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Optimal Geographic Caching in Cellular Networks

with Linear Content Coding
Jocelyne Elias∗ and Bartłomiej Błaszczyszyn†

Abstract—We state and solve a problem of the optimal ge-
ographic caching of content in cellular networks, where linear
combinations of contents are stored in the caches of base stations.
We consider a general content popularity distribution and a
general distribution of the number of stations covering the
typical location in the network. We are looking for a policy
of content caching maximizing the probability of serving the
typical content request from the caches of covering stations.
The problem has a special form of monotone sub-modular set
function maximization. Using dynamic programming, we find
a deterministic policy solving the problem. We also consider
two natural greedy caching policies. We evaluate our policies
considering two popular stochastic geometric coverage models:
the Boolean one and the Signal-to-Interference-and-Noise-Ratio
one, assuming Zipf popularity distribution. Our numerical results
show that the proposed deterministic policies are in general
not worse than some randomized policy considered in the
literature and can further improve the total hit probability in
the moderately high coverage regime.

Index terms— Cellular caching, Network coding, Hit

probability, Coverage model, Optimization, Stochastic Ge-

ometry.

I. INTRODUCTION

The rapid proliferation of smartphones, tablets and other

smart mobile devices over the last few years has come hand in

hand with content-oriented services, which are actually dom-

inating the Internet traffic. According to [1], video streaming

for example accounts for 54% of the total Internet traffic, and

the ratio is expected to grow to 71% by the end of 2019. This

phenomenon has posed new challenges for mobile network

operators and has pushed them to implement novel schemes

to efficiently operate their cellular infrastructure, dealing with

the explosive growth in mobile data traffic.

A promising approach to deal with this phenomenon is to

introduce caching at Base Stations (BSs). Content caching

at BSs is indeed very beneficial for mobile operators for

several reasons, the most important are: 1) it reduces the

data traffic on the backhaul links, 2) it reduces the delay

experienced by cellular network’s users, and 3) it contributes in

reducing the congestion during the peak hours. Therefore, this

issue has attracted the attention of the research and industrial

communities. A comprehensive survey on caching in cellular

networks, and more specifically in 5G networks, along with

its benefits and challenges is given in [2].

∗Jocelyne Elias is with Inria/ENS, Paris and LIPADE Laboratory,
Paris Descartes University, France. E-mail: jocelyne.elias@parisdescartes.fr.
Bartłomiej Błaszczyszyn is with Inria/ENS, Paris, France. E-mail:
Bartek.Blaszczyszyn@ens.fr.

Furthermore, very recently, some ideas taken from network

coding have been applied to caching in cellular networks [3],

[4], [5], [6] and it was shown that network coding-based

caching policies further improve the performance obtained

so far by classical caching schemes. The core idea of this

technique is to use random linear network coding, where linear

combination of contents (or chunks of files) are stored in the

caches of BSs.

In this work we combine linear content coding techniques

and cellular network coverage models from stochastic geom-

etry, to propose and evaluate some novel geographic caching

policies that further improve the hit probability obtained in

previous works. The idea is to store in the caches of base

stations linear combinations of contents so as to increase the

cache-hit probability by leveraging the probability of covering

the request location by more than one base station. For a gen-

eral content popularity distribution and a general distribution

of the number of stations covering a typical location in the

network, we formulate a problem of the optimal deterministic

policy of content caching with network coding, maximizing

the probability of serving the typical content request from

the caches of covering stations. We find the solution to

this problem using the dynamic programming approach. We

also consider two natural greedy caching policies. Theoretical

bounds can be given on the sub-optimality of one of these

greedy policies leveraging the classical theory of monotone

sub-modular set functions.

We evaluate numerically our policies considering two pop-

ular stochastic geometric coverage models: the Boolean one

and the Signal-to-Interference-and-Noise-Ratio (SINR) one,

and compare their performance (the hit probability) to those

offered by the caching of the most popular content in all

base stations and an optimal random, independent, caching

strategy from [7], both considered as reference strategies in

the literature. Our numerical results show that the proposed

policies employing network coding are in general not worse

than the two reference policies and can further improve the

total hit probability offered by the independent caching policy

in the moderately high coverage regime.

