distributed stochastic
optimization problem where the goal is to minimize the time
average of a cost function subject to a set of constraints on the
time averages of related stochastic processes called penalties. We
assume that the state of the system is evolving in an indepen-
dent and non-stationary fashion and the ‘“common information”
available at each node is distributed and delayed. Such stochastic
optimization is an integral part of many important problems in
wireless networks such as scheduling, routing, resource allocation
and crowd sensing. We propose an approximate distributed Drift-
Plus-Penalty (DPP) algorithm, and show that it achieves a time
average cost (and penalties) that is within ¢ > 0 of the optimal
cost (and constraints) with high probability. Also, we provide a
condition on the convergence time ¢ for this result to hold. In
particular, for any delay D > 0 in the common information, we
use a coupling argument to prove that the proposed algorithm
converges almost surely to the optimal solution. We use an
application from wireless sensor network to corroborate our
theoretical findings through simulation results.

Index terms: Drift-plus-penalty, Lyapunov function, wireless
networks, online learning, distributed stochastic optimization.

I. INTRODUCTION

Stochastic optimization is ubiquitous in various domains
such as communications, signal processing, power grids, in-
ventory control for product assembly systems and dynamic
wireless networks [1]-[6]. A typical stochastic optimization
problem involves designing control action for a given state of
the system that minimizes the time average of a cost function
subject to a set of constraints on the time average penalties [1],
[2]. Both cost and penalties depend on the state of the system
and the control actions taken by the users. For example, in
a typical wireless application, the cost function refers to the
instantaneous rate, and the penalty refers to the instantaneous
power consumed. Further, the state here refers to the channel
condition. An algorithm known as Drift-Plus-Penalty (DPP)
(see [7]-[10]) is known to provide a solution for these prob-
lems with theoretical guarantees. At each time slot, the DPP
method, an extension of the back-pressure algorithm [11], [12],
finds a control action that minimizes a linear combination of
the cost and the drift. In the problem that we consider, the
drift is a measure of the deviation (of the penalties) from
the constraints, and the penalty corresponds to the cost. The
DPP algorithm is shown to achieve an approximately optimal
solution even when the system evolves in a non-stationary
fashion, and is robust to non-ergodic changes in the state [7].

The DPP algorithm mentioned above assumes that the
control action is taken at a centralized unit where the complete
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state information is available. However, wireless network and
crowd sensing applications require a distributed control action
that uses only the delayed state information at each node [7],
[13]. This calls for a distributed version of the DPP algorithm
with theoretical guarantees. The author in [3] considers a
relaxed version of the above problem. In particular, assuming
1.1.d. states with correlated “common information,” the author
in [3] proposes a distributed DPP algorithm, and proves that
the proposed algorithm is close to being optimal in the average
sense. Several authors use the above results in various contexts
such as crowd sensing [13], energy efficient scheduling in
MIMO systems [14], to name a few. However, in many
practical applications, the states evolve in a dependent and
non-stationary fashion [10]. Thus, the following assumptions
about the state made in [3] need to be relaxed: (i) inde-
pendent and (ii) identically distributed. In addition, from a
practical standpoint, it is important to investigate the rate of
convergence of the distributed algorithm to the optimal. In this
paper, we relax the assumption (ii) above, and unlike [3], we
provide a Probably Approximately Correct (PAC) bound on
the performance. Also, we prove an almost sure convergence
of the proposed distributed algorithm to a constant within
the optimal. We would like to emphasize that extending the
analysis in [3] to non-stationary states is non-trivial. The
only work that provides a “PAC type” result for the DPP
algorithm is [15]. However, the authors consider i.i.d. states,
and the decision is centralized. Moreover, the method used
in [15] cannot be directly extended to a problem with non-
stationary states since their proof requires the control action
to be stationary, and this assumption in general is not true.
Now, we highlight the contribution of our work.

A. Main Contribution of the Paper

In this paper, we consider a distributed stochastic optimiza-
tion problem when the states evolve in an independent and
non-stationary fashion. In particular, we assume that the state
is asymptotically stationary, i.e., the probability measure
of the state w(t) € £ converges to a probability measure 7
as t — oo in the £;-norm sense. This assumption makes the
extension of the method in [3] non-trivial. When 7; = 7 for
all ¢ € N, the author in [3] proves theoretical guarantees by
making use of the equivalence between a Linear Program (LP)
that is a function of 7 and the original stochastic optimization
problem. However, when the probabilities are changing, this
equivalence is difficult to establish. Instead, we show that the
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original problem is equivalent to a “perturbed” LP, which is a
function of the limiting distribution 7. Under mild conditions,
we prove that the solution to the perturbed LP is approx-
imately equal to that of the original problem. We use this
result to prove theoretical guarantees for an approximate DPP
algorithm that we propose in the paper. Moreover, unlike the
previous works, we are more interested in providing sample
complexity bounds rather than just dealing with the averages.
The following are the main contributions of our work

1) For the above model, we show that with high probability,
the average cost and penalties obtained by using the pro-
posed approximate distributed DPP algorithm are within
constants of the optimal solution and the constraints,
respectively, provided the waiting time ¢ > a threshold
(see Theorem 3). The threshold and the constants capture
the degree of non-stationarity, and the number of sam-
ples used to compute an estimate of the state distribution.

