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Deep Reinforcement Learning-based Scheduling for

Roadside Communication Networks
Ribal Atallah, Chadi Assi, and Maurice Khabbaz

Abstract—The proper design of a vehicular network is the key
expeditor for establishing an efficient Intelligent Transportation
System, which enables diverse applications associated with traffic
safety, traffic efficiency, and the entertainment of commuting
passengers. In this paper, we address both safety and Quality-
of-Service (QoS) concerns in a green Vehicle-to-Infrastructure
communication scenario. Using the recent advances in training
deep neural networks, we present a deep reinforcement learning
model, namely deep Q-network, that learns an energy-efficient
scheduling policy from high-dimensional inputs corresponding to
the characteristics and requirements of vehicles residing within a
RoadSide Unit’s (RSU) communication range. The realized policy
serves to extend the lifetime of the battery-powered RSU while
promoting a safe environment that meets acceptable QoS levels.
Our presented deep reinforcement learning model is found to
outperform both random and greedy scheduling benchmarks.

Index Terms—Optimization, VANETs, Energy-efficient, Deep
Reinforcement Learning

I. INTRODUCTION

A. Preliminaries:

The road traffic crashes and consequent injuries and fa-

talities, traditionally regarded as random and unavoidable

accidents, are recently recognized as a preventable public

health problem. Indeed, as more countries (e.g. USA and

Canada) are taking remarkable measures to improve their

road safety situation, the downward trend for the number of

fatalities and serious injuries due to motor vehicle crashes

continues, dropping between 7 and 10% yearly between 2010

and 2014 [1]. Although progress in the transportation industry

is being made to get us to a safe, more sustainable and more

comfortable transport, there still exists substantial challenges

that need to be addressed for the purpose of establishing a full-

fledged Intelligent Transportation System (ITS). Consequently,

researchers and policy makers joined forces in order to realize

a fully connected vehicular network that will help prevent

accidents, facilitate eco-friendly driving, and provide more

accurate real-time traffic information.

Today, Vehicular Ad-Hoc Networks (VANETs) offer a

promising way to achieve this goal. VANETs support two

types of communications; namely, a) Vehicle-to-Vehicle

(V2V) communications where messages are transmitted be-

tween neighbouring vehicles, and b) Vehicle-to-Infrastructure

(V2I) communications where messages are transmitted be-

tween vehicles and Road-Side Units (RSUs) deployed along

side the roads. VANETs highly rely on real-time information
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gathered from sensing vehicles in order to promote safety in

an ITS. Such information is particularly delay sensitive, and

its rapid delivery to a large number of contiguous vehicles can

decrease the number of accidents by 80% [2].

Certainly, VANET communications offer safety related ser-

vices such as road accident alerting, traffic jam broadcast, and

road condition warnings. However, on the other hand, through

V2I communications, mobile users are able to obtain a number

of non-safety Internet services such as web browsing, video

streaming, file downloading, and online gaming. As such, a

multi-objective RSU scheduling problem arises whose aim is

to meet the diverse QoS requirements of various non-safety

applications while preserving a safe driving environment. At

this point, it is important to mention that the unavailability

of a power-grid connection and the highly elevated cost of

equipping RSUs with a permanent power source set a crucial

barrier to the operation of a vehicular network.

Indeed, it has been reported that energy consumption of

mobile networks is growing at a staggering rate [3]. The

U.S. Department of Energy is actively engaged in working

with industry, researchers, and governmental sector partners

through the National Renewable Energy Laboratory (NERL)

in order to provide effective measures to reduce the energy

use, emissions, and overall transportation system efficiency

[4]. Furthermore, from the operators’ perspective, energy

efficiency not only has great ecological benefits, but also has

significant economic benefits because of the large electricity

bill resulting from the huge energy consumption of a wireless

base station [5]. Following the emerging need for energy-

efficient wireless communications as well as the fact that grid-

power connection is sometimes unavailable for RSUs, [6], it

becomes more desirable to equip the RSUs with large batteries

rechargeable through renewable energy sources such as solar

and wind power [7] and [8]. Hence, it becomes remarkably

necessary to schedule the RSUs’ operation in such a way

that efficiently exploits the available energy and extends the

lifetime of the underlying vehicular network.

B. Motivation:

This current work focuses on a V2I communication scenario

where vehicles have non-safety download requests to be served

by a battery-powered RSU. The objective of this paper is to

realize an efficient RSU scheduling policy that meets accept-

able QoS levels, preserves the battery power and prolongs the

network’s lifetime while prioritizing the safety of the driving

environment.