Related Work

There is a considerable number of papers dealing with

cellular caching. In what follows we mention only the most

relevant to our approach.

Bastug et al in [8] provide some early stochastic geometry

results on the user outage probability and average delay expe-

rienced in cache-enabled cellular networks, further developed

in [9].
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The optimized independent caching policy, used here as

a reference one, was proposed in [7] and evaluated under

the same Boolean and SINR coverage models. Networks of

wireless caches in the plane with geometric constraints and

linear network coding were first studied by Altman et al in [5].

Avrachenkov et al in [6] considered an approach with linear

network coding very similar to ours, addressing the hit prob-

ability maximization as a generalized unbounded knapsack

problem. Having proved that the problem can be solved in

general using dynamic programming, they mainly focus on

the explicit solution for a special case when no coding is

applied (each file is stored or not in a single chunk). They

also consider a relaxation of the problem in which the average

constraints on the storage space are imposed. This latter model

with one chunk happens to be equivalent to the one considered

in [7]. Our formulation of the hit maximization problem as a

monotone sub-modular set function maximization, while sub-

optimal with respect to the generalized knapsack problem

of [6], cf Remark 2, has a two-fold advantage: (1) the

optimal (dynamic programming) solution has much simpler

structure allowing one for efficient numerical evaluation of its

performance in a general case and (2) it admits natural ap-

proximations by greedy policies. Both approaches prove to be

competitive with respect to the reference policies considered

so far in the literature.

Further related works include [10], where some auction-

based collaborative caching mechanism for wireless streaming

is studied. In [11], the authors studied the on-line collaborative

caching problem for a multicell-coordinated system from the

point of view of minimizing the total cost paid by the Content

Providers. Similar scenarios are considered in [12], [13].

Cooperative caching and cooperative redundancy elimination

models were proposed in [14] for an intra-Autonomous Sys-

tem.

The remaining part of the paper is organized as follows.

Section II introduces the caching and network coding as well

as the user coverage models used in the paper. Section III

describes the optimal and greedy caching policies that we

propose to solve the hit probability maximization problem.

Evaluation of the proposed policies under the considered

coverage models is done in Section IV. Finally, concluding

remarks and future research are discussed in Section V.

II. CACHING WITH NETWORK CODING MODEL

A. Network Coverage Distribution

We consider a general cellular-network germ-grain type [15,

Section 6.5] coverage model generated by stationary marked

point process Φ = {(Xi, Ci)}, where Xi model the positions

of Base Stations (BSs) and Xi ⊕ Ci their cells (service

zones) 1. In fact, the only characteristics of this model, used

in the remaining part of this paper, is the coverage (number)

distribution defined as

pk := P{N = k }, k = 0, 1, . . . ,
where N :=

∑

i 1(0 ∈ Xi⊕Ci) is the number of cells covering

the typical location, assumed without loss of generality (due to

1Ci are assumed to be random closed sets and Xi⊕Ci means the translation
of the set Ci by Xi.

stationarity of the model) to be the origin 0 of the plane. We

consider P := {pk : k = 0, 1, . . .} as a (given) probability

distribution on N0 := {0, 1, . . .}. We shall use also the

following notation for the tail-distribution function of the

coverage number

P (k) := P{N ≥ k} =
∞
∑

n=k

pn.

1) Boolean Model: An important special case of the cov-

erage model considered in the literature and in this paper

is the Boolean Model (BM), where Φ is a homogeneous

Poisson point process and {Ci} are independent, identically

distributed closed sets of finite mean surface E[|Ci|] < ∞. In

this case the coverage number N has a Poisson distribution

with parameter λ′ := λE[|Ci|], where λ > 0 is the intensity of

Φ (corresponding to the density of BSs); cf [16, Lemma 3.1].

