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Abstract—Cooperative sensing enables secondary users to
combine individual sensing results in order to attain sensing
accuracies beyond those achieved by consumer RF devices.
However, due to sensing costs, secondary users may prefer
not to cooperate to the sensing task, leading to higher false
alarm probability. In this paper, we study how information
about the presence of cooperators affects the dynamics of
cooperative sensing schemes. We consider two scenarios, namely
the case when SUs cannot detect the presence of other potential
cooperators, and the case when SUs have prior information on
the presence of other SUs in radio range. Using an evolutionary
game framework, we demonstrate that protocols delivering such
type of information to SUs reduce cooperation and ultimately
lead to degraded network performance. Finally, a learning
process based on the replicator dynamics is proposed which is
capable to drive the system to the evolutionary stable solution.
The results of the paper are illustrated through numerical
simulations.

Index Terms—Cooperative sensing, cognitive radio, evolution-
ary games, evolutionary stable strategy, replicator dynamics

I. INTRODUCTION

Since its introduction, cognitive radio (CR) has attracted

a fair amount of interest from both academia and industry.

CR is still regarded as a promising technology that enables

secondary users (SUs) – also called unlicensed users – to

opportunistically access spectrum resources. As highlighted

by the US federal regulation authority [1], in fact, a large

amount of spectrum is underutilized resulting in wasted

resources. Currently, spectrum policies adopted worldwide

allow licensed users, only, to operate over a fixed and prede-

termined spectrum bandwidth. Whereas, it is more efficient,

under some appropriate conditions, to switch some traffic

demand over temporary available resources. This is the case,

e.g., of channels dedicated to TV broadcast services: those

can be reallocated to SUs as specified by IEEE 802.22

standard [2].

One fundamental issue related to CR is the design of a

reliable and robust spectrum sensing mechanism. Spectrum

sensing enables SUs to accurately detect available channels

and avoid severe interference with Primary Users (PUs), i.e.,

licensed users. Indeed, due to the random nature of wireless

media, several spectrum sensing errors may occur when a

single SU – possibly equipped with consumer electronics –

performs sensing tasks. The sensing error rate, however, can

be reduced considerably by combining channel observations

of multiple SUs by means of cooperative spectrum sensing.

This paper tackles the cooperative spectrum sensing

paradigm, briefly cooperative sensing, from a game theoret-

ical perspective. Indeed, CR has been extensively modeled

through game theory over the past decade [3]. Compared

to existing results, the present work captures fundamental

tradeoffs between false alarm probability and costs related

to the sensing task when network configuration changes over

time.

In particular, our analysis incorporates the knowledge

available at the SUs on the network status, e.g., the presence

of other SUs in radio range. Indeed, in a dynamic environ-

ment, SUs may join or leave the network at any point in

time according to energy constraints, mobility, and quality

of service (QoS) requirements. As a result, the evolution of

SUs’ behaviors need to be integrated into the analysis of

cooperative sensing dynamics. To this respect, evolutionary

games (EGs) provide a framework and analytical tools to

study the properties of this type of systems.

The rest of the paper is organized as follows. In the next

section, we revise related works. Section III describes the

system model. Section IV introduces the EG formalism and

models cooperative sensing as an EG. Section V studies the

existence and uniqueness of ESS when SUs may know or not

whether they are alone. In Section VI, the results of the paper

and the performance of the replicator dynamics are discussed

through numerical simulations. Finally, concluding remarks

and possible extensions of this work are provided.

II. RELATED WORKS

The theory of evolutionary games dates back to the 70’s,

when biologist John Maynard Smith [4] used game theory

to model animal interactions. Compared to classical game

theory, EG theory studies the diffusion and stability properties

of a set of strategies adopted within a population of agents. A

core concept we adopt in this work is that of an evolutionary

stable strategy (ESS). The ESS describes a distribution of

strategies which persists over time over the population. It

hence represents a notion of stable Nash equilibrium. In

particular, when the ESS is reached, deviant strategies are
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not adopted. Instead, they tend to vanish against the fre-

quency of strategies which determine the ESS equilibrium.

Furthermore, the system evolution is well described by the

replicator dynamics. Such equation, as introduced later in the

paper, provides a model to approach the dynamics by which

strategies are adopted over time.