In a previous study presented in [9], the authors developed a

Markov Decision Process (MDP) framework with discretized
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states in order to establish an optimal RSU-controlled schedul-

ing policy whose objective was to satisfy the maximum

number of vehicle-generated download requests. Therein, the

resolution of the MDP was realized using reinforcement

learning techniques [10]. However, Q-learning with discretized

states and actions scales poorly [11]. In this present work,

the state space is continuous. Hence, classical reinforcement

learning techniques are no longer feasible in this case. Recent

advances in training deep neural networks are exploited herein

in order to characterize the system state and, thus, promote the

feasibility of instantiating a fictitious artificial agent that will:

a) learn a scheduling policy from high-dimensional continuous

inputs using end-to-end deep reinforcement learning, b) derive

efficient representations of the environment, and c) progress

towards the realization of a successful RSU scheduling policy

which meets multiple objectives.

C. Problem Statement and Novel Contributions:

This paper proposes the exploitation of a deep reinforce-

ment learning technique, namely Deep Q-Network, for the

purpose of efficiently utilizing the available RSU energy while

promoting a safe driving environment and offering acceptable

QoS levels. A battery-powered RSU is privileged with a deep

learning agent which will observe the vehicular environment

and steadily learn the optimal scheduling policy. The need for

a safe, smart, and green vehicular environment motivates the

establishment of an intelligent scheduling policy which meets

multiple objectives.

The following points highlight the identifying contributions

of this paper:

1) Unlike the work presented in [12]–[16], this work real-

izes a scheduling policy, which recognizes that the RSU

is equipped with a limited-lifetime power source. A deep

reinforcement learning agent is deployed at the level of

the energy-limited RSU, which first performs random

scheduling decisions and gradually learns an adaptive

dynamic policy that serves to extend the battery lifetime,

minimize the reception latency of safety messages, and

achieve acceptable QoS levels.

2) The work presented in [17] proposed energy-efficient

online optimization problems which are solved whenever

the characteristics of the vehicular environment changes.

The usability of this technique is limited given the highly

mobile facet of a vehicular network and the frequent

topology changes. In fact, the resolution of a complex

optimization problem results in further delaying the

decision of the RSU. However, with the use of a deep

learning model, and once the optimal policy is estab-

lished, the RSU performs optimal scheduling decisions

instantly without the need to continuously solve time-

consuming and complex optimization equations.

To the best of our knowledge, this paper is the first to inves-

tigate the feasibility of deep reinforcement learning methods,

particularly, deep Q-networks, in a vehicular environment.

D. Paper Organization:

The remainder of this paper is structured as follows. Section

II presents a brief overview of the related work. A description
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Fig. 1: Energy-Limited VANET

of the V2I communication scenario is presented in Section

III. Section IV presents the vehicular traffic model. Section V

lays out a detailed presentation of the MDP formulation. The

deep reinforcement learning framework is presented in Section

VI. The performance of the proposed model is examined

and compared to other scheduling heuristics in Section VII.

Finally, concluding remarks are presented in Section VIII.

II. RELATED WORK

In [13], the authors proposed a basic low-complexity V2I

access scheme called D ∗S where the RSU stored the Service

Requests (SRs) and the request with the least D ∗ S was

served first. D is the SR’s deadline and S is the data size

to be uploaded to the RSU. The authors then studied the

uplink MAC performance of a Drive-Thru Internet (DTI)

scenario in [14]. Both the contention nature of the uplink

and the realistic traffic model were taken into consideration.

The authors of [15] proposed two complexity-minimal V2I

access schemes and modelled the vehicle’s on-board unit

buffer’s queue as an M/G/1 queueing system and captured the

V2I system’s performance from a vehicle’s perspective. The

authors of [16] proposed a vehicular context-aware downlink

scheduling algorithms which use the vehicular information

such as the vehicles’ positions and cumulated bytes received

for the purpose of maintaining a high system throughput and

achieving fairness for the contending vehicles. The RSU first

collected the required information, modified the transmission

rate, selects a vehicle and admits it to service. The major

shortcoming of the proposed algorithm is the delay overhead

required to make a scheduling decision. Furthermore, its appli-

cability is limited to vehicular drive-thru non-safety-oriented

scenarios.

