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Abstract—In this paper, we propose a maximum dis-
persion based approach for the problem of determining
the feasibility of a set of single-hop rates in SINR model.
Recent algorithmic work on capacity maximization has
focused on maximizing the number of simultaneously
scheduled links. We show that such an approach is not
suitable for the problem. We present a polynomial time
algorithm to determine the feasibility. We present several
simulation results to evaluate the proposed approach. The
results confirm that maximum dispersion-based approach
is well suited for the problem and that such an approach
performs significantly better than the existing work.

I. INTRODUCTION

In this paper, we consider the problem of feasibility
of a set of single-hop rates in SINR model. The problem
that we address here is described as follows: we are given
M directed links in a wireless network of N nodes,
and associated with these links is also given a vector
of M target data rates ρ = {ρ1, . . . , ρM}. Assuming
that the senders remain backlogged, the problem asks
whether the given link rate vector is feasible, where, by
feasibility (formally defined in Sec. II) we mean that the
rate vector is achievable over a sufficiently long time
horizon provided the SINR at any receiver never falls
below the SINR threshold. The SINR model states that
transmission from node i to j can be decoded provided
the following condition remains true at the receiver j:

SINRij ,
Signal

Interference + Noise
≥ β (1)

The threshold β depends on hardware and is usually
modeled as a constant in the literature. Although we
adopt this convention here, we note that this work can be
easily extended to the case where β varies from receiver
to receiver.

Since the set of simultaneously active links will
change with time, SINR at a receiver is time-dependent.
Let Pi denote the transmit power of node i, and Gij

denote the gain at node j. A commonly used channel
gain model is a polynomially decaying function of the
Euclidean distance, that is, Gij = d(i, j)−α, where
d(i, j) denotes the Euclidean distance between nodes
i and j and α is the path-loss exponent. The value
of α depends on the physical environment and usually
lies between 2 (free space) and 6. Therefore, the SINR
constraint (1) becomes

SINRij(t) =
PiGij∑

k∈S(t)\{i} PkGkj + Noise
≥ β, ∀t

(2)

where S(t) denotes the set of nodes transmitting at time
t. Shannon’s formula specifies the upper bound on the
data rate on link (i, j) as:

rij(t) = W lg(1 + SINRij(t)), (3)

where W denotes the bandwidth.
Exhaustive search is intractable since there are 2M

subsets of links that can be scheduled simultaneously. As
we discuss later in the paper, this problem is NP-hard.
Developing tractable algorithms for providing certain
rate guarantees had been a problem of great research
interest for several decades. This problem has gained
added relevance due to the upcoming 5G networks where
link density can be very high.

A closely related work is the so-called “emptying the
network” problem studied in [1]. Here, each transmitter
is assumed to have a finite amount of traffic and the prob-
lem is to empty the packet queues as quickly as possible.
The main limitation of [1] is that the problem does not
allow new arrivals until all queued packets have been
transmitted. The problem that we are addressing in this
paper does not have this limitation. There exist several
studies in the literature where sum-rate maximization is
achieved by controlling transmit power [2], [3]. In our
problem formulation, we treat transmit power vector as
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a given input. Although sum-rate maximization is one
of the steps we take to solve the feasibility problem,
maximizing the sum-rate alone leads to starvation, since
links on which the data rate is low may never get
scheduled (see [4], for example).

There has been a large number of published results
that maximize the number of simultaneously scheduled
transmissions [5]–[13]. One line of approach used in
these papers is to greedily select links based on crite-
ria, such as, link length or certain approximations of
interference caused by different links etc. The greedy
algorithm presented by Borbash and Ephremides in [5]
seems to be the first such work. Another line of approach
imposes certain structure on links, e.g., [6], [7]. Yet
another approach is taken in [14] which starts with
conflict graph and constructs SINR schedule in expo-
nential time. Distributed, though suboptimal, scheduling
algorithms using SINR model can be found in [15], [16].
Although some of the above mentioned papers and others
in the literature imply that maximizing the number of
simultaneously scheduled links maximizes the sum of
rates, unfortunately this is not the case.