2) Using the high probability result, we show that the cost
corresponding to the proposed algorithm almost surely
converges to a constant within ¢y > 0 of the optimal
cost. We also show that the penalties induced by the
proposed algorithm are within constants of the constraint
values almost surely. It turns out that although the
states are independent, the proposed algorithm induces
dependencies across time in the cost and penalties. Thus,
the method in [15] cannot be used as the proof there
requires the control action to be stationary. To overcome
this, we prove the PAC and the almost sure convergence
results using a coupling argument, where the dependent
sequence of the cost (and penalties) is replaced by an
independent sequence which results in an error that is
expressed in terms of the f1-mixing coefficient; a term
that captures the stochastic dependency across time (see
Sec. II). Note that the (3;-mixing coefficient depends on
the algorithm. In this paper, the (;-mixing coefficient
induced by the proposed approximate DPP algorithm is
bounded using information theoretic technique. Further,
in the centralized scenario with single user and i.i.d.
states, we recover the results in [15] as a special case.

3) We show that due to non-stationarity of the states,
the performance gap goes down slowly compared to
i.i.d. states. This is captured through ||7; — 7||; and a
term that depends on the measure of the complexity of
the probability space averaged with respect to m; (see
Theorem 3). Finally, we provide simulation results of
a sensor network application, which is a particular use
case scenario of the problem considered.

The paper is organized as follows. The motivation, problem
statement, an approximate DPP Algorithm with related theo-
retical guarantees, a bound on the 5;-mixing coefficient, and
simulation results are provided in Sec. II, Sec. III, Sec. 1V,
Sec. V and Sec. VI, respectively. Finally, Sec. VII concludes
the paper.

Notation: We use f(z) = O(g(x)), and f(z) = g(z) to
mean lim,_, ., %
respectively.

= ¢, and limm_,oowi) < e c < 00,

II. MOTIVATION

Towards motivating the system model studied in the paper,
we consider a network of 3 sensors, where the sensor ¢
observes the state w;(t) € {0,1,2,3}, i = 1,2, 3, and reports
the observation to a central unit [3]. The meaning of various
states depends on the application. For example, when the
sensors are used to monitor vehicular traffic in a particular link,
then w;(t) = 0,1,2,3 represent no, low, medium and high
traffics, respectively. The reporting incurs a penalty in terms
of the power consumed by the sensors to transmit the state
information. The state w(t) = {w1 (t),wa(t),ws(t)}, t € N in
general is a stochastic process that evolves in a non-stationary
fashion. Assume that the central unit trusts sensor 1 more
than the others, which may be due to the fact that the sensing
capability of this sensor is better than the others. The problem
is to maximize the average of the following utility! function
subject to the constraint that the average power consumed by
each sensor is less than P:

g (t) é min { al(t)?)wl (t) + (65 (t)(UQ (t) -g Q3 (t)W3(t) : 1}(1’)

where «;(t) € {0,1}, i = 1,2,3 are the decision variables.
Note that if w;(t) = 3 for i = 1,2,3, and «o;(t) = 1 for
1 = 2,3, then there is no increase in the utility if sensor 1
also decides to transmit, i.e., a1 (t) = 1. However, none of the
sensors know the entire state of the system. In this case, the
sensor 1 may also choose to transmit, thus wasting its power
leading to a suboptimal operation compared to a centralized
scheme. In order to resolve this issue in a distributed setting,
we assume that a delayed “common information” is available
(see Sec. II of [3] for more details) using which each sensor
picks one of the “pure strategies” (non-random function).
For example, each sensor can acquire the information about
the state w(t) with a fixed delay D > 0. In this case, the
“common information” can be some function of w(t — D),
using which each user can unanimously pick one of the
different strategies. Here, each strategy maps to a unique set
of states available at each user. Thus, the problem is to find
the set of optimal decision variables in a distributed fashion
with “common information” that maximizes the average of the
above utility subject to the constraints on the average power.
We are interested in finding a high probability result for the
convergence of the utility to the optimal, which is one of the
main difference compared to [3]. Next, we describe the system
model that generalizes the above example.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a system comprising of N users making decisions
in a distributed fashion at discrete time steps ¢ € {0,1,2,...}
(see [3], [7], [10], [13]). Each user 7 observes a random
state w;(t) € €, and a “common information” Y.(¢) € Y
to make a control decision «;(t) € A;, i = 1,2,...,N.
Here, for each user i, ;, ) and A; denote the state
space, common information space and action/control space,
respectively. Let w(t) £ {w1(t),wa(t),...,wn(t)} € Q and

'Maximizing the utility is equivalent to minimizing the negative cost.
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a(t) 2 {ai(t),as(t),...,an(t)} € A, where Q = Q) x Qy x
oxQn,and A2 A x Ay x ... x An. Also, let us assume
that the number of possible values that p(t) takes is finite
and equal to ux € N, £ = 1,..., K. The decision is said to
be distributed if (see [3])

o There exists a function f;

a;i(t) = filwi(t),

where Y, () belongs to the common information set ).
e The common information Y(¢) is independent of w(t)
for every ¢t € N.

: Q; x Y — A;, such that
Y.(t)), i=1,2,...,N, 2)

At each time slot ¢, the decision «(t) and the state w(t)
result in a cost po(t) 2 po(a(t),w(t)) and penalties py(t) =
pr(a(t),w(t)), k=1,2,... K.

The central goal of the paper is to analyze an approximate
distributed solution to the following problem when w(t), t € N
is independent and non-stationary, Py :

t—1
mina(T)E.A:TEN lim sup E Z Epo(T)
t—o0 0

t—1
subject to limsup — ZEpk <c, k=1,2,..., K,
t—o0 —0

a;(7) satisfies (2),i=1,2,...,N.