The algorithms proposed in [13]–[16] overlooked the RSU

energy consumption pertaining to the adopted scheduling

discipline. Given the increasing concern over the energy

consumption in wireless networks as well as the highly

likely unavailability of permanent power sources in vehicular

networks, the conventional design approaches may not be

feasible to green communications and should be revisited. Re-

cent research studies presented optimization techniques which

address problems such as efficient resource allocation as well

as energy-efficient scheduling [17]. The formulation of such
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models together with their related optimization techniques

are characterized by an elevated level of complexity and

require high processing power thus inducing significant latency

overhead.

It is worthwhile mentioning that, thus far, the literature over-

looks the possibility of establishing scheduling policies using

machine learning techniques. Particularly, deep reinforcement

learning augments the RSU with the ability to observe and

analyse the environment, make decisions, learn from past

experience, and eventually, perform optimal actions. In fact,

recently, the authors of [18] presented the Deep Q-Network

(DQN) algorithm which was tested in a challenging framework

composed of several Atari games. DQN achieved dramatically

better results than earlier approaches and professional human

players and showed a robust ability to learn representations

from very high-dimensional input. The authors of [18] and

[19] exploited an experience replay mechanism ( [20]) and a

batch reinforcement learning technique ( [21]), which made

the convergence and stability of the proposed DQN model

possible. DQN is foreseen to address the major long-standing

challenge of RL by learning to control agents directly from

high-dimensional inputs and state spaces. At this level, it

becomes necessary to investigate the feasibility of similar

techniques in reinforcement learning scenarios where an agent

makes decisions that affect the state of the environment. An

example is RSU scheduling in a vehicular network.

III. V2I COMMUNICATION SCENARIO

As illustrated in Figure 1, RSU G is equipped with large bat-

teries that are periodically recharged using energy harvesting

techniques (wind/solar) or, when required, human intervention

(physical battery recharging or replacing). Each vehicle is

equipped with an OnBoard Unit (OBU) through which it

communicates with nearby vehicles as well as RSUs. Vehicles

arrive to G’s communication range with a non-safety-related

download service request (e.g. email download or media

streaming). In the event where a vehicle senses hazardous road

conditions (e.g., slippery road or traffic collision), it raises a

safety flag in order to notify the RSU about the existence

of a safety message, which should be communicated to that

RSU as well as other neighbouring vehicles. This current work

adopts a slotted Medium Access Control protocol, similar to

the IEEE 802.11p standard, where time is divided into equal

time slots of length τ . However, our proposed scheduling

algorithm is centralized as opposed to the distributed nature of

the IEEE 802.11p protocol. It is assumed that there is perfect

synchronization between the RSU and the vehicles residing

within that RSU’s communication range with the use of a

Global Positioning System (GPS). At the beginning of each

time slot, the RSU becomes aware of the characteristics of all

the vehicles residing within its communication range. Based

on the collected information, the RSU signals to a single

vehicle the permission to either upload the safety message it is

carrying or continue downloading the requested data. In case

the RSU chooses to receive a safety message, the RSU notifies

the selected vehicle to transmit the carried safety message, and

then the RSU will broadcast the received safety message in

the next time slot. Note that, vehicles will drop their safety

flag in the case where their carried safety message has been

communicated to the RSU by another vehicle. During the time

the RSU is receiving a safety message, its energy consumption

is minimal. However, when serving a vehicle’s download

service request, the RSU’s consumed energy increases as the

distance to the receiving vehicle increases. Truly, according

to [22], the power consumption increases exponentially as the

distance between the transmitter and receiver increases. The

next section lays out the vehicular traffic model adopted in

this work.

IV. VEHICULAR TRAFFIC MODEL

Consider a multi-lane bidirectional highway segment of

length DC as illustrated in Figure 1. This considered segment

is assumed to be experiencing steady free-flow traffic. Accord-

ing to [23]–[25], vehicle arrivals to a particular lane l of the

considered segment follow a Poisson process with parameter

λl. Consequently, the overall vehicles’ arrival process to the

entire segment is also a Poisson process with parameter λs =
L
∑

l=1

λl, where L is the number of lanes [26]. The per-vehicle

speeds are i.i.d. random variables in the range [Vmin;Vmax].
These speeds are drawn from a truncated Normal distribution

with average V and standard deviation σV . It is assumed that

vehicles maintain their respective speeds constant during their

entire navigation period over the considered roadway segment

[24], [25]. Let Ji be a discretized version of the vehicle’s

residence time within the considered segment. The p.m.f. of

Ji has been derived in [25], and is given by:

fJi
(j) =

ξ

2

[

erf

(

DC

jτ
− V

σV

√
2

)

− erf

(

DC

(j−1)τ − V

σV

√
2

)]

(1)

where Jmin ≤ j ≤ Jmax, τ is the duration of a time slot and ξ
is a normalization constant.