The following counterexample shows that maximizing
the number of links does not necessarily maximize the
sum-rate. Consider the two sender-receiver pairs, shown
in Figure 1, where d(u, v) = 1 = d(w, x), and the
distance between either one of the interfering senders
to a receiver d(u, x) = 3/4 = d(w, v). Further, assume
that the transmit power to noise ratio is 3, the path loss
constant is 3 and SINR threshold is 1. The data rate
when any one of the pairs is active is 2W bps, whereas
the sum of rates when both are active falls to 0.908W
bps, less than half of the single pair rate even though the
SINR values remain above the threshold.

In addition to SINR-based models, there exists vast
amount of literature on scheduling in wireless networks
where some (non-geometric) graph-based model is used.
A survey of these is presented in [17].

Given N locations, the objective of the max-sum p-
dispersion problem is to find a p-cardinality set S ⊂
N such that

∑
i,j∈S d(i, j) is maximized. This problem

has been shown to be NP-hard [18]. There exist greedy
algorithms that achieve 2-approximation [19], [20]. In
this paper we present a sum-rate maximization algorithm
that selects subset of links based on the idea of maximum
dispersion and show that the algorithm gives significant
performance improvement over the state-of-the-art. We
note that for our problem p is no longer a fixed given
quantity but becomes a variable instead.

The rest of this paper is organized as follows: in

u

w

x

v

Fig. 1: The sum of rates achieved when both the trans-
missions u → v and w → x are active is less than the
rate when only either one is active.

Sec. II we present problem formulation. In Sec. III, we
first present our max-sum p-dispersion based algorithm
that maximizes the sum of rates, and then an algorithm
that determines the feasibility of a target rate vector
in polynomial time. We present simulation results in
Sec. IV that compare the performance of the proposed al-
gorithm with an optimal algorithm (based on exhaustive
search), the algorithm presented in [13] that maximizes
the number of simultaneously scheduled links, and a
modified version of the max-weight algorithm [21]. We
conclude the paper in Sec. V.

II. PROBLEM FORMULATION

Consider M given directed links in a wireless network.
Associated with these links is given a vector of M target
data rates ρ = {ρ1, . . . , ρM}. We want to determine
whether the given target rates can be achieved over a
sufficiently large time interval I . We consider the SINR
model (2) where the transmit power of senders are given.

Consider unit time interval. We discretize it into T
equal size sub-intervals Ti, i = 1, 2, . . . , T . Therefore,∑

i=1,...,T Ti = 1. The granularity of the sub-interval
duration can be made arbitrarily small by selecting large
enough T . A link’s last transmission can finish at in-
finitesimally small duration from the boundary of a time
interval wasting Rmax/T capacity (in the limit), where
Rmax is the maximum rate on a link. Therefore, T should
be chosen according to T >> MRmax. Although T
has no bearing on the time complexity of the maximum
dispersion based algorithm presented here, such is not
the case in general.

In the following, we denote the link corresponding to
ρk by k. We denote the sender and receiver nodes of link
k by sk and rk, respectively. To make the notation of (2)
a bit more compact, let ψk(i) denote the SINR at node
rk during the ith sub-interval Ti when the transmission
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sk → rk is taking place. We define ψk(i) , 0 if sk → rk
is not taking place. We also define ψk(i) ,∞ if sk → rk
causes primary interference conflict (a node is either
a source or destination of more than one concurrent
transmission).

The feasibility of the rates ρ can then be defined as

ρk ≤
T∑
i=1

W

T
lg(1 + ψk(i)), ∀k.

Feasibility over the unit time interval implies that the
average data rate over the time horizon I approaches the
target data rates. This can be seen by first scaling the time
intervals and hence the unit interval to appropriate values
(e.g., a slot size on a time-slotted system or average
transmission time) and then partitioning I into segments
of scaled unit interval size.

Establishing the intractability of the rate feasibility
problem is straightforward by reducing from the mul-
tidimensional knapsack problem which is known to be
NP-hard in strong sense [22].

III. MAXIMUM DISPERSION BASED SUM-RATE

MAXIMIZATION

A. MAX-RATE-GREEDY-DISPERSION Algorithm

We first present the greedy sum-rate maximization
algorithm and follow it up in the next subsection with a
procedure that determines whether a given rate vector is
feasible.

MAX-RATE-GREEDY-DISPERSION (Algorithm 1) is
based on a greedy solution of the max-sum p-dispersion
problem [19]. The algorithm selects nodes that maximize
the interferer-receiver separation. It has been shown that
this greedy approach achieves 2-approximation [20].