In the above, the expectation is jointly with respect to the
distribution of the state w(t) and a possible randomness in
the decision a(t), t € N. Let p(°) be the optimal cost
corresponding to the problem Pq. Note that the first equation
in Pg represents the time average cost while the second and
the third equations represent constraints on the penalties and
the decisions, respectively. Informally, we are interested in
proving a Probably Approximately Correct (PAC) type result
and almost sure result of the following form [15]
o For every €, > 0, with a probability of at least 1 — d,
1 Z () ( ) < ¢ + € provided ¢ > threshold,
where pg )( ) and 10,(C (1), k=1,2,..., K are the cost
and penalties, respectively, of the proposed approximate
distributed scheme at 7 € N. Here ¢y 2 p@) is the
optimal cost, and ci, k =1,..., K are as defined in Py
(see Theorem 3)

o The cost ZT -0 p,: converges almost surely to cy,
where ¢y, k = 0,1,...,K are as defined above (see
Theorem 6).

First, unlike the model in [3], we assume that the state w(t)
evolves in an independent and non-stationary fashion across
time ¢. Note that the authors in [3] only provide simulation
results for non-stationary w(t) without providing a PAC type
result. In particular, the distribution of w(¢) denoted 7 (w),
w € ( satisfies the following asymptotic stationarity property.

Assumption 1: Assume that there exists a probability
measure 7(w) on  such that lim;_, » |7 — 7||y = 0.

For the sake of simplicity, we have made the above as-
sumption. Note that this is the first step towards finding the
PAC type result for the non-stationary states. The analysis of
the algorithm for the non-stationary states is relegated to the
future work. Note that the efficacy of the distributed algorithm

depends on how accurately each node computes an estimate
of m;, t € N. Naturally, we expect the bounds that we derive
to be a function of the complexity of the probability measure
space from which the “nature” chooses 7;(w). Let us assume
that for each ¢t € N, m; is chosen from a set P. Assuming
that P is a closed set with respect to the L£i-norm, we have
m € P. One way of measuring the complexity is through the
covering number, and the metric entropy of the set P, which
are defined as follows.

Definition 1: (see [16]) A J-covering of P is a set P, =
{P1,Pa,...,Pr} C P such that for all © € P, there exists
aP; € P, forsomei=1,2,..., M such that |7 —P;||; < 4.
The smallest M denoted Mj is called the covering number of
P. Further, H(P,§) = log M; is called the metric entropy.

Note that in many practical scenarios, the available data at
each time ¢ € N is delayed, and a data of size wy, t € N de-
layed by D slots will be used for estimation/inference purposes
[3], [13]. The reason for making the sample size w; depend on
t becomes apparent later. Since py(¢), k =0,1,2,..., K de-
pend on Y,(t) for all ¢ (see (2)), we have that the process p ()
in general is a stochastically dependent sequence. The “de-
gree” of correlation depends on the algorithm used. For k =
0,1,2...,K and s € N, let P;}75(x| €) and PJ**" (x| &)
denote the joint and marginal distributions of (pg(t), pr(t+5))
and pi(t) conditioned on the event &, respectively, induced
by any algorithm ALG.? Note that if py(¢) and py(t + s) are
independent for each ¢ € N conditioned on some event &,
then |[P}34(x| €) — P4 (x| £) @ PRSx| )| = 0.
Thus, the difference above, maximized over all slots t € N
is a natural way of measuring the correlation between the
sequences that are s time slots away. More precisely, we have
the following definition (see [17] for a related definition).
Definition 2: The ; mixing coefficient of the process p (),

k=0,1,2,..., K conditioned on some event £ is given by
ﬁALG,k(s7a| 5) £ sup ||Mt,s,k(5)||rv7 3)
teNt>a

where My, x(E) 2 PIIEx[E) — PN 8) ®
]P’?iik( «|E), s >0, a >0 P%g Pﬁ“_i’k denotes the
product distribution, and || * ||y is the total variational norm.

Note that in the definition of Sarc (s, | £), we have used
t > «, which is required later in the proof of our main results.
Further, if s is large, and the process is sufficiently mixing,
then we expect that Barc x(s,a| €) = 0. This definition will
be used to decouple a dependent stochastic process so that
some of the large deviation bounds that are valid for indepen-
dent sequences can be applied. The details of this approach
will be clear in the proof of our main results. For notational
convenience, let us denote the maximum and minimum values
of pp(t), k=0,1,2,..., K bY Pmax i and pmin k, respectively.
Further, let (Ap)maxk = Pmax.k — Pmink- In the following
section, we propose an Approximate DPP (ADPP) algorithm
with the associated theoretical guarantees. The (3, coefficient
for the ADPP algorithm will be Bappp 1(s, | &).

2In this paper, we propose a distributed Approximate DPP (ADPP) algo-
rithm, and hence ALG will be ADPP.
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IV. ALGORITHM AND MAIN RESULTS

In the following subsection, we prove that the optimal
solution to Py is close to a LP.