Evolutionary games, traditionally confined to biology and

economy, have recently gained attention from the wireless

communications research community. In [5], Tembine et al.

adopt EG in order to model channel access in slotted Aloha

networks and power control in W-CDMA systems. Cooper-

ation between cognitive radio relays using an evolutionary

framework is studied in [6]. In that work, SUs with different

channel conditions decide whether to cooperate or not in

order to select the best primary channel.

As the performance of the network depends on both

spectrum sensing and spectrum access, authors of [7] design

a joint sensing and access algorithm for both synchronous

and asynchronous systems. The problem of spectrum sensing

scheduling is also studied in [8] and [9] using EG.

In [10], an optimal listen-sleep mechanism is introduced

using EG to save energy for cognitive radio sensor networks.

A punishment mechanism is proposed to encourage SUs with

high quality of service to perform the sensing task.

Contribution. In [11], we have considered the sense-or-

not-to-sense game as a one-shot volunteer dilemma. In that

work, a counter-intuitive property has been proved: the

probability to volunteer for the sensing task decreases when

the number of SUs increases. In this work, we consider the

evolutionary version of the volunteer dilemma and analyze

the dynamical properties of the cooperative sensing system.

We are able to tie together the tradeoff between the false

alarm probability, the sensing cost, the amount of knowledge

available at the radio terminals, and the spatial distribution

of the SUs. Overall, the main contributions of this work are

resumed hereafter:

1) the sense-or-not-to-sense game is modeled as an EG able

to incorporate the tradeoff between SU’s sensing cost

and the cooperative false alarm probability;

2) conditions for the existence and uniqueness of ESSs are

devised for two scenarios:

• scenario 1: the SU has no information about existing

cooperators,

• scenario 2: the SU knows when it is alone with

probability one;

III. SYSTEM MODEL

We consider M ≥ 1 SUs able to opportunistically access

a single primary channel. Each SU is equipped with a

transceiver: the transceiver can be tuned on the primary

channel in order to check if it is free or not. The SUs adopt

a distributed scheme by which each device decides on the

channel’s availability independently by gathering its sensing

results and the results of its nearby SUs. Each cognitive

radio transceiver is equipped with an energy-based spectrum

sensing detector. Therefore, a licensed user is supposed to

occupy the channel if its signal energy is measured above

a given threshold. We suppose that the sensing results of

individual SUs are shared on the same transmission channel

during a coordinated reporting phase. In this work, we focus

on the sensing phase; the reporting phase and the access

phases are not taken into account in the analysis. More details

about such phases can be found in [11].

The performance of the sensing scheme is measured by the

false alarm probability: it is defined as the probability to sense

the channel busy while it is idle. The false alarm probability

of a single SU depends on both the time of sensing and

the detection threshold. In this paper, we assume the sensing

duration and the energy detection threshold to be assigned.

Hence, the false alarm probability of SU i is a fixed parameter

denoted fi.

Furthermore, in order to combine the sensing results, the

SUs adopt the “AND” combining rule. Thus, the cooperative

false alarm probability writes

f c
AND(S) =

∏

i∈S

fi, (1)

where S denotes the set of SUs taking part to the sensing

task.

A tradeoff exists between the cooperative false alarm

probability and the cost of performing the sensing task. In

each time slot, a cooperator SU i among SUs consumes

a normalized amount of energy 0 < Ci ≤ 1 in order to

sense and share its sensing results with nearby SUs. At the

same time, the SU improves the complementary false alarm

probability 1− f c
AND(S), thus improving sensing accuracy.

The payoff Ui of cognitive user i depends on the set of

strategies A = {S, NS}, where “S” is the strategy of the SU

when it senses the channel, and “NS” the strategy when it

does not sense. The notation (ai, a−i) indicates the strategy

of cognitive user i facing the opponents’ strategy vector a−i.

The payoff of SU i is described as follows

Ui(ai, a−i) =



















−r if S = ∅

(1−
∏

j∈S

fj) if ai=NS,S 6=∅

(1− Ci)(1−
∏

j∈S

fj) otherwise,

where 0 ≤ r ≤ 1 is the regret of a user when no SU senses

the channel.

In the remainder of the paper, we make a homogeneity

assumption: SUs have same sensing cost C and false alarm

probability f . For notation’s sake, we denote U instead of

Ui. This seemingly simplified setup yet leads to interesting

insights. The extensions to the heterogeneous case and more

general combining rules are left as part of future works.