An arriving vehicle communicates its speed, direction of

travel, and download requirements as soon as it enters the

coverage range of the RSU G. Consequently, G keeps record of

all vehicles within its range as well as their associated service

requirements. In this work, a vehicle i’s download service

request size is a uniformly distributed Random Variable Hi

between Hmin and Hmax. Hi is expressed in bits.

V. MARKOV DECISION PROCESS MODEL

In this work, a deep reinforcement learning agent deployed

at the RSU interacts with the vehicular environment in a

sequence of actions, observations, and rewards. At each time

step, the agent selects an action from the set of feasible actions

at that time, and correspondingly, the RSU will either receive

an announced safety message, or transmit data to a vehicle

with a download service request. The agent then observes the

changes in the environment and receives a reward accordingly.

The received reward depends on the whole previous sequence

of actions and observations. As such, the impact of an action

may only be seen after several hundreds/thousands of time-

steps ahead. This current section is dedicated to present
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the system state representation as well as the rewards/costs

associated with the agent’s actions.

A. Input From the Environment:

At the beginning of an arbitrary time slot (time tn), the

agent observes the vehicular environment and collects all the

parameters that define the system state. The agent’s input from

the environment at time tn is:

• Tn: the time elapsed since the last RSU battery recharge.

• Pn: the remaining power in the RSU’s battery, 0 ≤ Pn ≤
Pt, where Pt is the battery capacity.

• Nn: the number of vehicles residing within G’s commu-

nication range, 0 ≤ Nn ≤ Nmax.

• Jn = {Jn
1 , J

n
2 , · · · , Jn

Nn
}: a vector of size Nn containing

the remaining discrete sojourn times of each vehicle vi,
i ∈ (1, 2, · · ·Nn) and 0 ≤ Jn

i ≤ Jmax

• Hn = {Hn
1 , H

n
2 , · · · , Hn

Nn
}: a vector of size Nn con-

taining the remaining request sizes for each vehicle vi,
0 ≤ Hn

i ≤ Hmax.

• Wn = {Wn
1 ,W

n
2 , · · · ,Wn

Nn
}: a vector of size Nn

containing the waiting times of the safety messages in

the vehicles’ buffers. In case vehicle vi has no safety

message to upload, Wn
i is set to a negative value (-1).

• dn = {dn1 , dn2 , · · · , dnNn
}: a vector of size Nn containing

the separation distances between G and each of the in-

range vehicles, 0 ≤ dni ≤ DC/2.

The agent fully observes the current network situation and

is able to realize the system state representation at time tn,

denoted herein by xn. The system state xn is therefore a vector

of size (3 + 4Nn). The next subsections will define the set

of feasible actions as well as the reward/cost associated with

selected actions.

B. Impact of RSU’s Action: Rewards and Costs:

Let an denote RSU’s action at time step tn. Let An be

the set of valid (admissible) actions time at tn given that the

system state is xn, therefore, an ∈ An. At time tn, the RSU

either chooses to receive a safety message (whose existence

has been announced), hence an = 0, or to transmit data to a

vehicle vi (where 1 ≤ i ≤ Nn), and hence an = i. It is clear

that the set of valid actions at time tn depends on the system

state xn.

Now, at each time-step, the agent selects an action and

observes its impact on the environment. The RSU receives

a scalar value pertaining to the reward/cost associated with

the selected action. At time tn, whenever the RSU chooses

to transmit data to a particular vehicle vi ∈ Nn, the reward

received is the number of transmitted bits during that time

step. In this case, the cost paid at time tn is composed

of two components, namely, a) the power consumed by the

RSU to serve vehicle vi, and b) the waiting time of a safety

message whenever it exists. When the RSU chooses to listen

to an announced safety message, the induced cost pertains

to the amount of power required for the RSU to receive the

safety message’s data. Furthermore, in this model, the event

of the departure of a vehicle from the RSU’s range with an

incomplete download request is considered an undesired event

which causes remarkable penalties on the system’s returns.

Whenever a vehicle departs from the RSU’s coverage range

with an incomplete download request, the agent is penalized by

a value corresponding to the remaining number of bits which

need to be downloaded in order to fulfill that vehicle’s request.

Note that, even if the impact of the occurrence of such event

unveils in a single time-step during which a vehicle departs

with an Incomplete Service Request (ISR), the agent realizes

that the sequence of all its previous actions lead to this event.