A. Approximately Optimal LP

Since the number of possible values that pg(t), k& =
0,1,2,..., K take is finite, the number of possible strate-
gies is also finite. Due to this, the question of whether
pr(t) has restrictions such as convexity, linearity etc., does
not matter. The approximate algorithm that we are go-
ing to propose chooses one of the pure strategy S(w) =
{s1(w1),s2(wa),...,sny(wn)} based on the common informa-
tion Y.(t), where s;(w;) € A;, and w; € Q;,i=1,2,... N.
The complexity of the solution that we propose depends on the
number of possible strategies. For example, s;(w;) can be a
simple threshold rule with the thresholds coming from a small
finite set. The control action «;(t) at the user 4 is chosen as
a deterministic function of w(t), i.e., a;(t) = s;(w;(t)) for
all ¢ € {1,2,..., N} and for all ¢ € N. Let the total number
of such pure strategies be F £ Hf\il |Ai|mi|. Enumerating
the F' strategies, we get S™(w), m € {1,2,...,F} and
w € . Each w €  and the strategy S™(w) result in a cost
pr(S™(w),w), k =0,1,2,..., K. Note that it is possible to
reduce F' if the problem has a specific structure [3]. For each
strategy m € {1,2,..., F'}, define the average cost/penalty as
rli";), £Y ca 7 (W)pr(S™(w),w), where k =0,1,2,..., K
and the underlying distribution of w € Q is 7 € P,. As in
[3], we consider a randomized algorithm where the strategy
m € {1,2,...,F} is picked with probability 6,,(t) in an
independent fashion across time t¢. Here, 6,,(¢) is a function
of the common information Y,(¢). The corresponding average
cost/penalty at time ¢ becomes

F
6)m E)\pk Sm( Z 9m ’I“k )\ s

m=1 m=1
I,

where \ € {m;, 7, P;},i=1,2,..., Ms. In [3], it was shown
that the problem Po when m; = 7 for all ¢ € N (w(%) is i.i.d.)
is equivalent to the following LP:

Z Gmro p

F
s.t. Z Gmr,(:;) <cp, k=1,2,...,

m=1

Mw

Epy,(t)

min
01,02,...

P
K and Z 0,, = 1(4)

m=1

In this paper, from Assumption 1, we have ||m; — 7|1 — 0,
as t — oo. With dense covering of the space P, we expect
that the limiting distribution is well approximated by P; for
some ¢ = 1,2,..., M5 in the covering set. More preciesely,
Pi- £ arg minge(p,,.... Py, } [[m—Qll1, and the corresponding
distance be d p,. 2 ||m — Pi-|l1 < 6. Since the distribution
of w(t) is changing across time, directly applying Theorem
1 of [3] is not possible. However, from Assumption 1, we
know that the distribution approaches a fixed measure 7 € P..
Hence, we expect that the algorithm designed for w € P, or
an approximation of 7, i.e., P;~ should eventually be close to

the optimal algorithm. Therefore, we consider the following
LP denoted LPp,,:

mln
01,02,

Z 9m7“0 Pix

F
K and Z 0,, = 1(5)

m=1

s.t. Zemrw <ecp, k=1,2,...,

Also, we assume that the solution to LPp,. exists and the
optimal cost is absolutely bounded. Further, define

£ inf { Z Hmron;p)

where © £ (601,0s,...,0F), and for any z > 0, Cp0 =
{@ : Zan:l 97”77(;21* <cptx k=12,...,K,017 = 1},
where 1 = {1,1,...,1} € RF. Note that G(0) corresponds
to LPp,.. We make the following important smoothness
assumption about the function G(z).

Assumption 2: The function G(x) is c-Lipschitz continuous
around the origin, i.e., for some ¢ > 0, we have

|G(x) — G(y)| < c|z —y|, forall z,y > 0. @)

In the theorem to follow, given that Assumption 2 is valid,
we prove that the optimal cost of the linear optimization
problem in (5) is “close” to the optimal cost of Py.

Theorem 1: Let p©°Y and p( " be the optimal solution
to the problems Py and LP’/)*, respectively. Then, under
Assumption 2, we have p(op Y < pOP 4 (o4 1)Ax p,., where
for any v > 0 Arp,. Iy maxg—0,1,2,.
v), and bpay r = max{
Proof: See Appendix A. I

10 € Cm,@} ; (6)

LK bmax,k(d‘n,Pi* +

B. Approximate DPP (ADPP) Algorithm (ADPPA)

In this subsection, we present an online distributed algo-
rithm that approximately solves the problem Pgy. We assume
that at time ¢ € N, all nodes receive feedback specify-
ing the values of all the penalties and the states, namely,
p1(t—D),pa(t—D),...,pr(t—D) and w(t— D). Recall that
D > 0 is the delay in the feedback. Using this information,
we construct the following set of queues

Qk(t + 1) = maX{Qk(t) +pk(t — D) — Ck, 0}7 (8)

k = 1,2,...,K, and t € N. These queues act as the
common information, ie., Y.(t) = Q; where Q; =
(Q1(t),Q2(t),...,Qk(t)). Further, the past w; samples of
w(t) given by {w(t—1i),i=D,D+1,...,D+w; — 1} will
be used to find an estimate of the state probabilities which
is required for the algorithm that we propose. For all k£ =
1,2,..., K, we let p;(t) = 0 when ¢t € {-1,-2,...,—D}.
The Lyapunov function is defined as

Z Q3 (t) ©)

and the corresponding drift is given by A(t) £ L(t+1)—L(t)
for all ¢ € N. A higher value of the drift indicates that the

LOES S1Quls =
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constraints have been violated frequently in the past. Thus, the
control action should be taken that simultaneously minimizes
the drift and the penalty (cost). The DPP algorithm tries to find
the optimal control action that minimizes an upper bound on
the DPP term, which is the essence of the following lemma.
The proof of the lemma follows directly from the proof of

Lemma 5 of [3], and hence omitted.
Lemma 1: For a fixed constant V > 0, we
have E[A(t+D)+Vpo(t)| Q] < Bl + 2D) +
A

VS Bu(Ory) 4 SR Q)i where Ciy

Yt B (O, ”)t — Gk Tl(cﬂzr)t £ Y eq T (W)pr(S™ (w), w),
k=0,1,2,..., K,
B, 2 o
P eflon r) 2 ;;}”t ) Pk (S™ (W), w) — ¢kl

(10)
and, with a slight abuse of notation, §,,(t) is the probability
with which the strategy m is used at time ¢.