At each step, the algorithm greedily selects the link
whose sender’s location maximizes the total distance
from all the receivers of links in S, where S denotes
the set of links already selected by the algorithm for
activation (Algorithm 1, Line 4). A newly selected link
l is added to set S if doing so does not cause (a)
SINR at any receiver in S ∪{l} to exceed the threshold,
and (b) the sum of rates does not decrease, that is
R(S ∪ {l}) ≥ R(S), where R(S) denotes the sum of
rates achieved when all links in set S are activated
simultaneously. We denote a link that satisfies both these
conditions by l ⊥ S (Algorithm 1, Line 5).

B. Rate vector feasibility algorithm

The rate vector feasibility algorithm MAX-
DISPERSION-RATE-FEASIBILITY takes ρ as input

Algorithm 1 MAX-RATE-GREEDY-DISPERSION

Input: Set of links L � Node positions, transmit
power, noise, SINR threshold

1: S := l ∈ L | l has the maximum SNR
2: S̄ := φ
3: while |S|+ |S̄| < |L|
4: find l ∈ L\(S ∪ S̄) that maximizes∑

k∈S d(sl, rk)
5: if l ⊥ S � Explained in the text
6: S := S ∪ {l}
7: else
8: S̄ := S̄ ∪ {l}
9: end if

10: end while
Output: S � Output S to the rate feasibility algorithm

(step 5 of Algorithm 2)

and keeps track of remaining rates ρ′ (initialized to
ρ) as links are scheduled. At step 5 the algorithm
calls the sum-rate maximization algorithm MAX-RATE-
GREEDY-DISPERSION and passes it the set of links that
have non-zero remaining target rate which returns a set
of links S. Unless the residual rate on at-least one of
the links become 0, S remains optimal. Therefore, the
feasibility algorithm finds the minimum number of time
intervals δmin when the target rate on at-least one of the
links in S is met. The algorithm then subtracts from the
residual rate vector ρ′ the rate provided to the links in
S during δmin time up-to a maximum ρ′k for all k in S.
Feasibility is indicated by ρ′ = 0.

C. Time complexity analysis

We pre-compute an M×M table Ψ whose (k, l)th en-
try is PskGsk,rl . Thus, Ψ[k, l] is the signal on the receiver
of link l if k = l, and is the interference contribution of
the sender of link k otherwise. We maintain a table of the
current sum of interference values Ψ[k, l] of each l ∈ S
which is reset at each new call of the rate feasibility
algorithm (Algorithm 2, Line 14). Thus, checking m ⊥ S
(in Algorithm 1, Line 5) takes O(|S|) time. Hence the
time complexity of MAX-RATE-GREEDY-DISPERSION

is O(M2). Upon each iteration of the Algorithm 2
(line 4), either residual rate becomes 0, or the rate vector
is found infeasible. Thus the time complexity of MAX-
DISPERSION-RATE-FEASIBILITY combined with MAX-
RATE-GREEDY-DISPERSION is O(M3).
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Algorithm 2 MAX-DISPERSION-RATE-FEASIBILITY

Input: ρ � Rate vector ρ1, . . . , ρM
Input: T � Time granularity = 1/T
Input: Algorithm A(ρ) � A finds a set of links S that

can be scheduled simultaneously while satisfying
SINR constraint at all receivers in S

1: ρ′ := ρ � Residual rate vector
2: δ � Transmission duration vector δ1, . . . , δM
3: T := 0
4: while ( T < T ) and (ρ′ 6= 0)
5: S := A(ρ′) � Need to find a subset S that

maximizes sum of rates. We’ll use MAX-RATE-
GREEDY-DISPERSION here.