Consequently, for the BM we have

pk = eλ
′ λ′k

k!
, k = 0, 1, . . . (1)

2) SINR model: In a more adequate model for cellular net-

work, called Signal-to-Interference-plus-Noise Ratio (SINR)

coverage model 2, the coverage number distribution is given

by a more complicated expression; cf [17]. For this model we

have

pk :=

⌈1/τ⌉
∑

n=k

(−1)n−k

(

n

k

)

Sn(τ) , (2)

where

Sn(τ) = τ−2n/β
n In,β((W )a−β/2)Jn,β(τn) (3)

represents the expected number of n-tuples of BSs the typical

user can select among those which cover it with the SINR

greater than τ . The notation used in the above expressions is

as follows: τn := τ
1−(n−1)τ , β is the path-loss exponent3, W

is the external noise power, and the two special functions

In,β(x) :=

2n
∞
∫

0

u2n−1e−u2−uβxΓ(1−2/β)−β/2

du

βn−1Γ(1− 2/β)nΓ(1 + 2/β)n(n− 1)!
(4)

with a = λπE[(PS)
2

β ]
K2 , where λ is the density of BSs, S is the

fading/shadowing random variable, P is the BS transmission

power, K is the path-loss constant, and

Jn,β(x) :=
(1 + nx)

n

∫

[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1− vi)

2/β

∏n
i=1(x+ ηi)

dv1 . . . dvn−1, (5)

with η1 = v1v2 . . . vn−1, η2 = (1 − v1)v2 . . . vn−1, η3 =
(1− v2)v3 . . . vn−1, . . ., ηn = 1− vn−1. Note that in contrast

to the Boolean model, the coverage number distribution in the

SINR model has a bounded support; N is not larger than the

constant ⌈1/τ⌉ depending on the required SINR threshold τ .

2Also called shot-noise germ-grain model in [15, Section 6.5.4].
3The path-loss function is (Kr)−β , with constants K > 0 and β > 2,

and r is the distance between the BS and the user.

2017 The 2nd Content Caching and Delivery in Wireless Networks Workshop (CCDWN)



3

B. Content Popularity Distribution

We consider a finite 4 set of contents, indexed by a subset

of integers J := {1, 2, . . . , J}, J < ∞. Popularity of these

contents is modeled by a probability distribution {aj : j ∈ J},

called (content) popularity distribution. The value aj is in-

terpreted as the probability that a typical user (located at

the origin 0) requests the content I = j from the network;

aj := P{I = j}, where I is the index of the requested

content. Without loss of generality we assume that the content

items are indexed according to the decreasing popularity:

a1 ≥ a2 ≥ . . . ≥ aJ . In what follows, we always assume

that the requested content I and the coverage number N are

independent random variables.

An important special case of the content popularity distri-

bution, having some empirical justifications, is the truncated

Zipf distribution, with

aj = A−1j−γ , j = 1 . . . J, (6)

where γ is the (Zipf) exponent and A =
∑J

j=1 j
−γ .

C. Content Placement and Recovery Using Network Coding

We assume that a cache memory consisting of L ≥ 1 blocks

is available at each BS. The size of each block corresponds to

the size of exactly one content item (all content items are

assumed to have the same size). In this paper we assume

that all BSs store exactly the same subset of contents. The

spatial diversity (leveraging multiple coverage) is achieved by

using some network coding techniques in the contents storage

implementation, allowing one to store linear combinations of

more content items than the number of memory blocks.

More precisely, in each block i = 1, . . . , L a linear

combination of the content items from Ci ⊂ J of cardinality

|Ci| := #(Ci) ≥ 1 is stored. All base stations encode in their

memory blocks i = 1, . . . , L exactly the same subsets Ci of

content items using mutually independent linear combinations

of the contents. Motivated by this, we assume that a user (say

located at the origin) requesting some content item j ∈ J can

effectively recover it from the caches of the BSs covering it

when j is encoded in some block Ci of contents of cardinality

|Ci| not greater than the coverage number N , i.e., when

min{|Ci| : j ∈ Ci, i = 1, . . . , L} ≤ N . (7)

When the condition (7) is satisfied, we say the requested

content item j is hit in the network.