Note that as t — oo, By — B. The expression for B can be
obtained by replacing 7 (w) by m(w) in the expression for B;.
The algorithm to follow requires an estimate of 7;(w), which
can be computed using the past w; samples by means of any
estimate such as the sample average. However, when the space
P is “simple”, one can expect to compute an estimate of 7, (w)
more efficiently. For example, if the nature chooses w(t) from
a finite set of distributions (Ms; < oo for all § > 0), then
estimating the distribution corresponds to a hypothesis testing
problem. Hence, by approximating the measure space P by
a finite set of measures P, gives us the flexibility to run a
hypothesis testing to find an approximate distribution based
on the available w; samples through a likelihood ratio test. In
the following, we provide the algorithm.

o Algorithm: Given the delayed feedback of size w; at
time slot ¢ € N, i.e., w(t —i — D), and pi(t — D), i =
0,1,...,wy — 1 and for £ = 1,2,..., K, perform the
following steps

— Step 1: Find the probability measure in P, that best
fits the data, i.e., pick P;» € P, such that

t—D
sk A 1
=ar max — log (P;(w(T))) .
T 8 el My} wy . ;er g (Pj(w(r)))
(I1)

— Step 2: Choose m; € {1,2,..., F} (breaking ties
arbitrarily) that minimizes the following:

(mt)
rk’P P

Vro"”) + Z Qx(

— Step 3: Set t — t+ 1, receive the delayed feedback,
update the queues using (8), and go to Step 1.

12)

We say that there is an error in the outcome of step 1 of
the algorithm if P;» # P;-. Recall that i* corresponds to the
index of the probability measure in the covering set that is
close to 7 in the £; norm sense. The error event &, t € N
is defined as those outcomes for which j; # ¢*. Further, let
Elrirts) = U;‘: Es,+ to denote that there is an error in at least
one of the time slot in the interval 7 to 7+ s. In the following

theorem, we state and prove our first result that will be used
to prove the PAC type bound for the ADPP algorithm.

Theorem 2: For the ADPP algorithm, for any e, >
ISV Ep(T) — o + W, and for constants
at €N, us € Nand v; € N such that viuy = t — oy, we
have

1 —2€; v}
Pr<{ - Pr(T) —ck > €k S urexpy ————5 ¢ +
t; 7 L ((Ap)mas k)2

t
Z Pr {55’7} + (f - at)BADPP,k:(ut? ay ‘ g[fxt:t])v

T=0¢

13)

— A teg, ks — 0 (Pmax, k —Pmin, k A
where &; = — ti_(‘lt ), €tk = €k + Cp —

LS U Epk(7). Here, co = p), and ¢y, k = 1,2,..., K
are the constraint variables in Pg.
Proof: See Appendix C of [18] for more details. B

The first term in the bound in Theorem 2 corresponds to
the large deviation bound when py(¢)’s are independent. The
second term corresponds to an upper bound on the probability
of error in the time slots «; to ¢ for decoding the correct index
1*; equivalently, this corresponds to an “incorrect” estimate
of the distribution of the states in these slots. The last term
captures the stochastic dependency of py(t) across time ¢ € N.
In order to prove a high probability result, we need to find an
expression for each of the terms in the bound. Next, we upper
bound the error term Pr{&; ; } using the following assumption.

Assumption 3: Assume that for all j = 1,2,..., Ms,
P;(w) # 0, there exist constants as > (5 > 0, such that
as > Pj(w) > B5 > 0 for all w € Q.

The above bound imposes the constraint that all the states
occur with non-zero probability. In other words, the probability
measures in the d-covering set approximates the true measure
by assigning non-zero probabilities to all possible w € 2. We
use the above assumption in the proof of the following lemma
to bound the probability of error term in (13).

Lemma 2: An upper bound on the probability of error is
given by

(1) :
< () a Gepp HT>D+w,—1,
PI‘{&S T} Pe ,up { MLE OtherWiSC, (14)
where qéTu)p £ exp{-2(Diw. +H(P,0)}, D.; =

1 Pi(w(s s :
W Zs T—D—w, +1E IOg (m) <5 - |:10g( >:| ’
D, £ minjz- D, ;, and 7-{,(73,6) = logM(; is the metric
entropy. Further, when u; = (9(\/), vy = O(Vt), and
o = (’)(\f), we have Z Pr{E(;T} =< (t — a)Ss.
where S; 5 £ exp {—¢r.1.5 + 3’-[(777 §)}. In the above, ¢, ;5 =
2<5 [minathgt DT]2 N[at:t], N[at:t] £ minatg‘rgt Wr.