6: δ := ∞
7: do for each k ∈ S
8: δk := d ρ′kT

W lg(1+ψk)
e

9: end do
10: δmin := Minkδk
11: do for each k ∈ S
12: ρ′k := Max{0, ρ′k − δmin

W
T lg(1 + ψk)}

13: end do
14: T := T + δmin

15: end while
Output: if ρ′ = 0, ρ is feasible

IV. EVALUATION

A. Comparison algorithms

We evaluated the performance of the rate feasibil-
ity algorithm where different algorithms were used to
find the set of links that maximized sum-rate (step 5
of Algorithm 4). Note that MAX-DISPERSION-RATE-
FEASIBILITY is the same as General rate vector feasibil-
ity algorithm (Algorithm 4) except that the former is op-
timized for use along-with algorithms like MAX-RATE-
GREEDY-DISPERSION that are agnostic to the magni-
tude of elements of the rate vector. We compared the
performance of MAX-RATE-GREEDY-DISPERSION with
the algorithm of [13], referred here as as MAX-LINKS

and a modified version of maximum weight scheduling
algorithm [21] described below. We chose [13] because
the evaluations presented in the paper show that their
algorithm preforms better than algorithms proposed ear-
lier.

Maximum weight scheduling algorithm [21] schedules
links essentially in decreasing order of packet queue
size in a conflict-free manner. It is one of the most
studied wireless network scheduling algorithms, and as
a result several variations of this algorithm exist in

the literature. We define a conflict free schedule as
one where SINR criteria is satisfied at the receivers
of all scheduled links. We refer to this algorithm as
MAX-WEIGHT-SINR. Further, similar to MAX-RATE-
GREEDY-DISPERSION (Algorithm 1, Line 5), we add a
link l to the scheduled link set S only if it does not cause
decrease in the sum-rate. We denote a link that satisfies
the SINR and monotonically non-decreasing sum-rate
criteria by l ⊥ S. We refer to the algorithm along-
with the later modification as MAX-WEIGHT-SINR-SR,
described in Algorithm 3.

We compared the performance of both these versions
of max-weight (Fig. 2). Although on less dense instances
MAX-WEIGHT-SINR-SR performs better than MAX-
WEIGHT-SINR which considers only conflict freeness,
we found that the performance of MAX-WEIGHT-SINR-
SR was only slightly better in general. We have used
MAX-WEIGHT-SINR-SR in further evaluations.

Algorithm 3 MAX-WEIGHT-SINR-SR

Input: Links: L = {l1, . . . lL}
� Sorted in non-increasing residual rate order.

1: S := φ
2: for i = 1 to i ≤ |L| do
3: if li ⊥ S � Explained in the text
4: S := S ∪ {li}
5: end if
6: i := i+ 1
7: end for

Output: S � Output S to the rate feasibility algorithm
(step 4 of Algorithm 4)

B. Simulation set-up

We distribute nodes in a plane according to Poisson
point process. We designate node-pairs as links by
selecting a random pair within a given maximum link
length. The reported network dimensions are normalized
in the unit of this distance. We assign randomized target
rates to the links distributed uniformly in the range
0.01W to twice the average rate (reported with plots).
In all experiments, the SINR threshold β = 1, path loss
exponent α = 3 and noise was 0.01. We logged the
residual sum of rates at the end of each time interval for
all the algorithms, which is shown in the figures.

C. Comparison with optimal

Figure 3 shows the performance of MAX-RATE-
GREEDY-DISPERSION, MAX-LINKS and MAX-
WEIGHT-SINR-SR on feasible single-hop rate vectors
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Fig. 2: Max-Weight with and without consideration of
sum-rate increase. The number of links was 20. The
details of this simulation set-up was the same as that
of Fig. 3, which is described below.

on a set of 20 links. We computed the set of links that
each of the algorithms schedules at each time step. We
also performed exhaustive search at each time step to
determine the subset of links that led to the maximum
reduction in the residual sum of rates. The results
obtained by exhaustive search are labeled as Optimal in
the figures. We used Optimal along-with Algorithm 4
since we were logging residual sum of rates at each time
step. To lower the time complexity, Algorithm 2 can be
used with Optimal but with the following modifications:
replacing ceiling with floor function in step 8 and

Algorithm 4 General rate vector feasibility algorithm
Input: ρ � Rate vector ρ1, . . . , ρM
Input: T � Time granularity = 1/T
Input: Algorithm A(ρ) � A finds a set of links S that

can be scheduled simultaneously while satisfying
SINR constraint at all receivers in S

1: ρ′ := ρ � Residual rate vector
2: T := 0
3: while ( T < T ) and (ρ′ 6= 0)
4: S := A(ρ′) � Need to find a subset S that

maximizes sum of rates, e.g., MAX-WEIGHT-SINR-
SR.