This is a clear example that the feedback about an action may

sometimes by received after many thousands of time steps

have elapsed. All of the above is accounted for through the

formulation of a large, but finite MDP-based model, whose

characteristics are laid out next.

C. MDP Resolution:

The above definitions of the system state, RSU action, and

reward/cost gives rise to an MDP whose transition probability

kernel is unknown. Therefore, the resolution of this MDP

requires the use of Reinforcement Learning techniques for the

purpose of maximizing the RSU’s total rewards. Let rn be the

single-step RSU reward at tn, and let Rn be the total future

discounted rewards. Rn is given by: Rn =
T
∑

t=tn

γt−tnrn,

where T is the time step at which the RSU battery is either

drained or recharged, indicating the start of a new discharge

period.

Recall that the agent’s objective is to realize an optimal

scheduling policy which will serve to achieve three goals,

namely: a) minimize the reception delay of safety messages,

b) maximize the number of completed service requests, and c)

extend the RSU’s battery lifetime. Now, this problem has been

formulated as an MDP whose states are modelled as a Markov

chain, and a state-action dependent cost is incurred at each

stage. Classically, MDPs can be addressed using the methods

of dynamic programming [10]. However, in our cases, the

state space dimension is enormously large, hence, the required

computational effort to realize an optimal RSU scheduling

policy is prohibitively large, a phenomenon commonly referred

to as the ”curse of dimensionality” [27]. As a result, function

approximation techniques are used to overcome this widely

known limitation of MDPs. In this work, a non-linear function

approximator is used, specifically a neural network. The next

section lays out the neural network training process using a

deep reinforcement learning algorithm, which will serve to

realize an optimal policy for the above-presented MDP.

VI. DEEP REINFORCEMENT LEARNING RESOLUTION

A. Reinforcement Learning Background:

The optimal control of a MDP requires the determination

of a stationary policy π defining which action an should be

applied at time tn in order to maximize/minimize an aggregate

objective function of the immediate rewards/costs. As such,

a policy π induces a stationary mass distribution over the

realizations of the stochastic process (xn, an). A sequence
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of functions π = {a1, a2, · · · , aT }, with each an : E →
A, 1 ≤ n ≤ T , is said to be an admissible policy if an ∈ An,

∀xn ∈ E. Let Π denote the set of all admissible policies.

The goal of this current study is to find an optimal policy π∗

which will maximize the total discounted rewards. Whenever

the RSU is following the scheduling policy π, the action at

tn is an = π(xn). Therefore, the single step reward becomes

rn = r(xn, π(xn)) and the optimal policy is hence given by:

π∗ := argmax
π∈Π

Rπ
n (2)

and

Rπ
n =

T
∑

t=tn

γt−tnr (xn, π(xn)) (3)

Let Q∗(xn, an) be the optimal action-value function defined

by the maximum expected return when being in state xn

and taking optimal action an. Q∗(xn, an) obeys the following

Bellman optimality equation [10]:

Q∗(xn, an) = Exn+1

[

rn + γmax
an+1

[

Q∗(xn+1, an+1|xn, an)
]

]

(4)

Classical reinforcement learning algorithms estimate the

action-value function by using the Bellman equation as an

iterative update as follows:

Qn+1(xn, an) = Exn+1

[

rn + γmax
an+1

[

Qn(xn+1, an+1|xn, an)
]

]

(5)

This technique is known as the value iteration algorithm and

it converges to the optimal action-value function, Qn → Q∗ as

n → ∞. However, the usability of this approach in this work

is impractical since the system state is a large size vector,

hence, the state space is far too large to enumerate. As a

result, the time needed for the Q-table to converge increases

immeasurably. Consequently, it has become common to use

function approximation techniques to estimate the action-value

function. The next subsection lays out the adoption of a non-

linear function approximation method to represent the Q-

function using a neural network, which takes the state vector

as input and outputs the Q-value for each possible action.