Proof: See Appendix D of [18]. B

From the above lemma, we have that the error goes to zero
exponentially fast as 7 — co. The fact that Z o, PT{&s -} =
(t — at)St,s — 0 exponentially fast as t — oo w1ll be used
later in the paper to prove the almost sure convergence of the
algorithm to the optimal. Now, it remains to find an upper
bound on the first and the last term in (13). The following
theorem uses the assumption above, (13) and (14) to provide
a PAC result for the above algorithm.
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Theorem 3: Under Assumptions 1-3, for the proposed Al-
gorithm with ¢) = (c+1)Ax p,. +1:(0)+ r——
er = Qup(t) + 6 k =1,2,..., K, and some finite positive
constants V, C' and c, the following holds.

1) For every € > 0, with a probability of at least 1 — ~,

*Zpo

provided t € T;o. Here, vo > B3, B = (t —
o) [Bavee,0(ue, o | Epayie) + St,], where Sy s is as defined

AM

at(pmax k= Pmin, k) +6

) < PP 4 (e 4+ 1)Arp. +10:(0) + Crp + € (15)

in Lemma 2, and (; —
2) For every € > 0, with a probablhty of at least 1 — 1,

t—1
1 (677 (pmax,k’ - pmin,k)
;T;pk(r) S et Quplt) + TS e (16)

k =1,2,...,K, provided t € T; ;. Here v; > Bf, where

Bt £ (t—ay) [man;éO Bavee,k (Ue; ot | Ela,:) + St 6] In the

above, T;; = {t Dt —oy) > (Ap\);g:””t \/log (7 _*ﬁ*)} ,
i € {0,1}, Azp. = maxg—=012, . K Omaxk(dep. +
l/), and 'l/Jt( ) A V(c+1)Jg+Ht+C/t +
1+2D - B Pe(Tu)p + pmdxo Zt 1 Pe(Tu)p +
%ZT:O Pe(j‘;pa where P £ Zk;l(pmax,k - Ck)z,
Jy £ Maxo<k<K Pmax,k (% Sl =7l + 5),
H, & 2D570 B Further, D,;, D, (5 and P3,
are as defined in Lemma 2. Also, Q.p(t) & /¥E 4+ ¢
and Ty 2 V(e + 1)(Arp,. + £)+}i—+0 + 1+

2D) S0 Br Pl + prano Yoo P + o0y TP,
and pmaxx, K =1,2,..., K is as deﬁned earlier.
Proof: See the Appendix E of [18].

Interpretation of Theorem 3: Note that vy and ~; are lower
bounded by t — oy times the 3;-mixing coefficient and S ;.
Thus, a high probability guarantees can be obtained provided
the algorithm induces sufficient mixing and S; ;5 is small, i.e.,
the number of samples (w,) used to compute an estimate
of m(w) scales with 7. When w(t) is i.i.d., both s(¢) and
Qup(t) reduces, leading to a smaller objective value and a
better constraints satisfaction capability. This is due to the fact
that ||z, — «|| = 0 for all 7 which reduces the value of J;.
Note that unlike [19], the dependency on w; is exponential
instead of %t Also, higher metric entropy, H(d, P) requires
larger values of w; for better performance. Equivalently, when
the complexity of the model, P is low, then the learnability
improves. Thus, as ¢ — oo, we have a better result compared
to [3], [19]. As t — oo, H; goes to B(1 + 2D) and J,

goes to zero Further, both terms 122 tT IOB P(T " and
Pmax.0 Z eTu)p go to zero since D, goes to a constant for a

large values of 7. To summarize, the average cost and penalties
are close to the optimal with high probability provided the
process w(t) is sufficiently mixing, and the number of samples
w; monotonically increases with t. Note that w; is a design
parameter, and hence can be made to scale with ¢. Next, we
prove a bound on Bapep,r When D = 0. Then, we state the
result for any D > 0.

V. BOUND ON THE MIXING COEFFICIENT

By using the Pinsker’s inequality that relates the total
variational norm and the mutual information, we have the
following bound [20]

W<th,xkt &)
2 Y
a7
where Xp: = pi(t), (X3 Xie—s | €,,.) 15 the
mutual information between random variables py(¢) and
pe(t — s), kK = 0,1,2,..., K conditioned on E[Cat:t],
and any s € N. Later, we use s = wu;, as required.
Thus, proving an upper bound on Sappp (s, at|6’ (e t])
amounts to finding an upper bound on the conditional
mutual information. To present our results, we use the

Bavee (8, ar | €f,.7) < ts>up

Z 0t

following notations. Let X; = (Xo4, X14,---,XK.t)s
Xt t = (X, Xog ooy Xe—1,6, X160 -, XKt)s
and as before, Q =S (Q1(t), Q2(t), ..., Qk(t)).
We  first note that  I(Xy; Xy—s | 5[% t]) =
I( X3 X s|5' + N X Xy | Xitr £ [cee t]) =

I(Xk,t5 Xnyt—s | 5[a t)+I(th,X¢kt s | Xia—s: €, q) +

T(X g5 Xy | an o) = (Xt Xe—s | Elort))»
where the last inequality follows from the fact that the mutual
information is non-negative. Thus, we have

I(Xt;Xt—s | 5
Bapee, k(s o g[a 1] ) < sup

t>a 2

[Catzt])

(18)

Let Q; be the set of all vectors that Q; takes at time t.
Also, let M; : Q; — {1,2,...,F} be the rule induced by
the ADPP algorithm that determines the strategy given the
queue at time ¢. In order to obtain an upper bound on the
mutual information, we state the following assumption about
the conditional distribution of the process w(t).