IV. EVOLUTIONARY GAME MODEL

In this section, we define the formal components of the

adopted evolutionary game framework and formulate the

cooperative sensing as an EG.
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A. Preliminaries

We consider a dynamical system where SUs, namely the

players, change their strategies (“S” and “NS”) depending

on the strategies of the players they interact with over time.

The SUs meet each other at random in a large population

of χ players. We hence assume that, at each sensing time,

the number of interacting players is a random variable χ that

takes values in {0, . . . ,M − 1}; we let M = ∞ in the case

of infinite support. Let pm = P(χ = m) be the probability

to meet 0 ≤ m ≤ M − 1 players.

We denote by x(t) = (x(t), 1 − x(t)) the 2-dimensional

vector that describes the state of the population over time;

x(t) ∈ [0, 1] is the fraction of the population that senses the

channel at time t. For notation’s sake, we will remove the

dependency on t and use x instead of x(t). We observe that

x can also be seen as a mixed strategy, i.e., the probability

to choose the “S” strategy, or equivalently as the frequency

to sense the channel. Next, we present some basic elements

of EG.

With standard notation, the probability-generating function

of random variable χ writes Gχ(x) :=
M−1
∑

m=0
pmxm.

1) Fitness: the fitness of a tagged player with respect to

strategy aj ∈ A and population’s state x is the expected

payoff it receives by playing strategy aj and when interacting

with a population of M SUs in state x. In general, χ is

a random variable with a given distribution. Therefore, the

fitness writes

g(aj , x) =

M−1
∑

m=0

pm E[U(aj , x)], (2)

where E[U(aj , x)] is the expected payoff of the player with

respect to the random strategies of the opponents. We define

G : [0, 1]2 → R the overall fitness by the following

G(y, x) = y g(S, x) + (1− y) g(NS, x). (3)

2) ESS: is a population state that cannot be invaded by

a minority group using another strategy. A formal definition

can be found in [5]:

Definition 1 (Evolutionary stable strategy). [5] A population

state x∗ is an ESS if ∀mut 6= x∗, there exists an ǫmut ∈ [0, 1]
(which may depend on mut), such that ∀ǫ ∈ [0, ǫmut]

G(x∗, ǫmut+(1−ǫ)x∗) > G(mut, ǫmut+(1−ǫ)x∗) (4)

A sufficient pair of conditions ensures the existence of an

ESS: strategy x∗ is an ESS if it satisfies

1. ESS is a Nash equilibrium i.e.

G(x∗, x∗) ≥ G(mut, x∗) ∀mut ∈ [0, 1] (5)

1. and x∗ is stable: if mut 6= x∗

G(x∗, x∗)=G(mut, x∗) ⇒ G(mut,mut)<G(x∗,mut)
(6)

The first condition ensures that, at the ESS, no mutant

strategy can invade the population, and the second guarantees

that the mutants will vanish over time.

3) Replicator dynamics: it is a representation of the popu-

lation state evolution over time. Many dynamics can be found

in the literature [5]. They describe the evolution of x over

time: the replicator equation, in particular, indicates that the

growth of a strategy is proportional to how this strategy is

successful. The replicator dynamics is given by

ẋ = µx
(

g(S, x)−G(x, x)
)

, (7)

where ẋ = dx/dt, and µ is a tuning parameter in [0, 1].

B. Game model

We analyze the performance of the cooperative sensing

scheme under either full information or partial information

about the presence of potential cooperators.

Our aim is to compare the behavior of a tagged SU in the

following opposite scenarios: when a SU can detect that no

other SUs are in radio range (singleton detection), and when

such estimation is not possible.

1) Scenario 1 – SU with no singleton detection (NoSD):

The SU has no prior knowledge about the existence of other

cognitive users who may participate in the sensing task. E.g.,

the CR protocol employed does not require SUs to signal

their presence to other SUs beforehand. From equation (2),

we can derive the fitness g1 of a given SU with respect to

both strategies sense and not to sense

g1(S, x)=

M−1
∑

m=0

pm

m
∑

n=0

(

m

n

)

xn(1− x)m−n(1−fn+1)(1−C)

= 1− C − f(1− C)Gχ(xf + (1− x)), (8)

g1(NS, x)=

M−1
∑

m=0

pm

m
∑

n=1

(

m

n

)

xn(1−x)m−n(1−fn)−r

M−1
∑

m=1

pm(1−x)m

= 1− Gχ(xf + (1− x))− rGχ(1− x). (9)

2) Scenario 2 – SU with singleton detection: In this

scenario, we suppose that the SU can detect whether it is

alone or there are SUs nearby in the network. Therefore,

each SU selects its strategy based on his knowledge of

being or not being alone. In this case, four strategies arise

{(S, S), (NS,S), (S,NS), (NS,NS)}. For example, when an

SU selects (S,NS), then, it chooses “S” when it is not alone,

and selects “NS” when it is alone.