B. Deep Reinforcement Learning Approach

This paper presents a model-free deep reinforcement learn-

ing method where the action-value function is represented

using a non-linear function approximator, namely a neural net-

work. Let Q(xn, an; θ) be an approximate action-value func-

tion with parameters θ. Hence, Q(xn, an; θ) ≈ Q∗(xn, an).
In the literature, a neural network function approximator with

weights θ is referred to as a Q-network [18]. A Q-network

can be trained in order to learn the parameters θ of the action-

value function Q(xn, an; θ) by minimizing a sequence of loss

functions, where the ith loss function Li(θi) is given by:

Li(θi) = E

[

rn + max
an+1

Q(xn+1, an+1; θi−1)−Q(xn, an; θi)

]2

(6)

Note that, θi are the neural network’s parameters at the ith

update, and the parameters from the previous update, θi−1 are

held fixed when optimizing the loss function Li(θi). Thus, the

term rn + max
an+1

Q(xn+1, an+1; θi−1) is the target for iteration

i, which depends on the neural network’s parameters from

the last update. Differentiating the loss function with respect

to the neural network’s parameters at iteration i, θi gives the

following gradient:

▽θiLi(θi) = E

[(

rn + max
an+1

Q(xn+1, an+1; θi−1)−Q(xn, an; θi)

)

▽θi Q(xn, an; θi)

]

(7)

The use of batch methods, which utilize the full training

set to compute the next update to parameters at each iteration

tend to converge very well to local optima. However, often

in practice, computing the cost and gradient for the entire

training set is extremely slow and sometimes intractable on a

single machine, especially when the training dataset is large.

Therefore, rather than computing the full expectations in the

above gradient equation, it is computationally desirable to op-

timize the loss function using the Stochastic Gradient Descent

(SGD) method. Based on the learning rate α, SGD updates

the neural network’s parameters after seeing only a single

or a few training examples. The use of SGD in the neural

network setting is motivated by the high cost of running back

propagation over the full training set. Reinforcement learning

methods tend to diverge when used with non-linear function

approximators such as a neural network. In order to avoid

the divergence of deep reinforcement learning algorithms, two

techniques were introduced in [18], namely a) Experience

Replay and b) Fixed Target Network. Theses techniques are

utilized herein, and as a result, deep reinforcement learning is

used to minimize the following loss function:

Li(θi) = Exn,an,rn,xn+1∼D

[

rn + max
an+1

Q(xn+1, an+1; θ
−)−Q(xn, an; θi)

]2

(8)

where D is the experience replay memory and θ− are the

parameters of the target Q-network. By using the above two

techniques, the convergence of the underlying deep reinforce-

ment learning algorithm has been empirically proven in [18]

and [19]. On the other hand, the drawback of using the

experience replay is the substantial memory requirements.

The proposed algorithm herein is an off-policy algorithm

as it learns an optimal action an = max
a

Q(xn, an; θ) while

still choosing random actions to ensure adequate exploration

of the state space. The widely used technique for off-policy

algorithms is the ǫ-greedy strategy where the agent selects the

current optimal action with a probability 1 − ǫ, and selects

a random action with probability ǫ. The deep Q-learning

algorithm is presented in Algorithm 1.

VII. RESULTS AND DISCUSSION

A. Simulation Setup:

In the simulation setup of this work, the vehicular traffic

model presented in Section V is adopted. Realistic mobil-

ity traces were generated by SUMO (Simulation for Urban

MObility) and fed as a mobility input for the simulation.

The presented results herein were averaged over multiple

runs of the simulations. Table I lists the simulator’s input

parameters. In this section, the performance of the proposed

DQN algorithm is evaluated in terms of:

• Incomplete request percentage.
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(a) Incomplete Request Percentage (b) Battery Lifetime (c) RSU Busy Time

Fig. 2: Performance Evaluation with Variable Vehicular Density

Algorithm 1 Deep Q-Learning with Experience Replay and

Fixed Target Network

1: Initialize replay memory D to capacity C

2: Initialize Q-network with random weights θ

3: Initialize target Q-network with random weights θ− = θ

4: for episode = 1, M do

5: Collect network characteristics to realize state x0

6: for n = 0, T do

7: an = argmaxa Q(xn, an;θ) with probability 1−ǫ.

8: Otherwise, an is selected randomly.

9: Execute an and observe rn and xn+1

10: Store transition (xn, an, rn, xn+1) in D

11: Sample random minibatch of transitions from D

12: Set the target to rn if episode terminates at n+ 1,

otherwise, target is rn +max
an+1

Q(xn+1, an+1;θ
−)

13: Perform a SGD update on θ

14: Every C steps, update: θ− = θ

15: end for

16: end for

Fig. 3: SM Sensing and Receiving Latencies

• RSU battery lifetime.

• RSU busy time.