Assumption 4: For some « > 0, Q; € 9, and for all
t € N, we assume that the following bound is satisfied

Pr{X; =2 | M(Q:) =m Sat t}
P Pr{Xy = x| My(Qu) =m', &,

Note that a lower value of « signifies the fact that the
channel is noisy. For example, when x = 0, we have uniform
conditional distribution for all m and «x leading to a completely
noisy channel from @, to X,. Next, we present an upper
bound on Bappp i (s, o | 5[(?%:1‘,]) for the D > 0 case.

sup <e® (19

T, m,m

A. Bound on Bappp i (s, 0 | E[cat:t]) when D =0

In order to get insights on the proof of bounding the 3
coefficient, we consider the centralized scheme, i.e., D = 0,
and later we provide results for the D > 0 case. For D = 0,
the queue update in the vector form becomes

Qi1 =max {Q; + X0 — C,0}

where C 2 (ci,co,...,cx). Recall that Step 2 of the
Algorithm uses Q; and the output from Step 1 to find a pure
strategy in a deterministic fashion that maximizes an upper
bound on the drift-plus-penalty expression. Thus, the strategy
is a deterministic function of the queue. Note that conditioned

(20)
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on the event 5[Cat:t], the output of Step 1 is ¢* for all time

slots 7 € {ay,...,t}. Conditioned on £, . this leads to the
following Markov chain model

(Qa“Xat) — (Qat+17Xat+1) — ... (Qtvxt)'

Fig. 1 depicts the graphical model representation of the above.

Qi Qi1 Qi-si2 Qi1 Q
X Xi—ws1 Xi—ws2 X

Fig. 1: Figure shows the graphical model corresponding to the
ADPPA with D = 0 and time slots from ¢t — s > o4 to t.

In order to prove an upper bound on the mutual information,
we use the Strong Data Processing Inequality (SDPI) for the
graphical model shown in Fig. 1. Note that the Assumption
4 facilitates the proof of an upper bound on the [-mixing
coefficient, as shown next.

Theorem 4: Given Assumption 4, for D = 0, x < log 3,
and for any ¢ > s > oy, an upper bound on the §; mixing
coefficient is given by

9(5—1)/2
7 logpul,k=0,1,2,.... K
(2D
where 1 = F|Q| (K + 1) is the number of possible values
that X, can take, t € N, and 6 2 max { (&1 l} < 1.
Proof outline: First, we use the graphical model shown in Fig.

2 02
1 along with the Strong Data Processing Inequality (SDPI) to
bound I(X;;X;—s|EF 1)

BADPP,k(Sa ot | g[cat:t]) <

[aee:t] < Teny I(Qtv Xi—s | S[cat:t])’
where 7, is the Dobrushin coefficient [21].
Continuing  this, we get (X Xi—s] S[Cat:t]) <

Hj;i Mon, 1(Qe; Xe—s | €F,,.)-  Next step is to use
Assumption 4 to show that 7.,, < 6 < 1 for all j.
See Appendix F of [18] for the details. l

Note that s = uy, and suppose u; grows with ¢, then the
Theorem says that the mixing coefficient goes down to zero
exponentially fast with ¢. In order to get more insights, we
will look at the asymptotic in the following subsection.

1) Almost sure convergence: Note that when D = 0, the
authors in [15] prove the convergence of the algorithm to
the optimal in probability. Here, we show an almost sure as
well as a high probability convergence of the proposed ADPP
algorithm to the optimal when D =0, and D > 0.

Lemma 3: Under Assumptions 1-4, for the proposed
Algorithm with D = 0, ay = OW1), w; = OW1),
V = OW1), k < log3, and some finite positive con-
stant ¢, the following holds. For every e > 0, we have

P Zopo(r) < plord) + error} = 1 and

PEComn) Sentef = Lk = 12K,

where error £ (c+1)Ax p,. +(c+ 1)maxo<r< K Pmax k0 +
€. In the above, Aﬂ',Pi* = MaXk=0,1,2,...,.K bmax,k(dﬂ',Pi* + V)9
and pmaxk, K =1,2,..., K is as defined earlier.

Proof: See Appendix G of [18]. B

lim;_, o Pr

limy_, o Pr

Theorem 5: Under Assumptions 1-4 with D = 0, oy =
OWt), wy = OWt), V = OWt), K < log3, and
oo > ¢ > 0, the following holds. For every € > 0, almost
surely, lim;_, o, % Z:;lo po(t) < ploPt) 4 (¢ + DAz p. +
(¢ + 1)maxo<k< i Pmax,k0 + € and lim;_, o % Zt;:% pr(1) <
ek +€6 k = 1,2,...,K. Here, Ay p,. and pmuix, K =
1,..., K are as defined earlier.

Proof: See Appendix H of [18]. B

Next, we state the result for the D > 0 case.

Theorem 6: Under Assumptions 1-4 with D > 0, oy =
OWt), wy = OW1), V = O(V1), k < 23 and some
finite positive constant c, the following holds. For every
e > 0, almost surely, limt_)oo%zt;:lopo(ﬂ < plort) 4
(c+1)Axp,. + (c+1)J +eand limyyo 2 32070 pr(r) <
ck+e€ k=1,2,...,K. In the above, Ar p,., J, and Pmaxk,
k=1,2,..., K are as defined earlier.