The fitness of a given SU with respect to strategy (S, S)
writes

g2((S, S), x)=(1−p0)

M−1
∑

m=1

P(χ=m|χ>0)

M−1
∑

n=0

(

m

n

)

xn(1−x)m−n

(1−fn+1)(1−C) + p0(1− C)(1− f)

= (1−p0)
(

1−C−f(1−C)Gχ|χ>0(xf+(1− x))
)

+ p0(1− C)(1− f). (10)

Analogously, when the player adopts (S,NS)

g2((S,NS), x)= (1−p0)
(

1−C−f(1−C)Gχ|χ>0(xf+(1− x))
)

− p0r. (11)
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The fitness of a SU that chooses not to sense when

potential cooperators are in radio range and prefers to sense

when alone writes

g2((NS,S),x)=(1−p0)

M−1
∑

m=1

P(χ=m|χ>0)

M−1
∑

n=1

(

m

n

)

xn(1−x)m−n

(1−fn)−r(1−x)m+p0(1−C)(1−f)

=(1− p0)
(

1− Gχ|χ>0(xf + (1− x))

− rGχ|χ>0(1− x)
)

+ p0(1− C)(1− f). (12)

Finally, when it chooses not to sense in both cases,

g2((NS,NS), x) =(1− p0)
(

1− Gχ|χ>0(xf + (1− x))

− rGχ|χ>0(1− x)
)

− p0r. (13)

We observe that strategies (S,NS) and (NS,NS) are dominated

by (S,S) and (NS,S) respectively. Clearly, when the SU knows

it is alone, it has no choice but to sense the channel. Thus,

we can restrict our analysis to strategies (S,S) and (NS,S),

and use simplified notation accordingly: g2(S, x) stands for

g2((S, S), x), and g2(NS, x) stands for g2((NS,S), x).
In the following, individual and overall fitness are indexed

by 1 or 2 according to the corresponding scenario just

described.

V. ESS ANALYSIS

In this section, we give a full characterization of the ESS

for both scenarios, under different distributions of the number

of SUs.

A. Calculation of ESSs

Proposition 1 (ESS, scenario 1). Let C1
th :=

(1−f)Gχ(f)
1−fGχ(f)

. In

scenario 1, the evolutionary game is characterized by

1) a unique strictly mixed ESS given by x∗ = ∆−1
1 (0) when

C > C1
th, with ∆1(x) = g1(S, x)− g1(NS, x),

2) a unique pure ESS where every SU senses the channel

when C ≤ C1
th.

Proof. We are applying conditions (5) and (6) to the system

state x. First, condition (5) is satisfied when G1(mut, x) −
G1(x, x) = (mut− x)∆1(x) ≥ 0, where

∆1(x)=g1(S, x)− g1(NS, x)

=−C+(1−f(1−C))Gχ(fx+(1−x))+rGχ(1−x). (14)

We observe that ∆1 is a strictly decreasing and continuous

function since both Gχ(fx + (1 − x)) and Gχ(1 − x) are

continuous and strictly decreasing, (1 − f(1 − C)) ≥ 0 and

r ≥ 0.

Also, ∆1(0) = (1 − C)(1 − f) + r ≥ 0. Hence,

when ∆(1) < 0, we can denote x∗ the unique solution of

∆1(x
∗) = 0, x∗ ∈]0, 1[. The value ∆1(1) writes ∆1(1) =

−C + (1− f(1− C))Gχ(f). Therefore, when ∆(1) < 0,

i.e., C >
(1−f)Gχ(f)
1−fGχ(f)

= C1
th, we obtain G1(mut, x∗) =

G1(x
∗, x∗), which satisfies (5) with equality.

As equation (5) holds, we check the second condition

described by equation (6), which writes

G1(x
∗,mut)−G1(mut,mut) = (x∗ −mut)∆1(mut) :

i. mut < x∗: as ∆1 is strictly decreasing, ∆1(mut) >
∆1(x

∗) = 0, thus G1(x
∗,mut)−G1(mut,mut) > 0.

ii. mut > x∗: as ∆1 is strictly decreasing, ∆1(mut) >
∆1(x

∗) = 0, thus G1(x
∗,mut)−G1(mut,mut) > 0.