The proposed algorithm herein is compared with three other

scheduling algorithms namely:

1) RVS: Random Vehicle Selection algorithm where, at

time tn, the RSU randomly chooses a vehicle vi ∈ In

TABLE I: Simulation Input Parameters

Parameter Value

RSU Battery Capacity 5× 50Ah batteries

Time slot length τ = 0.1 (s)

Vehicular densities ρ ∈ [2; 11] (veh/km)

Min and Max vehicle speed [60; 140] (km/h)

Min and Max request size [2; 10] (MB)

RSU covered segment DC = 1000 (m)

Vehicles and RSU radio range 500 (m)

Channel data bit rate Bc = 9 (Mbps)

Learning rate α(n) = 1/n
Discount factor γ = 0.5

Replay Memory Capacity 1 million transitions

Minibatch Size 100 transitions

to be served [15].

2) LRT: Least Residual Time algorithm where, at time tn,

the RSU chooses the vehicle vi ∈ In whose remaining

sojourn time Jn
i < Jn

j , ∀j = 1, · · ·Nn and j 6= i [15].

3) GPC: Greedy Power Conservation algorithm where, at

time tn, the RSU chooses the closest vehicle vi ∈ In
which contributes to the lowest energy consumption

compared to the remaining vehicles residing within G’s

communication range.

Under all the above scheduling algorithms, if the selected

vehicle happens to carry a safety message, the vehicle will

transmit it to the RSU, which will, in turn, broadcast it to the

set of in range vehicles.

B. Simulation Results:

Figure 2 evaluates the performance of the proposed DQN

algorithm when compared with the three previously described

scheduling algorithms, namely, RVS, LRT and GPC. Figure

2(a) plots the percentage of vehicles leaving G’s communica-

tion range with an incomplete service request as a function

of the vehicular density. It is clear that the percentage of

incomplete requests increases as more vehicles are present

within the RSU’s coverage range under all scheduling algo-

rithms. In fact, as ρ increases, the likelihood of selecting a
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Fig. 4: Performance Evaluation with Variable Average Request Size

certain vehicle will decrease, independent of the scheduling

discipline. Consequently, a vehicle will spend less time receiv-

ing service and the total number of vehicles departing from

G’s communication range with incomplete service requests

will increase. Figure 2(a) also shows that DQN outperforms

RVS, LRT as well as GPC in terms of incomplete service

requests. Under RVS, the selection method is random, and no

service differentiation is applied, and therefore, the number

of vehicles whose associated download request is not fulfilled

increases remarkably as more vehicles are present within G’s

communication range. Now, for GPC, G is serving the closest

vehicle which resides in the minimal energy consumption zone

compared to the set of in range vehicles. Whenever ρ is small,

a large portion of the vehicles have enough time to complete

their download request during the time they are the closest to

the G. However, when ρ increases, the time during which a

certain vehicle is closest to the RSU is not enough to complete

the download request. As a result, the percentage of vehicles

departing with an incomplete service request increases. Under

LRT, the vehicle with the least remaining download residence

time is selected. Whenever the vehicular load is small, (i.e.,

ρ < 6 veh/km), LRT performs relatively well. In fact, under

LRT, a vehicle having the least residual residence time will

be granted a prioritized continuous access to the channel

allowing it to download its entire service request. Under LRT,

similar to GPC, when the traffic load increases, the time a

vehicle is prioritized for channel access is not enough to

completely download its service request. Finally, the well-

trained DQN scheduling algorithm results in a smaller number

of vehicles with incomplete service requests compared to RVS,

LRT and GPC. This is especially true since the departure of

a vehicle with an incomplete service request is considered an

undesirable event, and during the exploration phase, the DQN

algorithm learns to prevent the occurrence of such events in

order to avoid penalizing its total rewards.

Figure 2(b) plots the battery lifetime when the RSU is

operating under different scheduling algorithms. Under RVS,

the battery lifetime decreases as more vehicles are present

within the RSU’s coverage range. Now, as the vehicular

density further increases, the RSU battery lifetime becomes

constant. This is due to the fact that, under RVS, the RSU

becomes continually busy (as illustrated in Figure 2(c)), and

randomly chooses a vehicle to serve without accounting for the

energy consumption. Under LRT, the battery lifetime decreases

dramatically as ρ increases. In fact, as more vehicles are

present within G’s coverage range, the vehicle with the least

residual residence time is most probably located at the edge of

the departure point from the RSU’s communication range. That

point is the farthest from G and requires the highest amount

of energy from the RSU to serve that distant vehicle. Now,

under GPC, the battery lifetime decreases as ρ increases from

2 to 5 vehicles per meter, and then increases as ρ increases.