Denoting by δj , j ∈ J, the indicator of the event (7) we

can write the hit probability of the content item I randomly

selected according to the popularity distribution as a function

of the choice of the subsets {Ci}
L
i=1 of contents encoded in

the memory blocks of BSs as

Phit = Phit({Ci}) := P{δI = 1}

=
∞
∑

j=1

ajP
(

min{|Ci| : j ∈ Ci}
)

, (8)

with min{∅} = ∞.

4Finiteness of the content set simplifies the model analysis.

III. HIT PROBABILITY OPTIMIZATION PROBLEM

By a content caching policy we mean in what follows a

configuration of L sets of contents {Ci}
L
i=1 to be encoded

in L memory blocks of all BSs. Our main goal in this

section consists in finding a caching policy maximizing the

hit probability, that is solving

max
C1,...,CL⊂J

Phit({Ci}) . (9)

We shall also present a few reasonable sub-optimal content

caching policies. Let us first remark the following relations to

some previously considered caching policies.

Remark 1. Caching the L most popular contents corresponds

to taking Cj = {j}, j = 1, . . . , L. This policy is obviously

the optimal one in the case of the 1-coverage regime (pk = 0
for k ≥ 2.). Independent caching proposed in [7] leverages

multiple coverage to increase the hit probability, without using

network coding. In contrast to the policies considered in this

paper, it is a randomized policy providing all BSs with some

probability distribution on the set of content items (in fact the

sequence of caching probabilities for all contents) and letting

BSs independently sample the composition of their cached

contents from this distribution. This distribution is calculated

(as in the current paper) in function of the content popularities

and BS coverage probabilities so as to maximize the average

(cache) hit probability. Note this policy maximizes the hit

probability but in a different class of policies and hence, in

general, one cannot easily compare it to policies considered

in this paper.

Remark 2. Our current optimization problem is a restriction

of the knapsack problem stated in [6]. The restriction comes

from the fact that our policy {Ci} assumes coding content

items separately for each memory block i = 1, . . . , L and

using for all contents j ∈ Ci present in a given block i the

same number of equations ni = M/|Ci|, where M is the

number of chunks of each item considered in [6]. While this

latter assumption is not restrictive (ni 6= M/n for some n can

be shown sub-optimal), coding separately different memory

blocks is indeed sub-optimal. This assumption however has an

important consequence: it transforms the generalized knapsack

problem to a simpler sub-modular set function maximization

problem, as will be shown in what follows.

A. Properties of the Optimal Caching Policies

In what follows we present some properties satisfied by any

policy maximizing (9).

Lemma 3. There exists a policy {Ci} maximizing (9) having

the following properties:
⋃L

i=1 Ci = {1, . . . , jmax}, |C1| ≤
. . . ≤ |CL|, and all elements of Ci precede those of Ci+1;

i.e., Ci = {|C1|+. . .+|Ci−1|+1,. . . ,|C1|+. . .+|Ci−1|+|Ci|}.

Proof: Let {Ci} maximizing (9). Suppose an item x ∈
⋃L

i=1 Ci is present in more than one set Ci. Keeping x only

in one set of smallest cardinality does not decrease the hit

probability. Assume hence that {Ci} are pairwise disjoint and

suppose there exist x ∈ ˙⋃L

i=1Ci and y 6∈ ˙⋃L

i=1Ci, such

that y < x. Replacing x by y does not decrease the hit
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probability. Consider hence the case ˙⋃L

i=1Ci = {1, . . . , jmax}.

Assume now that {Ci} is indexed in the increasing order of

cardinalities. Suppose that x ∈ Ci, y ∈ Cj with |Ci| ≤ |Cj |
and x > y. Then, swapping x and y does not decrease the

hit probability and we can construct a new partition {Ci} of

{1, . . . , jmax} in which all elements of Ci precede those of

Ci+1.