But, it is immediate to observe that (mut− x∗)∆1(x
∗) < 0

for all mut 6= x∗: consequently, when C >
(1−f)Gχ(f)
1−fGχ(f)

, x∗ ∈

]0, 1[ given by ∆1(x
∗) = 0 is the unique ESS.

Now, suppose C ≤ C1
th, then ∀x,∆1(x) ≥ 0. In order

to have G1(mut, x) − G1(x, x) < 0,∀mut 6= x, x must be

equal to 1, meaning every SU senses the channel is the ESS.

This completes the proof. �

As expected, SUs are more likely to volunteer for the

sensing task when the sensing cost is smaller: in particular,

below cost threshold C1
th =

(1−f)Gχ(f)
1−fGχ(f)

, sensing dominates.

At the same time, when the individual false alarm probability

increases, the cost threshold increases, augmenting participa-

tion in the sensing task. Similar results hold in scenario 2,

as showed next.

Proposition 2 (ESS, scenario 2). Let C2
th :=

(1−f)Gχ|χ>0(f)

1−fGχ|χ>0(f)
.

In scenario 2, the evolutionary game is characterized by

1) a unique strictly mixed ESS given by x∗ = ∆−1
2 (0) when

C > C2
th, with ∆2(x) = g2(S, x)− g2(NS, x),

2) a unique pure ESS where every SU senses the channel

when C ≤ C2
th.

Proof. The proof develops as in Prop. 1: it is sufficient to

replace Gχ in ∆1(x) by Gχ|χ>0 to obtain ∆2(x). Moreover,

Gχ and Gχ|χ>0 hold same monotonicity properties. �

B. Effect of singleton detection

We are comparing the performance of the system, i.e., the

cooperation level in the sensing task, as it is induced under

the two opposite scenarios, i.e., – we recall – when the SUs

cannot perform singleton condition detection (scenario 1),

and when they can, (scenario 2).

Proposition 3 (singleton detection effect). Let C1
th and C2

th

be the sensing cost thresholds of scenario 1 and scenario 2,

respectively. Then, it holds

C2
th ≤ C1

th,

where equality holds if and only if p0 = 0.

Proof. Note that Gχ(x) = (1 − p0)Gχ|χ>0(x) + p0. There-

fore,

Gχ(x)−Gχ|χ>0(x) = p0(1−Gχ|χ>0(x)) ≥ 0 (15)

Besides, function h : y 7−→ (1−f)y
1−fy

is increasing with respect

to y ∈ [0, 1], which completes our proof. �

The result of Proposition 3 can be detailed as follows.

• 0 < C ≤ C2
th: in both scenarios all SUs sense the

channel regardless knowing or not about the presence

of other cooperators;

• C2
th < C ≤ C1

th: SUs sense all the channel only when

the absence of potential cooperators cannot be assessed.
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• C1
th < C ≤ 1: the SU senses the channel with

probability x∗
i ∈]0, 1[, such that x∗

i = ∆−1
i (0), with

i ∈ {1, 2}.

The above reasoning applies to the mixed equilibria which

are attainable for both scenarios in a given system configura-

tion, i.e., f , r, C and given distribution of cooperators, i.e.,

Gχ(x), Gχ|χ>0(x).

Proposition 4 (Mixed ESS). Let x∗
1 and x∗

2 be the strictly

mixed ESSs of scenario 1 and scenario 2, respectively,

attained for same set of system parameters. It holds

x∗
2 ≤ x∗

1 (16)

Proof. First, as described by equation (15), Gχ(x) ≥
Gχ|χ>0(x). Moreover, ∀x ∈]0, 1[, we have

∆2(x)−∆1(x)=(1−f(1−C))(Gχ|χ>0(fx+(1−x))

− Gχ(fx+(1−x))) +r(Gχ|χ>0(1−x)− Gχ(1−x))

≤ 0 (17)

It follows that ∆2(x
∗
1) ≤ ∆1(x

∗
1) = 0, then, ∆2(x

∗
1) ≤

∆2(x
∗
2), we recall that ∆2 is strictly decreasing, so that

x∗
2 ≤ x∗

1. �

It is interesting to observe that in the regime of small

sensing costs, namely 0 < C ≤ C2
th, SUs volunteer for the

sensing task regardless the information they possess about

being the only one to sense.