5: do for each k ∈ S
6: ρ′k := Max{0, ρ′k −

W
T lg(1 + ψk)}

7: end do
8: T := T + 1
9: end while

Output: if ρ′ = 0, ρ is feasible

redefining δmin as Max{1,Minkδk}.
We report the results for three different field sizes. In-

creasing the field size generally implies that the links are
more spread-out resulting in larger sizes of link subsets
that can be activated simultaneously. The transmit power
in these evaluations was set to β(Noise + lαmax), where
lmax is the maximum link length. We present the results
for non-uniform transmit power in sec. IV-F. The inset
figures in the plots show the network topology.

The data obtained from optimal search show that the
rate vector was feasible in all three settings. MAX-RATE-
GREEDY-DISPERSION gives the smallest residual sum of
rates among all algorithms except the optimal. Further,
its curve follows the optimal curve much more closely
than the other two algorithms.

D. Performance in large networks

Since exhaustive search was not feasible for larger
networks, here we compared the performance of MAX-
RATE-GREEDY-DISPERSION with that of MAX-LINKS

and MAX-WEIGHT-SINR-SR only. The data, shown in
Figure 4, confirm that the maximum dispersion based
strategy is effective in large networks. We also find that
the comparative performance of MAX-RATE-GREEDY-
DISPERSION gets better as the number of links is in-
creased. Though Max-Weight has nice properties, it does
not consider geometry at all. This seems to be reason
why its modified version performs poorly here.
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Fig. 3: No. of links = 20. Figures in the order of
decreasing density of nodes. Network topology is shown
in the inset.
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E. Discretization of time

The first two plots in Figure 4 show the data obtained
on the same network and link rate vector but using
time granularities of 1/T = 10−3 and 10−4, respec-
tively. MAX-RATE-GREEDY-DISPERSION declares the
rate vector feasible at 0.956 and at 0.9334 for the time
granularities 10−3 and 10−4, respectively. These two
plots were obtained for a network that had 100 links.
Observe that the ratio M/T is only 10 in the first case.

F. Non-uniform transmit power

Fig. 5 shows the results for non-uniform transmit
power setting. The transmitting node’s power was set to
the link length raised to the power α. This is equivalent
to normalizing the signal strength on the links to 1. In
the plots shown here as well as several other settings, the
dispersion based strategy performs better than the case
of uniform transmit power setting, primarily because of
reduced interference.

V. CONCLUSION

We discussed why maximizing the number of concur-
rently scheduled links does not necessarily maximize the
sum-rate. We proposed a new polynomial time strategy
inspired by max-sum p-dispersion results. Comparisons
with the exhaustive search indicate that the proposed
algorithm preforms better than the state-of-the-art in
finding the set of links that maximize the sum-rate.
Although algorithmic aspects of wireless capacity, as
well as link scheduling, are well studied problems, to
the best of our knowledge, any work on these problems
using the idea of maximum-dispersion has not appeared
in the literature. We note that the design of MAX-
RATE-GREEDY-DISPERSION does not take channel into
account. Study of maximum-dispersion based algorithms
where channel is taken into account explicitly will ap-
pear elsewhere. Development of a distributed version
of MAX-RATE-GREEDY-DISPERSION where node loca-
tions are not provided apriori is another future work.

VI. APPENDIX: MAX-LINKS [13]
This section summarizes the algorithm of [13] that

we have used in the evaluation. The algorithm assumes
uniform transmit power P on all links. It defines rel-
ative interference RIj(k) = Pjk/Pkk, where Pjk =
P/d(sj , rk)

α and α > 2. For a given set of links S,
aS(k) for a link k is defined as

aS(k) =
1

1− βη/Pkk

∑
j∈S

RIj(k).

The rest of the steps is shown in Algorithm 5.
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Fig. 5: Non-uniform transmit power. No. of links = 20.
Figures in the order of decreasing density of nodes.
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Algorithm 5 MAX-LINKS

Input: Set of links: L
1: = Sort the links in non-decreasing length order
{l1, . . . l|L|}

2: c = max

(
2,
(

288β α−1α−2

)1/α)
3: S := φ
4: for v := 1 to |L| do
5: if aS(lv) ≤ 2/3 and
d(sw, rv) > cd(sw, rw)∀lw ∈ S

6: S := S ∪ lv
Output: S � Output S to step 5, Algorithm 2
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