Note that a policy {Ci} satisfying the conditions of

Lemma 3 has pairwise disjoint sets Ci. It is easy to see that

this simplifies the expression (8) of the hit probability to the

following one.

Lemma 4. For pairwise disjoint Ci, i = 1, . . . , L.

Phit({Ci}) =
L
∑

k=1

A(Ck)P (|Ck|) , (10)

where A(Ck) =
∑

j∈Ck
aj .

In view of Lemma 3 we can simplify the problem (9)

restricting ourselves to the policies of the form Ci = [m1+
. . .+mi−1+1,m1+. . .+mi], where [k, l] := {k, k+1, . . . , l} for

integers k, l and mi the number of contents cached in block i.
By Lemma 3 and Lemma 4:

Proposition 5. We have

max
C1,...,CL⊂J

Phit({Ci}) (11)

= max
1≤m1≤...≤mL

L
∑

k=1

A([m1+. . .+mk−1+1,m1+. . .+mk])P (mk) .

B. Dynamic Programming Solution of the Optimal Caching

Problem

The idea consists in finding first the optimal cardinality mL

of the last block CL in function of the assumed (unknown

beforehand) total number n of contents cached in previous

blocks. Then proceed recursively with cardinalities ml of

blocks Cl, 2 ≤ l ≤ L−1, maximizing them in function of the

assumed total number n of contents cached in C1, . . . , Cl−1

while taking into account already calculated contribution of

the blocks l + 1, . . . , L. This leads to the following Dynamic

Program (DP):

We express the optimal number of contents cached in the

L-th block as a function of the total number n ∈ J of

contents cached in previous blocks and the corresponding hit

probability as:

mL(n) := argmax
x

A([n+ 1, n+ x])P (x),

Phit(L, n) := max
x

A([n+ 1, n+ x])P (x).

By the induction, for a block l, with 2 ≤ l ≤ L−1, we define:

ml(n) := argmax
x

(

A([n+ 1, n+ x])P (x) + Phit(l + 1, n+ x)
)

,

Phit(l, n) := max
x

(

A([n+ 1, n+ x]) + Phit(l + 1, n+ x)
)

.

Finally, for the first block we consider only n = 0 since in

this case we should start with the first content item

m1 := argmax
x

(

A([1, x])P (x) + Phit(2, x)
)

,

Phit(1) := max
x

(

A([1, x]) + Phit(2, x)
)

.

The above DP approach leads to the following solution of our

optimal caching problem (11).

Proposition 6. The maximal hit probability in (11) is equal

to Phit(1) and it is achieved on (m∗
1, . . . ,m

∗
L) defined as

m∗
1 := m1

m∗
2 := m2(m

∗
1)

. . .

m∗
L−1 := mL−1(m

∗
1 +m∗

2 + . . .+m∗
L−2)

m∗
L := mL(m

∗
1 +m∗

2 + . . .+m∗
L−1) .

(12)

C. Greedy Sub-Optimal Caching Policies

The DP approach to the hit probability maximization (9)

completely solves the problem but presents a considerable

numerical complexity. Greedy algorithms are supposed to

propose simpler policies, reasonably approaching the maximal

hit probability (9). Depending on whether we apply the greedy

approach to the class of general policies {Ci}, using the

expression (8) as the definition of the hit probability, or we

restrict ourselves to the class of structured policies Ci =
[m1+. . .+mi−1+1,m1+. . .+mi], using the expression (10)

for this probability, we obtain two, in general different, greedy

policies, both in general suboptimal. The former one, using

general {Ci}, has interesting theoretical bounds regarding

its sub-optimality, but still represents considerable numerical

complexity. The latter one, assuming the structured policies, is

numerically much simpler, but we do not have any theoretical

guarantees regarding its performance. Numerical evidences

suggest its utility. Finally, note that, even if the optimal policy

is known to have the structured form, a greedy algorithm

operating in this class is in general worse than the greedy

algorithm operating in the set of all non-structured policies.