Proof: See Sec. IV-B of [18]. B

From Lemma 3 and Theorems 5 and 6, it is easy to see that
the error can be reduced by reducing A, p,., which amounts
to reducing d p,. and v. Note that d. p,. < ¢ can be reduced
by reducing the error in the covering of the probability space
P.. This comes at a cost of increased metric entropy since §
needs to be reduced. However, as t — oo, increased metric
entropy does not effect the overall result. Further, for the
centralized scheme with one sensor and D = 0, we get the

almost sure result in [15] as a special case when k < log 3.

N

VI. SIMULATION RESULTS

For the simulation setup, we consider the 3 sensors example
of Sec. II. The problem is to maximize the average of the
utility in (1) subject to an average power constraint of 1/3.
Here, the utility is the negative of the cost. The probability
measure 7; is chosen from a set of 8 distributions, and
converges to {0.1,0.7,0.1,0.1}. Due to lack of space, we skip
the details of the distribution that is used in the transient time.
The optimal value of this is p(°P") = 0.394. When a;(t) = 1,
i =1,2,3, apower of 1 watt each is consumed. Figures 2a and
2b show the plots of utility and penalty averaged over 1000
instantiations, versus time ¢ for different values of V', D = 10
and w; = 40 for all ¢, demonstrating the tradeoff in terms of V.
For large values of ¢, the utility achieved by the algorithm with
V = 20 is close to optimum while satisfying the constraints
thereby confirming the optimality of the algorithm.

rrrrr M rime

(b) Figure shows the plot of the
average power versus time.

(a) Figure shows the plot of the
average utility versus time.

VII. CONCLUDING REMARKS

In this paper, we considered a distributed stochastic opti-
mization problem with independent and asymptotically sta-
tionary states. We showed that this stochastic optimization
problem is approximately equal to a LP that is a function
of the limiting distribution of the state. For the proposed
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approximate DPP algorithm, we showed that with certain
probabilities vy and 77, the average cost and penalties are
within constants of the optimal solution and the constraints,
respectively, provided the waiting time ¢ > a threshold. The
threshold is in terms of the mixing coefficient that indicates
the non-stationarity of the cost/penalties. The approximation
errors capture the degree of non-stationarity (i.e., || — 7||1),
the number of samples used to compute an estimate of the state
distribution. Also, we have proved an almost sure convergence
of the proposed algorithm to a constant close to the optimal.
Finally, we presented simulations results to corroborate our
theoretical findings.

APPENDIX A
PROOF OF THEOREM 1

In this proof, we use the fact that by decreasing the objective
function and increasing the constraints cg, £ = 1,2,..., K
in Py will result in a decreased optimal value. Consider the
cost/penalties of the problem Py

lim sup — ZZFTWk—hmsup ZZAkTW(ZZ)

t—o0 T=0weN t—oo, T=0weN

for k =0,1,2,..., K, any t >0, O, =7 (w) —

and ®,p,. = m(w) — Pi-(w). In the above, g ;.
Pk(T) [Pz*(w) + (I)ﬂ'.r,ﬂ' + é‘n',’Pi*], FT,w,k £ T( )pk:( )a
pe(7) £ pr(a(r),w(r)) and (a) follows by adding and
subtracting P;-(w) as mentioned earlier and 7(w). Since
limy_, o0 ||7¢ — 7||1 = 0, for every v > 0, there exists a t € N
such that for all ¢ >t , ||, — n||; < v. Using this ¢, and

<3 lmlw

— m(w))[ |pw ()]
weN

< max{|pmax,k'| 5 |pmin,k|}y (23)

m(w)

L

Y (me(w) = m(w) pu(t)

weN

for every k and t > t/, we have
P20 Ywen (1 (@) = m(@) pr(r) < b,
bmaxk = max{|Pmaxk|, |Pmink|}. Similarly, we have
_bmax kdﬂ' Pix < ¢ < bmax7kd7r,73'i* , where C; £
1 Z wea (M) = Py (w)) p(7), and dr p,. is as de-
ﬁned earher. Using the above two inequalities in (22), we get
the following lower bound for all k =1,2,..., K.

>hm sup Z ZP

T=0weN

—bmax kY <
where

lim sup — ZEpk

t—o0 —0

) A‘IT,’P,L'*

where ATF,'Pi* = IMaXg=0,1,2,....K bmax,k(dmpi* +V) By llSil’lg
the above lower bound in Pg, we get the following

t—1
1
P, min limsu E — AP,
1 a(r)eA:TEN tﬁoop 7_20 pO P
=
s. t. limsup — ZEpk <c+Arp., k=1,2,... K,
t—o00 —0

oy (t) satisfies (2),i=1,2,..., N,

where the expectation is taken with respect to P;-. Note
that the optimal cost obtained by solving P; is smaller
than p°'. Further, the term Ay p,. is independent of the

control action. It is evident from P; that it is equivalent
to Po where the states w(t) is i.i.d. whose distribution is
P;«. Using Theorem 1 of [3], it is easy to see that the
solution to P is equal to G(Ar p,.) — Ax p,.,where G(z)
is as defined in (6). Thus, from Assumption 2, we have that

(pert) (Opt)’ < cArp. +Arp. =(c+1)Arp,., where

p'P « — Pp,.
pE™ denotes the optimal cost of Py. This leads to pp e

pgpj) (c+1)Ax p... But, we know that pgjf) < p©PY which

implies that p(()pt) <P+ (c+1)Ayp,.. A
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