Note that, under GPC, G serves the closest vehicle. So when ρ
increases from 2 to 5, the RSU becomes busier (as illustrated

in Figure 2(c)), and since there is a small number of vehicles

within the RSU’s range, the closest vehicle with an incomplete

service request may not reside in low energy consumption

zones, causing the RSU to consume larger amounts of energy.

As such, the battery lifetime decreases. Now, as ρ increases

further, more vehicles reside within the RSU’s coverage range,

and the closest vehicle to the RSU resides in lower energy

consumption zones, allowing G to consume less amounts of

energy and extend its battery lifetime. Finally, under DQN, as

ρ increases and the RSU becomes busier, the battery lifetime

decreases. It is clear that DQN outperforms RVS and LRT

in terms of battery lifetime. DQN also shows longer battery

lifetime than GPC whenever the vehicular density is less than

9 vehicles per km. When ρ increases beyond 9 veh/km, GPC

results in longer battery lifetime. This is due to the fact that

DQN not only tries to spend the least amount of energy, but

also, to serve as much vehicles as possible. It is true that GPC

outperforms DQN in terms of battery lifetime as the traffic

conditions experience larger vehicular densities, however, this

is at the expense of deteriorated QoS levels revealed by the

large percentage of incomplete service requests.

Figure 3 plots the Safety Message (SM) sensing and re-

ceiving delays. The sensing delay is the time it takes any

vehicle residing within G’s communication range to sense the

existence of a SM. The receiving delay is the time elapsed

from the first sensing of the SM until it is disseminated in the
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network by the RSU. The SM sensing delay is independent

from the RSU scheduling discipline. In fact, SM sensing delay

depends on traffic density as well as the vehicles’ sensing

range. Now, it is clear from Figure 3(a) that the sensing

delay is also independent from the SM inter-arrival time, but

decreases as the vehicular density increases. As more vehicles

are present within G’s coverage range, it becomes more likely

that a vehicle is close to location of the hazardous event,

and consequently, the SM sensing delay decreases. Figure

3(b) plots the SM receiving delay, and shows that, the three

scheduling algorithms RVS, LRT and GPC do not account

for the existence of a safety-related message in the network.

Under RVS, the SM receiving delay increases at first since

the chances of choosing a vehicle that carries a SM are small.

However, this delay decreases again as more vehicles reside

in G’s communication range and more vehicles have sensed

the existence of a SM and raised a safety flag. Under LRT,

a vehicle senses a SM and waits until it becomes the vehicle

with the least remaining residence time in order to transmit

that SM to the RSU, which will, in turn broadcast it to the

set of in range vehicles. This results in high SM receiving

delays as illustrated in Figure 3(b). Similarly under GPC, a

vehicle raising a safety flag has to wait until it becomes the

closest to the RSU in order to transmit the SM it is holding.

Under DQN, the algorithm realizes the significant importance

of safety messages, and as such, whenever a vehicle raises a

safety flag, the RSU listens to the carried SM immediately and

broadcasts it to the set of in range vehicles thereafter, hence

promoting a safer driving environment.

Figure 4 plots the percentage of incomplete requests and the

RSU battery lifetime versus the average request size. Figure

4(a) shows that the percentage of vehicles departing from

RSU’s coverage range with an incomplete service request

increases as the average request size increases. The QoS

also deteriorates as the vehicular density increases, which

emphasizes the result in Figure 2(a). It is clear that DQN

outperforms all the other scheduling benchmarks irrespective

of the size of the average service request. Figure 4(b) shows

that the RSU battery is conserved for longer periods when

the RSU is operating under DQN. Similar to the reasoning

of Figure 2(b), GPC outperforms DQN in terms of battery

lifetime only in situations where either the traffic conditions

are light-medium or the average request size is large enough

in order to keep serving vehicles in low energy consumption

zones. In both situations, GPC is resulting in remarkable

degraded QoS levels.

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTION

This paper develops an artificial agent deployed at the RSU,

which will learn a scheduling policy from high-dimensional

continuous inputs using end-to-end deep reinforcement learn-

ing. This agent derives efficient representations of the envi-

ronment, learn from past experience, and progress towards

the realization of a successful scheduling policy in order to

establish a green and safe vehicular network which achieves

acceptable levels of QoS. This work is the first step towards

the realization of an artificial intelligent agent, which exploits

deep reinforcement learning techniques and governs a set of

RSUs connected in tandem on a long road segment in order to

promote an efficient and connected green vehicular network.
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