Remark 1 (Role of Singleton Detection). One may be

tempted to try to design a protocol able to detect very

reliably the absence of SUs in radio range. The motivation for

equipping SUs with such functionality, would be that, riding

on the regret (bad performance), SUs would be incentivized to

sense. Unfortunately, the above results show that delivering

such information to SUs actually decreases cooperation.

This is apparently a paradox because by delivering more

information to SUs, e.g., at the cost of extra signaling, one

would drive instead the system to a lesser desirable operating

point [12].

VI. NUMERICAL RESULTS
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Fig. 1: ESS with respect to the sensing cost. Parameters: Poisson distribution with

parameter λ = 2, f = 0.2, r = 0.01.

In this section, we present numerical results meant to

provide further characterization of the performance of co-

operative sensing, according to the proposed model.

Fig. 1 depicts the probability to sense at the ESS, with

respect to the sensing costs. Clearly, the probability to

sense decreases as the sensing cost increases. As expected,

when the sensing cost is smaller than thresholds, C1
th and

C2
th, respectively, all SUs participate in the sensing task.

Furthermore, in agreement with Prop. 4, the probability to

sense under no singleton detection scenario, briefly NoSD, is

always better than singleton detection scenario, briefly SD.

Indeed, an SU that is able to detect the presence of other SUs

is more likely to free-ride cooperation resulting in a worse

sensing accuracy.

We study the impact of increasing the average number

of SUs in Fig. 3(a). By increasing the Poisson intensity

parameter λ, the average number of SUs in radio range

of each SU increases. This lowers the probability to sense

the channel at the equilibrium. The effect of the volunteer’s

dilemma can be mitigated by enlarging the regret parameter.

Indeed, Fig. 3(a) shows that SUs are more likely to participate

in the sensing task when the regret r is higher. This can

be seen as a possible incentive mechanism to overcome

lack of cooperation of SUs. It is worth noting that the

regret can be tuned at the protocol level, e.g., the regret

parameter can be the average service time of packets served

in SUs’ transmission buffers. Hence, SUs will improve the

performance when the regret is weighted more, e.g., by means

of a simple multiplicative factor.
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with parameter k = 2, C = 0.6, f = 0.02, r = 0.01, the strictly mixed ESS is

(0.78, 0.22).

Next, we assume Poisson intensity λ = 2 and regret r =
0.01: in Fig. 3(b) the probability to sense at the ESS is plotted

with respect to the false alarm probability f and sensing costs

C. As expected, when the false alarm probability increases,

the SUs prefer to sense in order to achieve a better sensing

accuracy. Whereas, SUs are more reluctant to cooperate when

sensing is more costly. The plateau in Fig. 3(b) illustrates

how before the threshold cost is attained, all SUs choose to

participate in the sensing task.

The replicator dynamics represents the evolution of the
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Fig. 3: (a) ESS with respect to the regret r and the density of SUs with a Poisson distribution of parameter λ, C = 0.8, f = 0.02, (b) ESS with respect to the false alarm f

and the sensing cost C of SUs with a Poisson distribution of parameter λ = 2, and a regret r = 0.01

fraction of a population that selects a given strategy. More-

over, it can also be associated to a revision protocol de-

scribing the agents’ learning process. Each agent decides,

at random times, to revise its strategy. The choice of the

replicator dynamics fits well the limited information available

to SUs. Thus, SUs need only to know the fitness related

to their current strategy and that of others in proximity in

order to adopt a different one. It is also worth noting that the

replicator dynamics may not necessarily converge to the ESS.

Nevertheless, for the studied game, it is possible to show that

the replicator dynamics does converge to the ESS, and that

the ESS is asymptotically stable under the replicator, i.e., it is

a globally attracting point. Due to space limitation, the proof

is only included in the extended version of the paper that can

be found in [13]. Finally, Fig. 2 captures the vector field of

the replicator dynamics for two SUs. It can be seen that the

replicator dynamics is attracted by the asymptotically stable

ESS at (0.78, 0.22) regardless the initial configuration of the

network.

VII. CONCLUSION

In this work, we model cooperative sensing as an evolu-

tionary game. We study the impact of information available

at the SUs on the sensing accuracy. We hence prove that SUs

are more likely not to cooperate when they are able to detect

the absence of potential cooperators. In future works, we will

investigate the case of heterogeneous costs and regrets, and

we shall also study the impact of other combining rules.
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