1) Greedy Caching Policy with General Blocks: Let us

choose the first set Cg
1 of items as a subset maximizing the

one-block hit probability Phit({C}). Since ai are decreasing

Cg
1 has the form Cg

1 = [1, . . . ,mg
1] for some mg

1 ≥ 1. Thus

Cg
1 ∈ argmax

C⊂J

A(C)P (|C|) = argmax
m1≥1

A([1,m1])P (m1).

(13)

Then recursively, let us choose sets Cg
l , 2 ≤ l ≤ L maxi-

mizing the increment of the hit probability they offer, without

assuming mutual disjointness of the sets

Cg
l ∈ argmax

C⊂J

Phit({C
g
1 , . . . , C

g
l−1, C})− Phit({C

g
1 , . . . , C

g
l−1})

= argmax
C⊂J

∞
∑

j∈C

aj

(

P (|C|)− P
(

min{|Cg
i | : j ∈ Cg

i , i ≤ l − 1}
)

)+

,

(14)

where (x)+ = max(x, 0).

The following result not only gives a lower bound on the hit

probability achieved by {Cg
i } but also allows one to mitigate

the decrease of this probability by increasing the number of

memory blocks.

Proposition 7. Let {Cg
i }

K
i=1 be contents sets selected by the

greedy caching policy (13), (14) applied for K ≥ L memory

blocks and {C∗
i }

L
i=1 an optimal solution of the problem (9)

for L memory blocks. Then

Phit({C
g
i }

K
i=1) ≥ (1− e−L/K)Phit({C

∗
i }

L
i=1) . (15)
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Proof: Consider Phit(·) defined by (8) as a set function

on the space of finite subsets {C1, . . . , Ci} of finite subsets

Ci ⊂ J, i ≥ 1. Clearly Phit(·) is non-negative, increasing

Phit({C1, . . . , Ci}) ≤ Phit({C1, . . . , Ci, Ci+1, . . . , Ci+k})
and sub-modular

Phit({C,C1, . . . , Ci})− Phit({C1, . . . , Ci})

≥Phit({C,C1, . . . , Ci, Ci+1, . . . , Ci+k})−

Phit({C1, . . . , Ci, Ci+1, . . . , Ci+k}) .
Indeed, for this latter property observe that the right hand

side of (14) is decreasing with respect to l. The result follows

thus by the classical result [18] for sub-modular set functions.

2) Greedy Caching Policy with Disjoint Blocks: The first

set Cgd
1 := Cg

1 = [1,mg
1] is chosen by this policy as for the

previous greedy policy (13). Then recursively, let us choose

sets Cgd
l = [mg

1 +mg
2 + . . .+mg

l−1 +1,mg
1 +mg

2 + . . . ,mg
l ],

2 ≤ l ≤ L maximizing the increment of the hit probability

they offer, assuming mutual disjointness of the sets, thus using

expression (10) for this probability

Cgd
l ∈ argmax

C⊂J

Phit({C
g
1 , . . . , C

g
l−1, C})− Phit({C

g
1 , . . . , C

g
l−1})

= argmax
ml≥m1+...+ml−1

A([m1+. . .+ml−1 + 1,m1+. . .+ml])P (ml).

(16)

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

caching policies described previously considering the BM and

SINR coverage models. In particular we study the dependence

of our policies on the mean number of stations E[N ] covering

a given location and the Zipf exponent γ of the content

popularity distribution. We first describe the numerical setup,

including adopted coverage models (Sec. IV-A), and then we

analyze and discuss the numerical results (Sec. IV-B).

A. Numerical Setup

Let us first give more details about the coverage models

used in our results.

1) Boolean Model: We assume that the interference is small

compared to noise (noise-limited case) and hence we use the

Boolean model to calculate the probability of user coverage by

k BSs (pk in (1)). The signal-to-noise ratio can be expressed

as
P (Kr)−β

W , where P is the BS transmit power, K is the

path-loss constant, r is the distance between the BS and the

user, β is the path-loss exponent and W is the noise power.

Let B = K( P
W )1/β . Hence, we have E[|Ci|] = πτ−2/βB−2

and λ′ = λπτ−2/βB−2 (see Section II-A1). Note, the mean

coverage number is equal to E[N ] = πλτ−2/βB−2.

2) Signal-to-Interference Ratio (SIR) Model: For general

shadowing conditions, the coverage probability pk is calcu-

lated in (2), Section II-A2. We use a package developed in

Matlab, available at [19], to compute the numerical values of

the probabilities pk for this model. The mean coverage is equal

to E[N ] = S1(τ).
To evaluate the effectiveness of the proposed content

caching policies, we conduct calculations using Matlab. De-

fault values of key numerical parameters are as follows:
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(a) L = 5, λ = 1, γ = 0.9, Boolean model
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(b) L = 5, λ = 1, γ = 0.56, Boolean model
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(c) L = 5, λ = 1, γ = 0.9, SINR model

Figure 1. Hit probability Phit versus the mean coverage for τ ∈ [-
12 dB, 12 dB], cache size L = 5, λ = 1 and γ ∈ {0.9, 0.56}.

density of BSs λ = 1, number of cache blocks L = 5,

total number of content items J = 40, Zipf exponent γ ∈
{0.9, 0.56}, path-loss exponent β = 3 and constant K = 1,

noise power W = 0 in SIR model and P/W = 1 in BM.

B. Performance Evaluation

We evaluate the optimal policy considered in Section III-B,

called in what follows the Optimal Network Coding (ONC)

policy, and the greedy policy proposed in Section III-C2 called

the Greedy Disjoint-Blocks Network Coding (GDBNC) policy.

We plot the hit probability Phit versus the mean coverage

E[N ] for the BM and the SINR models.

We further compare our policies to the Most Popular (MP)

and Independent (IND) caching policy discussed in Remark 1.

The results are discussed in the next subsections.

1) Hit probability under the Boolean model:

Figure1 (a) and Figure1 (b) show the total hit probability

versus the mean coverage, when τ varies in the range [-12 dB,

12 dB], L = 5, λ = 1, and for γ = 0.9 and 0.56, respectively.

It can be observed that both the optimal and the greedy policies
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give us a very good performance compared to MP. This is

especially true for a mean coverage value higher than 2. For

small mean coverage values (or equivalently for high τ values),

all considered policies perform similarly to MP.

Furthermore, ONC performs better than IND for larger

mean coverage values. The gain is more important when

the content popularity distribution is more flat (smaller γ).

The greedy policy GDBNC is close to the optimal ONC in

some intermediate coverage regime and joins IND when the

coverage ultimately increases. It is an open question whether

the same holds true for the greedy policy with general bocks

considered in Section III-C1, which is in between GDBNC

and ONC.

2) Hit probability under the SINR model:

We now evaluate our policies under the SINR model. In this

case, the number of BSs covering the user is very much limited

(i.e., E[N ] < 3). As before, we plot in Figure1(c) Phit versus

the mean coverage. So, it is not surprising to obtain the same

behavior under all policies, except for mean coverage bigger

than 1.5. In fact, in this latter case, some performance gains

could be obtained by our policies with respect to the MP

policy. However, for the considered parameters of the SINR

model, there is no much enough room to improve Phit with

respect to MP.

V. CONCLUSION

In this paper we show how network coding ideas can

be used to improve the performance of caching in cellular

networks. Specifically, we study a geographic caching problem

in cellular networks allowing for linear content coding at base

stations. Three policies are proposed: an optimal for our model

and two natural greedy ones. We show that all considered

policies are equivalent to caching in every base station the

most popular content (without any coding) when there is no

coverage diversity. However, when the number of stations

covering a typical user increases, our policies perform much

better than this trivial policy and sometimes even better, in

terms of the hit rate, than the randomized caching policy [7]

previously proposed for such regimes.
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